
File System Optimization

Using Block Reorganization

Techniques
by

Sumit Narayan

B.E., University of Madras, 2002

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

at the

University of Connecticut

2004

APPROVAL PAGE

Master of Science Thesis

File System Optimization Using Block Reorganization Techniques

Presented by
Sumit Narayan, B.E.

Major Advisor
John A. Chandy

Associate Advisor
Krishna Pattipati

Associate Advisor
Dong-Guk Shin

University of Connecticut
2004

iii

Acknowledgements

I would like to thank and acknowledge my advisor, Dr. John A. Chandy for

his constant faith in me throughout the long, challenging, yet exciting work on this

thesis. I am grateful to his openness to ideas, discussions and easiness to work with.

I definitely couldn’t have done this without his help. I am thankful to Janardhan and

Mike, my co-workers at SNSL, for their cooperation and also for sharing their ideas

with me.

I would also like to acknowledge

Windsor Hsu, for clarifying my doubts through emails.

Daniel Ellard, for providing me with traces in our Harvard Study.

Raajaa Vishnu, my dearest friend, for his valuable insights and comments on my

work.

Finally, last, but most importantly, I would like to thank my parents, and my brother

Vineet for their constant support and encouragement in all my endeavors. I am

grateful to their love and understanding that has made this thesis happen.

Contents

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Motivation . 1

1.2 File Systems - An Overview . 2

1.2.1 Non-Journaling Filesystems 3

1.2.2 Journaled Filesystems . 3

1.3 RAID Systems . 5

1.3.1 RAID Levels . 6

1.4 Understanding of Disk Time . 6

1.5 Outline . 7

2 Disk Tracing in Linux Kernel 8

2.1 Introduction . 8

2.2 Related Work . 9

2.3 Trace Collection . 10

2.4 Traced System . 12

2.5 Analysis . 12

v

2.5.1 Read/Write Frequency . 13

2.5.2 Inter-arrival Time . 14

2.5.3 Request Size Distribution . 25

2.5.4 Burstiness . 30

2.6 Summary . 33

3 Optimization using Block Reorganization Techniques 35

3.1 Introduction . 35

3.2 Clustering Techniques . 36

3.2.1 Organ Pipe . 37

3.2.2 Heat Layout . 38

3.2.3 Packed Extents . 38

3.2.4 Sequential Layout . 38

3.2.5 Automatic Locality – Improving Storage (ALIS) 39

3.3 Block Reorganization with Zone Layout 41

3.4 Architecture of Zone Layout Schemes 43

3.5 Results . 44

3.5.1 Simulation Methodology . 44

3.5.2 Single Disk Results . 45

3.5.3 RAID System Results . 51

3.6 Summary . 66

4 Conclusions 67

4.1 Future Work . 68

Bibliography 69

List of Tables

Table

2.1 Read/Write Frequency for Email Workload (Read Dominated) 14

2.2 Read/Write Frequency for Netbench Workload (Write Dominated) . . 14

2.3 Read/Write Frequency for Database Workload (Equal Read/Write) . 14

3.1 Trace Characteristics . 44

3.2 System Response Time for different clustering technique with ALIZ on

single disk for Email Server Workload 46

3.3 System Response time for different clustering technique with ALIZ on

single disk for Database Workload 47

3.4 System Response time for different clustering technique with FREQZ

on single disk for Email Server Workload 49

3.5 System Response time for different clustering technique with FREQZ

on single disk for Database Workload 51

List of Figures

Figure

2.1 Interarrival Time Distribution for Email Server 16

2.2 Interarrival Time Distribution for Email Server - Read Requests . . . 16

2.3 Interarrival Time Distribution for Email Server - Read Requests . . . 17

2.4 Interarrival Time Distribution for Email Server - Write Requests . . . 17

2.5 Interarrival Time Distribution for Netbench 18

2.6 Interarrival Time Distribution for Netbench 18

2.7 Interarrival Time Distribution for Netbench - Write Requests 19

2.8 Interarrival Time Distribution for Netbench - Write Requests 19

2.9 Interarrival Time Distribution for Netbench - Read Requests 20

2.10 Interarrival Time Distribution for Netbench - Read Requests 20

2.11 Interarrival Time Distribution for Database Workload 22

2.12 Interarrival Time Distribution for Database Workload 22

2.13 Interarrival Time Distribution for Database Workload - Read Requests 23

2.14 Interarrival Time Distribution for Database Workload - Read Requests 23

2.15 Interarrival Time Distribution for Database Workload - Write Requests 24

2.16 Interarrival Time Distribution for Database Workload - Write Requests 24

2.17 Request Size Distribution for Email Server 26

2.18 Request Size Distribution for Email Server - Read Requests 26

2.19 Request Size Distribution for Email Server - Write Requests 27

viii

2.20 Request Size Distribution for Netbench 27

2.21 Request Size Distribution for Netbench - Write Requests 28

2.22 Request Size Distribution for Database Workload 28

2.23 Request Size Distribution for Database Workload - Read Requests . . 29

2.24 Request Size Distribution for Database Workload - Write Requests . . 29

2.25 Burstiness for Email Server . 31

2.26 Burstiness for Netbench Workload . 31

2.27 Burstiness for Database Workload . 32

2.28 Burstiness for Database Workload . 32

3.1 Disk Data Block Layouts . 37

3.2 Allocation of Edge Weight in ALIS 39

3.3 Percentage improvement in System Response time for different cluster-

ing techniques with ALIZ on single disk under Email Server Workload 47

3.4 Percentage improvement in System Response time for different clus-

tering techniques with ALIZ on single disk under Database Workload 48

3.5 Percentage improvement for different clustering techniques with FREQZ

on single disk under Email Server Workload 50

3.6 Percentage improvement for different clustering techniques with FREQZ

on single disk under Database Workload 50

3.7 System Response time for Email Server Workload (RAID System) . 53

3.8 Percentage improvement in System Response time for Email Server

Workload (RAID System) . 53

3.9 System Response time for ALIZ with different zone separation dis-

tances under Email server Workload (RAID System) 54

3.10 Percentage improvement in System Response time for ALIZ with dif-

ferent zone separation distance under Email Server Workload (RAID

System) . 54

ix

3.11 System Response time for FREQZ with different zone separation dis-

tances under Email Server Workload (RAID System) 55

3.12 Percentage improvement for FREQZ with different zone separation

distances under Email Server Workload (RAID System) 55

3.13 Average Seek Distance for Email Server Workload (RAID System) . 56

3.14 Percentage improvement in Average Seek Distance for Email Server

Workload (RAID System) . 57

3.15 Average Seek Distance for different zone separation distance on ALIZ

under Email Server Workload (RAID System) 57

3.16 Percentage improvement in Average Seek Distance for ALIZ under

Email Server Workload (RAID System) 58

3.17 Average Seek Distance for different zone separation distance on FREQZ

under Email Server Workload (RAID System) 58

3.18 Percentage improvement in Average Seek Distance for different zone

separation distance on ALIZ under Email Server Workload (RAID Sys-

tem) . 59

3.19 System Response time for Database Server Workload (RAID System) 59

3.20 Percentage improvement in System Response time for Database Server

Workload (RAID System) . 60

3.21 System Response time for different zone separation distances on ALIZ

under Database Server Workload (RAID System) 61

3.22 Percentage improvement in System Response time for different zone

separation distances on ALIZ under Database Server Workload (RAID

System) . 61

3.23 System Response time for different zone separation distances on FREQZ

under Database Server Workload (RAID System) 62

x

3.24 Percentage improvement in System Response time for different zone

separation distance on FREQZ under Database Workload (RAID Sys-

tem) . 62

3.25 Average Seek Distance for Database Server Workload (RAID System) 63

3.26 Percentage improvement in Average Seek Distance for Database Server

Workload (RAID System) . 63

3.27 Average Seek Distance for different zone separation distances on ALIZ

under Database Server Workload (RAID System) 64

3.28 Percentage improvement in Average Seek Distance for different zone

separation distances on ALIZ under Database Server Workload (RAID

System) . 64

3.29 Average Seek Distance for different zone separation distances on FREQZ

under Database Server Workload (RAID System) 65

3.30 Percentage improvement in Average Seek Distance for different zone

separation distances on FREQZ under Database Workload (RAID Sys-

tem) . 65

xi

Abstract

The slow mechanical nature of many storage devices is a major cause of concern

for all. Processor speeds are increasing at the rate of 50% a year; while disk access

times are able to gain only 10%. Rapid increase in the speed of microprocessors and

the relative slowness of disk access times have caused file servers to fail to deliver

the speed they are designed for. To attain good disk performance on servers, the I/O

traffic patterns must be known, and the disk must be optimized for such patterns.

A slew of optimization techniques are available, including using larger caches, better

file system utilization, and various disk organization techniques. However, without

an understanding of the actual disk access usage patterns, it is somewhat difficult to

make decisions on which of these to implement.

Our thesis contributes to this area as summarized below. First, we introduce a

disk tracing technique in the Linux kernel, using which we obtain disk access patterns

under three different workloads. Next, using this knowledge, we analyze the implica-

tion of the workloads on disk I/O. Based on the analysis, we evoke an optimization

technique that automatically replicates and reorganizes the selected “hot” disk blocks

depending on their usage patterns. In our thesis, we suggest usage of multiple zones

over the disk, instead of conventional single “hot” zone idea. Using multiple zones

and relocating high-heat blocks into their respective zones, we were successful in es-

tablishing up to 10–20% additional improvement in disk performance over the already

existing disk reorganization techniques, and up to 50% improvement against the unal-

tered disk layout. Further simulations demonstrate similar performance improvement

under RAID systems.

To my family...

Chapter 1

Introduction

1.1 Motivation

The slow mechanical nature of many storage devices is a major cause of concern

for all. With the processor speed increasing at Moore’s law rates and disk access time

barely changing, the gap between the processor and disk access time is becoming more

and more critical. Rapid increase in the speed of microprocessors and the relative

slowness of disk access times, being limited by mechanical delays, have caused file

servers to fail to deliver the speed they are designed for. Caching can ease congestion

by storing the frequently accessed data in main memory, but fitting the entire work

set into the memory is not always feasible. Further, it would decelerate other system

processes, not to ignore the high cost in achieving such large memory space. To make

things worse, we see an almost annual doubling in disk capacity, which is marginally

ahead of the decrease in access density or the number of I/Os per second per GB

of data. This evinces clearly that, though every generation of disk makes its arm

a little faster, each are consigned with a lot more data to handle. To attain good

performance on servers, the I/O traffic patterns must hence be known, and the disk

must be optimized for such patterns. A plethora of optimization techniques are

available including using larger cache, better file system utilization, and varying disk

organization techniques. However, without an understanding of the actual access

2

usage patterns, it is somewhat difficult to make decisions on which to be implemented.

In our thesis, we therefore, first explore the low-level disk access patterns for

different workloads for a variety of file systems and use them to get an understanding

of the disk usage under those workloads. While there has been a great deal of work

done on disk architectures, there has been very little work measuring the actual low-

level disk access. Much of the related work has focused on collecting traces at the

operating system level, which does not clearly indicate when the disk was actually

accessed for a particular request, since the file system behaviors can mask much of the

activity at disk. In other words, these traces do not provide the level of disk access

detail needed to adequately understand the disk access behavior. These operating

system traces are not useful when trying to improve disk storage systems design for

file system performance related to disk. Our work extends the previous work done,

to also consider the different file systems and examine their effect on the workload.

Next, we discuss the various optimization techniques suggested for improving disk

performance. Earlier work has been done to understand the proficiency of each of

these under different workloads on different operating systems/servers. In our work,

we, in particular, tested ideas which took into consideration not only the frequency

of access of different blocks on the disk but also the way they were accessed. We

then suggested use of multiple “hot” zones over the disk present at regular intervals

instead of using a single “hot” zone present in the center of disk.

1.2 File Systems - An Overview

The Linux kernel supports many different types of file systems. The first version

of Linux was based on the Minix file system in which, disks were allocated using

1Kb of data blocks. Later, the Extended File System (Ext FS) was introduced,

which included several significant extensions but lacked in performance. This was

followed by the introduction of EXT2 in 1994 and then EXT3 in 2000. Today there

3

are numerous file systems available on Linux – JFS, XFS, ReiserFS, LFS etc. In this

section we give a brief introduction on the details of the filesystems being characterized

in Chapter 2. File systems today are classified under two categories:

(1) Non-Journaling Filesystems

(2) Journaling Filesystems

1.2.1 Non-Journaling Filesystems

1.2.1.1 EXT2 Filesystem

EXT2 - the Second Extended Filesystem is native to Linux and is used virtually

on every Linux system. This file system was introduced in 1994 and is the most widely

used Linux file system. It is quite efficient and robust. EXT2 is an i-node based file

system; the i-node maintains the metadata of the file and points to the actual data

blocks. The disk blocks are partitioned into groups where each group includes data

blocks and inodes in adjacent tracks which helps in reducing the disk seek time.

1.2.2 Journaled Filesystems

Journaling is one of the most critical features required by most of the high per-

formance and highly available servers. Events like power failure or system crash can

leave the system in inconsistent state, as quite a lot of data is temporarily allocated in

RAM by means of buffer cache and page cache systems. To overcome this, by default,

UNIX/Linux performs a filesystem check before each boot. If the filesystem was not

properly unmounted, a complete and exhaustive filesystem check is performed on the

data structures on disk. This could take lot of time for large disks. To avoid this

time-consuming process of looking at the complete filesystem for faults, journaling

was introduced. Remounting these filesystems after system crash/failure could be

4

done in seconds with the help of journaling. Example of these kind of file systems

include EXT3, JFS, ReiserFS, XFS etc.

In journaling, each filesystem transaction is logged before and after a request is

issued to the system. A filesystem transaction includes operations such as renam-

ing files, copying files, moving files etc. Upon clear completion of the request, it is

committed to the filesystem and removed from the journal, just like a database trans-

action. Thus, in case of a system crash while processing the request, the system could

be restored to its normal condition by just replaying the journal and restructuring

the data blocks. Linux has four major contenders in the arena, EXT3, JFS, ReiserFS

and XFS.

1.2.2.1 EXT3 Filesystem

EXT3 [Twe] is a journaling layer atop the traditional EXT2 filesystem so that

recovery of a system in case of crash is much faster than an EXT2 system. EXT3

filesystem differs from others, since unlike JFS or ReiserFS, it can be configured to

log both metadata operation as well as data blocks of the files [BC03]. Since logging

all the operations have a major effect on the performance of the file system, it is up

to the system administrator to decide what has to be logged. EXT3 carries a major

advantage that it can be mounted as an EXT2 filesystem as well and is also capable

of reading EXT2 filesystem - thus enabling an easy upgrade from its non-journaled

version.

1.2.2.2 JFS

IBM’s Journaled File System (JFS) [JFS] is the most commonly used file sys-

tem on enterprise servers. It is designed for high throughput and reliable server

environments. It uses extent-based addressing structures, along with clustered block

allocation policies. An extent is a sequence of contiguous blocks allocated to a file as

5

a unit and is described by a triple consisting of <logical offset, length, physical>. This

produces a compact, efficient and scalable structure for mapping logical offsets within

files to physical address on the disk. JFS logs are maintained on each filesystem and

used to record information about operations on metadata. The log format is set by

the filesystem creation utility.

1.2.2.3 ReiserFS

ReiserFS [rei] is an atomic file system. This file system uses fast balanced trees,

also known as “dancing trees” for their data blocks layout. ReiserFS introduced “Tail

Packing” in their filesystem. Tails are files that are smaller than a logical block, or

portions of files which are smaller than a logical block size. This feature gives ReiserFS

approximately 5% more disk-space than an equivalent EXT2 system. ReiserFS has

an excellent small-file performance because of its capability of incorporating these

tails into B+ trees. Though this algorithm makes it a very space efficient filesystem,

ReiserFS cannot recover from any media faults. For example, a bad-sector on a drive

could cause a complete data loss, while EXT2/EXT3 can “force read” past the bad

sector for recovery.

1.3 RAID Systems

Redundant Arrays of Inexpensive Disks (RAID) is a stack of two or more disk

drives which operates as a single unit. In general, these drives could be any storage

system, such as magnetic hard drives, magnetic tapes or any optical storage. Under

conditions where speed is an issue, SCSI drives could be used. RAID systems offers

lower cost per byte, and have built in controller logic which can perform both error

detection and correction, thus being more reliable. The key to protecting data is to

store parity data, so that if a drive fails, the remaining drives will have data, that

was also on the failed disk.

6

1.3.1 RAID Levels

RAID Levels indicate how the hard drives in a system are working together. The

most commonly used RAID levels are RAID 0,1,3 and 5. In our thesis, we use RAID

5 for our experiments.

1.3.1.1 RAID Level 5 - Striped Parity

RAID 5 carries good parity performance by reducing the choking on parity disk

due to multiple write requests being queued on it. RAID 5 stripes the parity on the

different disk, thus removing this bottleneck. This scheme also allows simultaneous

writes if the writes are to different stripes, and there are no common clusters between

the writes.

1.4 Understanding of Disk Time

The time taken by a disk to respond to a particular request is composed of two

parts - access time and transfer time. Access time refers to the time taken by the

disk head to position itself over the correct sector and comprises the delay in moving

the arm to the correct track and the time spent waiting for the requested sector to

rotate under the head. Transfer time is the actual time needed to read the requested

data after the head is in position. This implies that transfer time is the actual time of

performing read/write operation, and it comes with access time as overhead. Thus,

requesting large sequential chunks of data would be beneficial, as that would reduce

the disk access time, and hence, the overall response time. However, if the data read

sequentially is not accessed again, there would be no need to cache it in RAM. If this

were the case under the different workloads, memory of around a mega-byte would

be sufficient for a good performance [GG97]. But this does not happen. Most of the

sequential read of data is referenced again, either in part or in full. Our experiments

in Chapter 3 would assist this statement. In our experiments, we found that around

7

2000–3000 blocks on a read-dominated server, and 20,000–30,000 blocks on an equal

read/write server were referenced again within an interval of 15 minutes. This figure

turns out to be 30–40% of the total number of blocks accessed during that period.

Keeping this fact of revisiting of blocks in mind, several algorithms based on relocation

of frequently accessed blocks have been designed.

1.5 Outline

This thesis has been organized into 4 chapters. The first chapter gives the intro-

duction and motivation for this work. It also briefly discusses the various file systems

and provides an understanding of the response times. Chapter 2 discusses our ap-

proach in tracing disk at the low-level under Linux kernel. Chapter 2 also provides

our results and observations of the effects of the workloads. Chapter 3 discusses the

different algorithms being used until now and introduces our algorithm. Our results

on single disk as well as on RAID systems are also showed. Finally, in Chapter 4, we

conclude with our ideas for future work.

Chapter 2

Disk Tracing in Linux Kernel

2.1 Introduction

With the rapid widening of gap between processor performance and disk access

time, it becomes increasingly important to understand the characteristics of I/O

patterns on disk. Because the disk technology has not kept pace with the improvement

of other components, it is the file system which needs to be efficient in its management

of disk resources. To do this, a file system developer must understand the access

pattern of the data on disk for different workloads. Traces of the disk subsystem

can provide the maximum information on how the disk is treated by a particular file

system. To improve the disk access times, one should be familiar with how the data

is delivered to the storage system by the file system. These traces are important

for many purposes other than the algorithms. These traces are difficult to obtain,

and not much work has been published in this area. Much of the related work has

collected traces at the operating system level, which does not clearly indicate when

the disk was accessed for a particular request, since the file system behaviors can

mask much of the activity at disk.

In this part of thesis, we show an updated analysis of I/O system disk behavior

based on a variety of workloads, both real and simulated. We also examine whether

the choice of file system has an effect on low-level I/O access.

9

2.2 Related Work

There has been significant work done on the analysis of I/O system performance

using traces collected from file systems [BHK+91, KRK92, Vog99, OCH+85, RLA00,

Mil91]. One of the earliest studies was the BSD study and its follow up Sprite

study [BHK+91, OCH+85]. The BSD paper has provided much of the foundation for

latter file system research. Roselli et. al. re-examined the conclusions from the BSD

study with a set of traces collected from several HP/UX servers and a collection of

Windows NT clients [RLA00]. There have also been several studies of distributed file

system access traces [ELMS03, GNA+97]. The procedure used in these and similar

studies was to capture the traces at a high level - either at the file system level, or

network level. These traces do not illustrate when the access was actually made to

the disk, if at all made in the first place. The UNIX buffer system stores the data

temporarily in cache. The data could hence have been hived away in cache, and later

deleted from cache memory itself - thus a request for that file need not have been

made to the disk.

The most relevant work at the disk level was that done by Ruemmler and Wilkes

at HP Laboratories in 1993 [RW92, RW93]. Their work generated traces from the

disk level access collected on HP-UX system with BSD Fast File System mounted.

Their results indicated that a small non-volatile cache at each disk allowed writes to

be serviced much faster than any regular disk. Similar work was done by researchers

at IBM where low-level traces were collected on a variety of systems including Win-

dows NT PCs and IBM AIX and HP-UX servers [HS03]. As in the HP study, they

found a high degree of burstiness in the access pattern, as well as a write-dominated

workload. Idleness in the storage system also suggested opportunities for background

optimizations as discussed later in the thesis. While the IBM study did examine

different file systems, it was difficult to determine the effect of the file system on

I/O accesses since the workloads also changed. In our work, we intend to further

10

examine the effect of the file system by tracing the same workload on different file

systems [NC04].

2.3 Trace Collection

We sought to extend the previous work by examining the effect of the file system

on I/O access patterns. Since the system under study was a Linux server, we traced

four popular file systems, namely EXT2, EXT3, JFS and ReiserFS. EXT2 is the

most commonly used file system in client Linux systems. EXT3, JFS and ReiserFS

are all journaling file systems, in that, fast restart is enabled through file system

metadata logging techniques [TT02, Bes00]. We examined these file systems under

three different workloads – an actual NFS email server workload, a synthetic CIFS

file server workload and a database workload.

To capture the disk I/Os at the lowest level, we introduced a thread into the

IDE driver of Linux kernel 2.6.0. The code was designed in such a way, that only

one particular disk could be tested. The differentiation was done based on the drive

numbers of the disk. The thread was transparent to user, and did not add much

burden to the system’s performance. This thread would record all the requests sent

to the disk, along with many other details. Each record collected the following details:

(1) Time of Request

(2) Device Number

(3) Sector number to which the request was made

(4) Request Size

(5) Action (Read/Write)

The collected trace was written at regular intervals to a completely different disk, to

avoid this write as being recorded as another request on the test disk. The average

11

size of each of such write was approximately 600KB.

To trace the NFS email server, we used the CAMPUS trace from a high level

network file access study conducted on Harvard University’s email server [ELMS03].

Using this trace, we reconstructed the file tree which would have existed on the

CAMPUS server at Harvard University at the time they collected the trace. Similar

file tree reconstruction techniques are described in [Bla92, ELMS03]. While this is not

an exact replica of the CAMPUS server, it replicated enough information so that we

can replay the trace and collect meaningful data. This tree was then replicated on four

different servers, each built with one of the targeted file systems. Upon generation

of the file system tree, an NFS client was programmed to generate the requests to

the server as if a real request for I/O was made to the server. For this purpose, we

replayed a week’s worth of Harvard’s trace. To make our framework more precise, we

sent the request to the server with the same time interval, as the trace file stated. On

the server side, the thread was initiated. The CAMPUS trace also included userid,

groupid, and IP information – these were ignored, since they were not relevant to our

experiment.

The second workload is the synthetic Netbench [Ver01] benchmark which exercises

CIFS file servers. We used the Disk Mix Test Suite to generate the synthesized

emulation of network file server access from Windows client in an office environment.

While Netbench may not be an ideal real-world trace, it is based on real office usage

patterns. More importantly, it does exhibit more write-oriented behavior as opposed

to the CAMPUS NFS server.

The final workload is the OSDL’s Database Test Suite (OSDL-DBT2) [OSD03],

inspired from the TPC-C benchmark [Tra92]. It is an online transactional processing

test, which simulates an inventory control database with several workers accessing

the database for purposes such as viewing, updating etc. The test was conducted for

50 warehouses under single connection for 18,000 seconds. The database we used for

12

data management in this test was PostgreSQL 7.4.

2.4 Traced System

The systems which acted as NFS clients were Pentium 4, 2.4 GHz computers with

512 MB of RAM each, while the server configurations were Pentium III, 800 MHz

computers with 512 MB RAM. Each file system was mounted on one individual server

and a unique client was connected to it to perform the experiment.

For the Netbench [Ver01] workload we used a Client and Controller Windows

machine to run the Netbench software. Using Samba, these Windows systems were

connected to the test Linux server and separate servers were again used with different

file systems mounted and traces were collected.

For the OSDL-DBT2 [OSD03] workload, we used the same Pentium 4 configura-

tion as servers for testing with fresh mount of the file system. With each run, a fresh

installation of PostgreSQL was done, a new disk was mounted and a new database

was created.

2.5 Analysis

In this section, we analyze the traces collected in our experiments. Our analysis

is based on the following categories:

(1) Read/Write frequency

(2) Inter-arrival Time Distribution

(3) Request Size Distribution

(4) Burstiness

13

2.5.1 Read/Write Frequency

Read/Write frequency is the percentage of read and write requests which were

made on the disk. We use this parameter to define the kind of workload we are using.

We obtained this ratio for each file system under each workload. The exact figures

for the read/write frequency can be seen in Table 2.1–2.3.

Since the CAMPUS server is predominantly an email server, it is natural to expect

it to be read-dominated. The Harvard data indicated the same, as they found three

times as many reads as writes. At the disk level, we found however, the ratio of

reads to writes is significantly higher due to the extra metadata activity that is

not present in the NFS trace. Our observation showed that the CAMPUS email

sever [ELMS03] was read-dominated, Netbench [Ver01] write dominated, and OSDL

Database Workload [OSD03] had equal read/write ratio. All four file systems followed

the similar pattern. It is interesting to see that the type of workload can have such

a dramatic effect on the read/write frequency. Particularly, the fact that the email

server is heavily read-oriented should lead storage system designers to optimize reads

even at the expense of writes. Even though, the Netbench numbers seem to indicate

that file servers should be write-optimized, this needs to be taken with a grain of

salt. The Netbench data set is only 22MB in size which can easily fit in cache, thus

explaining why there are so few reads. In the context of the traces we are collecting,

however, the Netbench data is useful since it serves as an example of a write dominated

workload. Finally, the database workload is a good example of a workload that is

evenly divided between reads and writes.

In terms of raw numbers, there are some points that stand out. With the heavily

write-oriented Netbench workload, we see that the journaling file systems, EXT3,

JFS and ReiserFS, have nearly three times as many writes than EXT2. These extra

writes are due to the writes to the journal. However, one may notice that the database

workload does not show a similar increase in writes. The reason is that the database

14

workload does only file writes without any file system/metadata operations such as

deleting a file, renaming a file, moving a file, etc. while on the other hand, the

Netbench workload does a lot of these operations. File writes are not journaled, but

file system modifications are journaled - thus the difference in behavior.

EXT2 EXT3 JFS ReiserFS
Read 8,998,227 8,464,299 7,215,712 7,010,054
Write 246,579 337,898 182,263 154,981
Total 9,224,806 8,802,197 7,397,975 7,165,035
% Read 97.33 96.16 97.54 97.83
% Write 2.67 3.84 2.46 2.16

Table 2.1: Read/Write Frequency for Email Workload (Read Dominated)

EXT2 EXT3 JFS ReiserFS
Read 30 48 21 25
Write 16,720 45,991 46,193 47,081
Total 16,750 46,039 46,214 47,106
% Read 0.18 0.10 0.05 0.06
% Write 99.82 99.90 99.95 99.94

Table 2.2: Read/Write Frequency for Netbench Workload (Write Dominated)

EXT2 EXT3 JFS ReiserFS
Read 2,940,367 2,893,065 2,331,008 1,410,985
Write 2,156,496 2,125,214 1,712,358 1,074,663
Total 5,096,863 5,018,279 4,043,366 2,485,648
% Read 57.68 57.65 57.65 56.76
% Write 42.38 42.35 42.35 43.23

Table 2.3: Read/Write Frequency for Database Workload (Equal Read/Write)

2.5.2 Inter-arrival Time

Inter-arrival time is defined as the time between successive disk access requests.

It is a useful measure to help identify the load on the disk system. In particular, the

average inter-arrival time determines the required service time from the disk. The

15

inter-arrival time can also be used to develop workload models that can drive queuing

studies. Inter-arrival Time distribution for the same test for different file systems

showed different patterns. Figures below show the comparison of the different file

systems (EXT2, EXT3, JFS and ReiserFS) under various workloads with respect to

the inter-arrival time in each case.

2.5.2.1 Email Server (Read Dominated)

It is clear from the distribution graph shown in Figure 2.1 that most of the requests

are on average less than a second apart, with the majority of them less than about

400ms apart for EXT3 and 600ms for EXT2. EXT3 showed a completely different

characteristics from its counterpart JFS and ReiserFS.

A steep rise was observed in the count of inter-arrival requests between 0.2 and

0.4 seconds for EXT3, while EXT2 and JFS showed spikes near 0.6 seconds and 1

second. Figure 2.2 shows the distribution graph plotted for the read request alone,

which showed similar characteristics to that of the overall inter-arrival cumulative

distribution graph.

Since nearly half of the inter-arrival times for the read requests are very short,

we magnified the graph for the region between 0 and 0.15 seconds (Figure 2.3). As

can be seen, nearly half of the inter-arrival times are at 0.01 seconds. These short

interval times are due to back to back NFS requests caused by a large NFS read

broken into smaller NFS requests due to protocol limitations. To know the inter-

arrival distribution of the write requests, we plotted the graph for write requests also

(Figure 2.4). All four file systems indicated almost the same behavior with EXT3

showing slightly more frequent access.

16

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Email)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.1: Interarrival Time Distribution for Email Server

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Email) - Read Requests

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.2: Interarrival Time Distribution for Email Server - Read Requests

17

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Email) - Read Requests

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.3: Interarrival Time Distribution for Email Server - Read Requests

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Email) - Write Requests

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.4: Interarrival Time Distribution for Email Server - Write Requests

18

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Netbench)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.5: Interarrival Time Distribution for Netbench

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Netbench)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.6: Interarrival Time Distribution for Netbench

19

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Netbench) - Write Requests

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.7: Interarrival Time Distribution for Netbench - Write Requests

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Netbench) - Write Requests

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.8: Interarrival Time Distribution for Netbench - Write Requests

20

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Netbench) - Read Requests

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.9: Interarrival Time Distribution for Netbench - Read Requests

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Netbench) - Read Requests

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.10: Interarrival Time Distribution for Netbench - Read Requests

21

2.5.2.2 Netbench (Write Dominated)

On Netbench, EXT2 and EXT3 showed almost the same pattern, with EXT3

having slightly more frequent accesses (Figures 2.5 and 2.6).

Since Netbench is write dominated, the write access distribution is very similar

to the overall interarrival time distribution (Figures 2.7 and 2.8). Looking at Figure

2.6, once can see that EXT2 and EXT3 have interarrival times that are much more

shorter than JFS. Nearly 90% of the intervals with EXT3 and ReiserFS are less than

0.02 seconds. JFS tends to delay writes, and thus eliminate some writes through the

cache, thus accounting for the difference. It would seem that because of this behavior,

JFS based storage system would have longer periods of idle time. Idle time can be

used by disk systems to run background optimization schemes, and this graph shows

that at least for the write-dominated data, the choice of the file system can influence

the length of idle time available. Figure 2.9 and 2.10 shows the same type of behavior

for reads but on a different scale. Note that Netbench has so few reads, this data is

not as meaningful.

2.5.2.3 Database Workload (Equal Read/Write Ratio)

Figure 2.11 and 2.12 shows the interarrival time distribution for the database

workload. The most striking feature in this workload is that the interarrival times

are much more frequent. Interestingly, the JFS and ReiserFS filesystems shows much

more frequent access than EXT3. This behavior is the complete opposite of what was

observed for the read-dominated and write-dominated workloads. Nearly 50% of the

interarrivals are less than 3ms for both JFS and ReiserFS, while for EXT3, the 50%

mark is reached only at 45ms.

To evaluate this further, we looked at reads and writes separately as shown in

Figures 2.13–2.16. It can be seen that there is very little difference between the file

system for reads. However for writes, there is a marked difference. For JFS, about

22

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Database)

File Systems
EXT2 EXT3 JFS ReiserFS

Figure 2.11: Interarrival Time Distribution for Database Workload

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.005 0.01 0.015 0.02

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Database)

File Systems
EXT2 EXT3 JFS ReiserFS

Figure 2.12: Interarrival Time Distribution for Database Workload

23

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Database - Read)

EXT2 EXT3 JFS ReiserFS

Figure 2.13: Interarrival Time Distribution for Database Workload - Read Requests

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Database - Read)

EXT2 EXT3 JFS ReiserFS

Figure 2.14: Interarrival Time Distribution for Database Workload - Read Requests

24

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Database - Read)

EXT2 EXT3 JFS ReiserFS

Figure 2.15: Interarrival Time Distribution for Database Workload - Write Requests

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.002 0.004 0.006 0.008 0.01

P
er

ce
nt

ag
e

Interarrival Time in Seconds

Interarrival Time Distribution (Database - Read)

EXT2 EXT3 JFS ReiserFS

Figure 2.16: Interarrival Time Distribution for Database Workload - Write Requests

25

80% of the intervals are less than 10ms, whereas for EXT3, the 80% mark is reached

only at 100ms. It is clear that JFS does not do a good job of grouping writes, when

reads are mixed with the writes. ReiserFS has almost 50% of requests within time

interval of 5ms.

2.5.3 Request Size Distribution

In this section, we examine the request size distribution, a measure of the number

of blocks in each request sent to the disk. We discuss the request size in each file

system under the different workloads.

2.5.3.1 Email Server (Read Dominated)

Request size distribution for the email server is shown in Figures 2.17–2.19. The

read dominated email server mostly had large reads. There was a peak seen at

64Kbytes. All the four file systems followed the same pattern of block distribution.

The read and write requests are separately shown in Figure 2.18 and 2.19 respec-

tively. While the read behavior is the same for all file systems, for writes, however

we notice a difference. Most write requests in EXT2 and JFS are small in size when

compared to EXT3. Even ReiserFS had almost 95% of its request with block size

less than 8Kbytes. Please note the change in scale on y-axis. It can also be observed

that JFS did not show large writes at all. JFS for reliability reasons do not coalesce

writes, thus explaining the lack of large writes.

2.5.3.2 Netbench (Write Dominated)

Netbench being a write dominated workload, read accesses on disk did not play

much role in its request size distribution graph (Figures 2.20 and 2.21). All the read

requests on disk under the Netbench workload were 4Kb in size, the default block

size. All four file systems showed a small spike around 64Kbytes, as also observed in

26

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

P
er

ce
nt

ag
e

Request Size in Kbytes

Request Size Distribution (Email)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.17: Request Size Distribution for Email Server

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

P
er

ce
nt

ag
e

Request Size in Kbytes

Request Size Distribution (Email - Read)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.18: Request Size Distribution for Email Server - Read Requests

27

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70

P
er

ce
nt

ag
e

Request Size in Kbytes

Request Size Distribution (Email - Write)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.19: Request Size Distribution for Email Server - Write Requests

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

Request Size in Kbytes

Request Size Distribution (Netbench)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.20: Request Size Distribution for Netbench

28

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

Request Size in Kbytes

Request Size Distribution (Netbench - Write)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.21: Request Size Distribution for Netbench - Write Requests

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

Request Size in Kbytes

Request Size Distribution (Database)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.22: Request Size Distribution for Database Workload

29

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

Request Size in Kbytes

Request Size Distribution (Database - Read)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.23: Request Size Distribution for Database Workload - Read Requests

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

Request Size in Kbytes

Request Size Distribution (Database - Write)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.24: Request Size Distribution for Database Workload - Write Requests

30

the read dominated email server. Both JFS and ReiserFS had majority – over 80%

of its requests of block size 4Kbytes.

2.5.3.3 Database Workload (Equal Read/Write Ratio)

Figures 2.22–2.24 show the request size distribution for the database workload. As

can be seen, the database workload issues very small requests. Almost all its requests

were 8Kbytes in size. This behavior did not show much variation over the different

file systems. EXT3 showed slightly fewer small read requests. ReiserFS had almost

all of its request under the block size of 8Kbytes. The write pattern was dominated by

small writes. Under this workload again, there was hardly any differentiation visible

in the four different file systems distribution.

2.5.4 Burstiness

We define burstiness as a series of requests made on the disk, which lie within the

time interval of 10ms of the previous request sent to the disk. It is a measure of how

many accesses are in groups and provides a rough measure of how much idle time

is available. The graphs below show the cumulative distribution function where the

x-axis is the number of requests in the burst.

2.5.4.1 Email Server (Read Dominated)

Under the read dominated workload, the three file systems did not show any

variation from one another. No more than 3 requests occurred in any burst.

2.5.4.2 Netbench (Write Dominated)

Under the Netbench workload, the three file systems showed significant differences

in the number of requests coming in bursts (Figure 2.26). JFS had around 80% of

its bursts as singletons, i.e. single request bursts, whereas for EXT3, the bursts were

31

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2 2.5 3

P
er

ce
nt

ag
e

Number of Requests in Bursts

Burstiness (Email)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.25: Burstiness for Email Server

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

P
er

ce
nt

ag
e

Number of Requests in Bursts

Burstiness (Netbench)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.26: Burstiness for Netbench Workload

32

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

P
er

ce
nt

ag
e

Number of Requests in Bursts

Burstiness (Database)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.27: Burstiness for Database Workload

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20

P
er

ce
nt

ag
e

Number of Requests in Bursts

Burstiness (Database)

FileSystems
EXT2 EXT3 JFS ReiserFS

Figure 2.28: Burstiness for Database Workload

33

typically much larger. Again this behavior is because JFS is quite conservative in

terms of coalescing writes to preserve reliability.

2.5.4.3 Database Workload (Equal Read/Write Ratio)

Under the database workload, the four file systems showed similar patterns of

very large amount of small bursts (Figure 2.27). The graph was hence magnified for

better understanding (Figure 2.28). It can be seen that even in this workload, JFS

seems to have shorter bursts than any other file system.

2.6 Summary

In this chapter, we have presented new studies of disk I/O traffic under different

workloads and different file systems. These findings provide insight to storage and

file system designers and moreover highlight the importance of file system choice in

designing a storage system. System administrators can also analyze their workload

and file system and pick a storage system that may match their particular workload

and file system needs.

The key findings are:

• Email servers are heavily read dominated (> 95% reads). This may indicate

that in email servers, large caches either in the server or at the disk are

warranted.

• File Servers are very write dominated. Write dominated systems may be able

to take advantage of log-structured file systems or disks [DO89, WAP99].

• The file system has a very minor effect on read-dominated workloads

• For write-dominated workloads, journaling file systems can cause an increase

in small writes. This may lead an administrator to add NOVRAM to coalesce

writes or not use RAID5 to address small write problem with journaling disks.

34

• In an email server workload, there is not much burstiness, and what little

there is, consists mostly of 2-3 request bursts. However, for a write dominated

file serving workload, EXT2 and EXT3 show significant burstiness as JFS.

The presence of burstiness may indicate more available idle time to do any

background work on disk — for example disk defragmentation, log cleaning

etc.

Chapter 3

Optimization using Block Reorganization

Techniques

3.1 Introduction

With disk I/O being the choke point in the computer systems, several efforts have

been introduced to reduce the disk seek time. Processor performance increases at

more than 50% per year, while disk access time improves at only about 10%. This

gap between the processor performance and disk storage has been widening more and

more every year. The lack in the improvement in response times of the disk have

caused file servers to fail to perform at the speed they could deliver.

There have been numerous studies on rearranging data blocks to reduce the disk

access time. Data access on disks is often skewed, and thus block re-arrangement tech-

niques could be very advantageous as they would place the most frequently accessed

blocks together, and hence reduce seek time of the disk. However, read-response time

varies largely according to the rotational latency of disk. Also, inertia and head-

settling time play a role. Because of inertia and high head settling time, not much

difference would be observed between short seek and long seek times particularly on

newer disks. Thus, reducing the disk seek time alone would not be very helpful with

the new trends in disk manufacture. We need a method which can reduce the number

of physical I/Os along with the seek time. Various heuristics have been developed

36

to layout data on disk so that items that are expected to be used together are lo-

cated close to one another [AS95, BEBW98, RW91]. The shortcomings in these a

priori techniques is that they are based on static information such as name-space

relationships of files, which may not reflect the actual reference behavior [Hsu03].

Furthermore, files become fragmented over time. The blocks belonging to individual

files can be gathered and laid out contiguously in a process known as defragmen-

tation [Don88]. But defragmentation does not handle inter-file access patterns and

its effectiveness is limited by the file size which tends to be small. Defragmentation

also holds on to an assumption that the blocks belonging to the same file tend to be

accessed together which may not be true always, for example, large files or database

tables.

Several strategies of placing the frequently accessed blocks have been introduced

and implemented. These frequently accessed blocks, also called “high heat” blocks

are placed in “hot” zones present in the center of the disk. In this chapter, based on

earlier algorithms, we introduce a new technique to improve the disk response time.

The basic idea in our work is to introduce multiple reorganized zones on disk instead

of having a single one at the center of the disk. Using simulations of disk level traces,

we found that these zones could improve the system response time by up to 30–50%

for file server workloads when compared to the original block placement. With the

disk performance increasing only at about 10% per year, this multiple zone strategy

could match several years of progress in access time improvements.

3.2 Clustering Techniques

In this section we discuss the various existing block reorganization techniques

studied earlier for deciding which blocks to be relocated. It has been observed that

only a small fraction of data on a disk are used frequently. Out of millions of blocks

present on a disk, just a few thousands of blocks absorb most of the requests. If these

37

(a) Original Layout

(b) Organ Pipe Layout

(c) Heat Layout

(d) Sequential Layout

Figure 3.1: Disk Data Block Layouts

frequently accessed blocks are spread over the surface of the disk, far apart from each

other, they would result in delayed seek time, causing poor disk performance (Figure

3.1(a)). These hot blocks could be clustered in a “hot” zone to reduce their seek

times. This would enable the disks to take advantage of sequentially reading data

subsequent to a request into a pre-fetch cache. This would further reduce the seek

time, in case the order of data access remains in the order of their placement on disk

surface. Many techniques to do this relocation of blocks have been suggested, a few

of which we shall discuss in this section.

3.2.1 Organ Pipe

The most important result of work in this arena has been the organ pipe layout

algorithm [Won, GS73, Knu98]. In the organ pipe algorithm, the most frequently

accessed data, also referred to as “hot” blocks are placed at the center of the re-

organized data, very similar to large organ pipes (Figure 3.1(b)). This is followed

by lesser frequently accessed blocks being placed at the inner and outer edges of the

center zone. This would minimize the head movement of the disk and works extremely

well under smaller granularities. However, this technique works under the assumption

38

of considering the disk in one-dimensional space. Since disks are two-dimensional, this

shuffling could also have negative impact on few workloads. Considering an example

where a backward block is to be fetched - it would result in a complete rotation of the

disk. This could also result in splitting contiguous data in case of workloads which

could generate dependent references, which is done randomly [Smi85]. Thus, organ

pipe layouts are usually optimal in practice, though, it could cause performance to

fall in the storage system.

3.2.2 Heat Layout

To keep the head from scanning disks back and forth over the hot zone, it has

been suggested to use the idea of heat layout [RW91], where the blocks are ordered in

descending order of their heat or frequency of access (Figure 3.1(c)). It was seen that

this method performed little better than organ pipe, but still failed when reorganizing

small data blocks.

3.2.3 Packed Extents

In the earlier layout techniques, the original block sequence was not given consid-

eration. Thus, the Packed Extents strategy [Hsu03], attempts to preserve the original

block sequence, particularly under aggressive read-ahead. Their way of analyzing was

to identify the most frequently accessed sequential units and then place them in as-

cending order of their ranking. Thus, the hot contents are packed together while

maintaining their access sequence.

3.2.4 Sequential Layout

It was later observed that, removing less frequently accessed blocks from the

packed extent model gave still better performance (Figure 3.1(d)) [Hsu03]. It was

equivalent to placing the most frequently accessed blocks maintaining their order by

39

A B C

4 4

2

11

2

Figure 3.2: Allocation of Edge Weight in ALIS

their block numbers.

Other ideas such as placing the larger files on the outer zones were considered. If

these large files are requested in their entirety, the increased transfer rate may reduce

the overall latency. Also, due to large capacity of outer tracks, it will reduce the

delays caused due to positioning of disk arm to read the entire file.

3.2.5 Automatic Locality – Improving Storage (ALIS)

The ALIS method, proposed by researchers at University of California, Berkeley

and IBM in 2002, is an introspective storage system that automatically reorganizes

selected disk blocks based on the dynamic reference stream to increase the spatial

locality of reference and leverage the rapidly growing disk transfer rate [Hsu03]. It

focuses on reducing the number of I/Os made on the disk by making the sequential

prefetch more effective. Their algorithm considered having three copies of hot data,

one being in the run clustering zone – given the highest priority while choosing which

block to access, second in the heat-clustered zone, and if the data is not found in

either, the originally existing data was used.

The first step in reorganizing blocks consisted of assigning weight to each edge

generated while moving from one block on disk to another. The procedure of assigning

40

weight to these edges consisted of using graduated edge weight scheme (Figure 3.2).

In this scheme, the weight of edge i → j is a decreasing function of the number of

references between when those two data units are referenced [Hsu03]. It can be easily

understood from the example shown in the figure. Let us assume the access sequence

to be A,B,C,A,B,C. The weights are assigned based on the order in which the blocks

were accessed. According to the algorithm, suppose Xi denotes the reorganization

unit referenced by the i -th read; for each Xn, we add an edge of weight τ - j + 1 from

Xn-j to Xn, where j ≤ τ [Hsu03]. In this sequence, move from A→B, B→C occurs

twice. Hence, weight assigned to this edge would be two times of the weight for each

consecutive jump. In our example, we set this value to be 2, and hence the weight of

the edge from A→B and B→C is equal to 4. Weight of the following edges would be

assigned one. It could thus be identified easily that A should be placed immediately

followed by B and then by C for the referenced sequence.

For simple understanding, edge weight can be inferred as the number of times

a reorganization unit is accessed within τ references of another. This value also

represents the number of intermediate references between when the two units are

accessed.

Once the weights for these edges are assigned, the access patterns should be in-

terpreted. The following algorithm is adopted for finding the relocation run sequence

R [Hsu03]:

(1) Find the heaviest edge linking two unmarked vertices.

(2) Initialize R to the heaviest edge found and mark the two vertices.

(3) Repeat

(a) Find an unmarked vertex u such that

headweight =
∑Min(τ,|R|)

i=1 Weight(u,R[i]) is maximized.

41

(b) Find an unmarked vertex v such that

tailweight =
∑Min(τ,|R|)

i=1 Weight(R[| R | - i+1],v) is maximized.

(c) If headweight > tailweight

Mark u and add it to the front of R.

else

Mark v and add it to the back of R.

(4) End Repeat

3.3 Block Reorganization with Zone Layout

All the above strategies relocate the frequently accessed data blocks to the center

of the disk. Relocating the blocks from any point on the disk surface to the center of

the disk has an underlying assumption that the frequently accessed blocks are evenly

distributed across the disk, and during the run, the jump from the normal block to

the hot zone, average out to the center of the disk. Thus, placing the hot zone at the

center of the disk is typically better than putting it at the inner and outer edges of

the disk.

A single hot zone at the center of the disk assumes that nearly all accesses to the

disk will be satisfied by the “hot” zone. In other words, once the disk head seeks to

the hot zone it will never or rarely have to move off. Thus, seeks are minimized, if

not completely eliminated. But, this might not be the case under all workloads. As

we examined real workloads from the previous chapter and from [UMT], it became

apparent that not all requests to the disk were satisfied by the hot zone. Typically,

after blocks were relocated to the hot zone, still 20-50% of the subsequent block

requests were not in the hot zone. For example, using the email server workload,

if we moved all the blocks accessed over a 1 hour period to the hot zone, over the

next hour, only 50% of those blocks were accessed. What this implies is that the

42

head must still make significant number of seeks to access requested data. Moreover,

as it moves on and off the hot zone, any spatial locality that was intended by the

file system is completely lost. In other words, if the file system had placed all the

blocks of a particular file close together, and a block clustering scheme such as ALIS

or sequential layout moves some portion of those blocks to the hot zone, as we make

sequential requests to that file, we will actually incur extra overhead because the disk

must go from the original location to the hot zone and back. This can be somewhat

alleviated by keeping two copies of data, i.e. one in the original location, and another

in the hot zone and have the disk always access the closest copy. However, this incurs

extra space overhead and, in addition, our simulations show that in such a case, the

disk rarely touches the hot zone to access the data since the closest copy is always at

the original location.

In light of this phenomenon, it is clear that a single zone at the center of the disk

is not ideal. Instead, we are proposing the use of multiple zones spread over the disk

at regular intervals. We place hot zones every x number of blocks, where x is the

zone separation distance and could vary from 30,000 to 10 million. For example, on a

disk with 100 million blocks and a zone separation distance of 10 million, there would

be 10 hot zones. When we relocate disk blocks, instead of relocating them to a single

hot zone, at the center of the disk, we relocate them to the closest hot zone to the

original location. By introducing multiple hot zones, the distance that the head must

travel to get from the original location of data to the hot zone is reduced.

Using multiple zones takes advantage of the fact that locality of reference is both

spatial and temporal. A single hot zone satisfies temporal locality in that it assumes

a block accessed is likely to be accessed soon after and thus keeping the head on the

hot zone. Using run-based mechanisms like ALIS can optimize for spatial locality

but only if that locality of reference was seen before. By using multiple zones, we

can have the temporal locality that hot zones provide while still maintaining spatial

43

locality because the hot zone is near the original location of the data. It does not

depend on any a priori knowledge of the spatial locality of reference.

Splitting a single hot zone into multiple zones may raise concerns if frequently

accessed blocks are spread across the disk and we find ourselves instead of moving

from original location to a single hot zone, we are, instead, moving hot zone to hot

zone. However, our simulations have shown that this is not an issue since the access

patterns tend to concentrate on a particular region of disk before moving off to another

region. Thus, the disk will make several small seeks off and on a particular hot zone

before moving off to another hot zone. In a single zone system, these seeks on and

off the zone would be much larger.

We evaluated the efficacy of the multiple zone method in concert with two clus-

tering techniques – ALIS and sequential layout. We called the ALIS based method

ALIZ (ALIS with zones) and the sequential layout based method FREQZ.

3.4 Architecture of Zone Layout Schemes

It is conceivable that these zone layouts could be implemented at various levels

within the disk architecture of the system. It could be added to the disk driver, and

could also be introduced at the file system level. However, it must be noted that

ALIZ, just like ALIS, requires heavy processing power. Hence, its presence within

the system could lay an extra burden on the system. To avoid this, ALIZ could

be implemented as a separate component with its own processing power. On the

contrary, FREQZ algorithm is faster, and does not require much processing. Hence,

its implementation within the driver, or at the file system level would be easier.

44

3.5 Results

3.5.1 Simulation Methodology

We evaluated the zoned block reorganization method using simulations. Our

simulation model consists of two systems – a single disk system and a RAID system.

We took a disk level trace in the ascii format [GGP99] and modified it according to

the specifications of the ALIZ or FREQZ algorithm. The result of the modification is

a new trace file that reflects the reorganization of the blocks, which should have been

accessed if the algorithm was already implemented into the system. In our simulation,

we tested the algorithm with reorganization taking place every 15 minutes. This

however could be set to a higher value also. On obtaining the simulated trace, it was

given as input to DiskSim [GGP99], a highly configurable disk simulator.

In our study, we used a part of trace of email server from the previous chapter

and also a database server. The database workload was obtained from the UMass

trace repository [UMT]. This trace was obtained from the disk accesses of a large

financial institution consisting of online transaction processing applications. It acts

as a common database server, and hence consists of good amount of read and write

access made to the disk. The characteristics of both traces are shown in Table 3.1.

Email Server Workload Database Workload
Number of reads (%) 92 (0.2%) 4099354 (76.84%)
Number of writes (%) 45947 (99.8%) 1235633 (23.16%)
Length of trace (s) 12350 5000

Table 3.1: Trace Characteristics

We conducted experiments on different traces and with four different algorithms

and two different disk systems. We tested results with the performance under the

original trace, traces with ALIS relocation, ALIZ relocations, FREQNC and finally

FREQZ relocation algorithms. In this thesis, we refer to the sequential layout scheme

45

as FREQNC. For the zone based algorithms, we also evaluated various zone separa-

tion distances, varying from 30,000 blocks to 10,000,000 blocks. For the most part,

zone separation distances of 30,000 blocks were too small and caused significant degra-

dation in performance and, therefore, are not shown on any of the graphs. Note, also,

that these blocks are disk blocks or sectors, or 512 bytes per block.

Under the ALIZ algorithm, we noticed approximately 1500-1700 blocks being

moved at the end of each iteration for the email server workload. However, for the

database server workload there were 45,000 blocks on average being relocated at the

end of each tracing period. For the FREQZ algorithm, as expected, there were higher

number of blocks being relocated. For the email server we noticed approximately

25,000 blocks being relocated every time the relocation algorithm was applied, while

for the database server workload FREQZ moved almost 50,000 blocks.

3.5.2 Single Disk Results

The single disk system that we simulated was a drive with 16,383 cylinders, 3120

sectors per cylinder, and 14 heads. The average seek time is 7.35 ms and the rotational

latency is 8.3 ms due to the spin speed of 7200 RPM. The total capacity of the disk

is 41,174,138,880 bytes.

3.5.2.1 ALIZ on Single Disk

We tested our algorithm with the two traces discussed earlier using the above

mentioned methodology. With two different kind of workloads, we try to establish

how much improvement in performance using ALIZ could be gained over the original

layout.

Email Server (Read Dominated Workload)

From Table 3.2 and Figure 3.3, we can see that ALIS and ALIZ perform equally

well on the email server workload, with ALIZ having much better results for multiple

46

zone separation distances of 50K and 100K. The algorithms were seen to show an

improvement by almost a factor of one-third with respect to the original system

block organization. This however failed to maintain the same improvement flow for

larger zone separation distances. The smaller zone separation distance are ideal for

the email server workload, since the locality regions are much smaller. In other words,

with the email server, accesses that are clustered together tend to access regions that

are smaller. This is most likely because emails are typically just a few blocks in size.

System Response % Improvement
Time

Original 241.182100 —
ALIS 173.821372 27.93
ALIZ (50k) 152.378009 36.82
ALIZ (100k) 166.424039 31.00
ALIZ (500k) 179.432142 25.60
ALIZ (1m) 239.829288 0.56
ALIZ (10m) 224.313921 6.99

Table 3.2: System Response Time for different clustering technique with ALIZ on
single disk for Email Server Workload

Database Server (Read-Write Workload)

Database server workload results are shown in Table 3.3 and Figure 3.4. On the

database workload, ALIZ performed much better than ALIS. Though there is a per-

formance loss for ALIZ with a 1m zone separation distance, we, however, see a gain of

about 35% for smaller zone separation distances. This is where we see a real advan-

tage of having multiple “hot zones” . As with the email server workload, the reason

is that most of the requests in database workloads are small in size and the accesses

on them are clustered. Thus, jumps from the original block location to the high heat

block would be must shorter when there exists multiple zones.

47

Figure 3.3: Percentage improvement in System Response time for different clustering
techniques with ALIZ on single disk under Email Server Workload

System Response % Improvement
Time

Original 56.525077 —
ALIS 53.573672 5.22
ALIZ (30k) 41.791646 26.07
ALIZ (50k) 36.468853 35.48
ALIZ (100k) 43.719855 22.65
ALIZ (1m) 60.463968 -6.97
ALIZ (10m) 53.392433 5.54

Table 3.3: System Response time for different clustering technique with ALIZ on
single disk for Database Workload

48

Figure 3.4: Percentage improvement in System Response time for different clustering
techniques with ALIZ on single disk under Database Workload

49

3.5.2.2 FREQZ on Single Disk

We test the same workload using the FREQZ algorithm, which would place all

the accessed blocks into a hot zone.

Email Server (Read Dominated Workload)

For the email server workload, FREQZ showed no considerable improvement in per-

formance. It showed results very close to that under the original layout of blocks.

This is because there is very little temporal locality of reference in a email server. A

mail spool file is user specific and is typically only accessed once or twice a day, thus

it is unlikely that particular data block will be seen with any frequency. Thus, relo-

cating every data block would generate the same pattern as was already existing in

the normal layout. The results for FREQZ on the Email server is shown in Table 3.4

and Figure 3.5.

System Response % Improvement
Time

Original 241.182100 —
FREQNC 240.625690 0.23
FREQZ (50k) 241.858953 -0.28
FREQZ (100k) 240.796281 0.16
FREQZ (500k) 240.371581 0.34
FREQZ (1m) 240.659394 0.22

Table 3.4: System Response time for different clustering technique with FREQZ on
single disk for Email Server Workload

Database Server (Read-Write Workload)

Table 3.5 and Figure 3.6 show results of FREQZ for the database workload. The

FREQZ algorithm is significantly better than the base sequential layout. At a zone

separation distance of 50,000 blocks, FREQZ is nearly 40% better than sequential

layout. In fact, FREQZ is nearly as good as ALIZ, and also better than ALIS. This

gain is because the blocks are accessed in clusters and hence, placing them closer

reduces the disk access time.

50

Figure 3.5: Percentage improvement for different clustering techniques with FREQZ
on single disk under Email Server Workload

Figure 3.6: Percentage improvement for different clustering techniques with FREQZ
on single disk under Database Workload

51

System Response % Improvement
Time

Original 56.525077 —
FREQNC 50.895483 9.96
FREQZ (50k) 30.463855 46.11
FREQZ (100k) 38.596019 31.72
FREQZ (1m) 49.375421 12.65

Table 3.5: System Response time for different clustering technique with FREQZ on
single disk for Database Workload

3.5.3 RAID System Results

We used the same algorithm as explained in the previous section for inspecting

their performance on RAID systems. Conducting various tests on different work-

loads, with different algorithm, we find out that these algorithms perform really well

on RAID systems also. The RAID systems that we simulated consisted of 9 disks

arranged in a RAID5 organization. We also examined the effect of stripe size on the

results and varied that from 2 sectors to 512 sectors. Again, we compare the results of

the original trace with the ALIS, ALIZ, FREQNC and FREQZ clustering algorithms.

We assume that RAID is treated as a monolithic single disk. Thus, the hot zone

is spread across all nine disks of the array. For a single zone strategy, the hot zone

area is still located at the center of each disk and hot blocks become striped across

the array. For a multiple zone system as we are proposing, the net effect is that the

zone separation distance is reduced by a factor equal to the number of disks in the

array. Thus, a 1 million zone separation distance on a nine disk RAID is equivalent

to zones being 111K blocks apart on each disk.

In this section, we take a look at the results which we obtained from the imple-

mentation of zones on RAID, on already existing reorganization techniques. We here

compare the results of the original trace with ALIS, ALIZ, FREQNC and FREQZ.

We also consider the output at the different raid stripe sizes.

52

3.5.3.1 Email Server (Read Dominated Workload)

System Response Time

For the Email server workload on RAID, both ALIS and ALIZ offer significant per-

formance gains, as can be seen from Figure 3.7 and Figure 3.8. However, benefit of

ALIZ over ALIS is not as clear as it was with a single disk. On stripe sizes of 32 and

64, which are typical stripe sizes, ALIZ does have a slight advantage, but on other

strip sizes the difference is less noticeable. The reason is that the hot zones striped

across the array. For example, if there is a cluster of 5 spatially close accesses, in a

single disk those accesses will be kept close together because the hot zone is nearby

in a multiple zone system. However, in a RAID system, those 5 accesses advantage of

keeping the head at the same place for an extended period of time. In other words, we

only access one or very few blocks at a time on the RAID system. This is particularly

apparent when we look at the sequential layout based algorithms on RAID.

In Figures 3.9 and Figures 3.12, we see that the higher the zone separation dis-

tance, the better the performance. This is especially true on ALIZ. The reason is

that higher zone separation distance works better on RAID is because we are treat-

ing the RAID as a monolithic address space. In other words, a 50K zone separation

distance at the RAID system level becomes 5555 blocks at the disk level. This zone

separation distance is much too small and can decrease the performance significantly.

Primarily, this is because with the zone distances so small, the clusters over which we

are trying to find spatial locality is too small. For ALIZ, these small zone separation

distances are troubling because they make it difficult to find decent runs. Moreover,

introducing such frequent zones could have separated the large sequences, responsible

for poor performance.

Figures 3.11 and 3.12 shows the poor performance variation of FREQZ layout

algorithm with the original layout. On FREQZ also, we notice a very similar behavior

as on ALIZ. The algorithm showed improvement on the lower and most common stripe

53

Figure 3.7: System Response time for Email Server Workload (RAID System)

Figure 3.8: Percentage improvement in System Response time for Email Server Work-
load (RAID System)

54

Figure 3.9: System Response time for ALIZ with different zone separation distances
under Email server Workload (RAID System)

Figure 3.10: Percentage improvement in System Response time for ALIZ with differ-
ent zone separation distance under Email Server Workload (RAID System)

55

Figure 3.11: System Response time for FREQZ with different zone separation dis-
tances under Email Server Workload (RAID System)

Figure 3.12: Percentage improvement for FREQZ with different zone separation dis-
tances under Email Server Workload (RAID System)

56

sizes. We see up to 20% improvement in performance when compared to the original

layout for the lower stripe sizes. However, FREQZ could not give as good performance

as ALIZ. This is because, the pruning method in FREQZ does not consider the order

in which the data was accessed. However, FREQZ showed improvement against its

single zone layout arrangement FREQNC.

Average Seek Distance

Figure 3.13 – 3.18 shows the Average Seek Distance on disk for the various reorga-

nization schemas. This follows a very similar pattern as that of the system response

time, with the performance being better for the lower stripe sized RAID systems.

For higher stripe sized RAID systems, we see that the seek time increases by almost

5-10%. However, we notice a very high reduction in the average seek distance for

the FREQZ layout. Even though we see a very high reduction in the disk seek time

for FREQZ, such high performance improvement on the system response time is not

noticed.

FREQZ showed large reduction in average seek distance in the commonly used 32

and 64 sector striping as can be seen in Figure 3.17.

Figure 3.13: Average Seek Distance for Email Server Workload (RAID System)

57

Figure 3.14: Percentage improvement in Average Seek Distance for Email Server
Workload (RAID System)

Figure 3.15: Average Seek Distance for different zone separation distance on ALIZ
under Email Server Workload (RAID System)

58

Figure 3.16: Percentage improvement in Average Seek Distance for ALIZ under Email
Server Workload (RAID System)

Figure 3.17: Average Seek Distance for different zone separation distance on FREQZ
under Email Server Workload (RAID System)

59

Figure 3.18: Percentage improvement in Average Seek Distance for different zone
separation distance on ALIZ under Email Server Workload (RAID System)

Figure 3.19: System Response time for Database Server Workload (RAID System)

60

3.5.3.2 Database Server (Read-Write Workload)

System Response Time

The Financial database workload consists of approximately 75% read requests. Un-

der this workload, ALIZ again performs better than ALIS on the lower stripe sizes.

FREQZ also performs better than FREQNC for lower stripe sized RAID systems.

Figure 10 shows the percentage improvement in the overall response time of the dif-

ferent layouts. Using ALIZ, we could see performance improvement of up to 20% for

stripe size of 16, but it showed negative results for higher stripe sizes, with percentage

improvement for stripe size of 512 going worse by a factor of 18% (Figure 3.21 and

Figure 3.22).

Figure 3.20: Percentage improvement in System Response time for Database Server
Workload (RAID System)

Larger zone separation distance on FREQZ under the database workload showed

better response time (Figure 3.23 and 3.24). This nature is because the database

workload consists of smaller requests, and most of these requests are present as clus-

ters. By applying the FREQZ algorithm, we place the frequently accessed blocks

closer in the hot zone, and hence, make the disk access faster. This is the reason why

61

Figure 3.21: System Response time for different zone separation distances on ALIZ
under Database Server Workload (RAID System)

Figure 3.22: Percentage improvement in System Response time for different zone
separation distances on ALIZ under Database Server Workload (RAID System)

62

we do not see a good improvement for smaller zone separation distances, since they

are not sufficient to bring most of the sequential access together.

Figure 3.23: System Response time for different zone separation distances on FREQZ
under Database Server Workload (RAID System)

Figure 3.24: Percentage improvement in System Response time for different zone
separation distance on FREQZ under Database Workload (RAID System)

Average Seek Distance

Average disk seek distance did not show much improvement under the database work-

63

load. Figure 3.25 and Figure 3.26 shows almost equal seek distance for almost all of

the schemes, except for stripe size of 8, where ALIZ and ALIS performed well, bringing

about 20-25% improvement.

Figure 3.25: Average Seek Distance for Database Server Workload (RAID System)

Figure 3.26: Percentage improvement in Average Seek Distance for Database Server
Workload (RAID System)

ALIZ did not show very good improvement in the disk seek distance under the

64

Figure 3.27: Average Seek Distance for different zone separation distances on ALIZ
under Database Server Workload (RAID System)

Figure 3.28: Percentage improvement in Average Seek Distance for different zone
separation distances on ALIZ under Database Server Workload (RAID System)

database workload.

FREQZ however, consistently showed improvement in the disk seek distance, with

zone size of 1 million blocks giving very good performance. Gain of almost 20% was

achieved for stripe size of 16, while an average gain of 10-12% was maintained for

65

larger stripe size (Figure 3.29 and Figure 3.30).

Figure 3.29: Average Seek Distance for different zone separation distances on FREQZ
under Database Server Workload (RAID System)

Figure 3.30: Percentage improvement in Average Seek Distance for different zone
separation distances on FREQZ under Database Workload (RAID System)

66

3.6 Summary

In this chapter, we have presented a multiple zone block reorganization method

to improve disk system response time. We see 10-40% improvement over existing

block reorganization schemes in single disk settings. However, in RAID systems, the

advantage of multiple zone is lost because the zone is spread across the array. To

address this, it is better to employ multiple zones at the individual disk level rather

than across the array. The performance of multiple zone clustering seems to be best

at a 50,000 blocks zone separation distance for single block systems. However, it is

clear that depending on the workload the optimum may change. This is particularly

true for RAID systems. In light of this, we envision that the zone separation distance

could be determined dynamically based on the workload or perhaps statically with a

tool that analyzes profiled traces.

Chapter 4

Conclusions

In this thesis, we explored the various file systems performance and their optimiza-

tion techniques. From Chapter 2, we gather that the file system has a very minor

effect under read-dominated workloads. They do not have a major role to play in

the disk performance. However, a noticeable difference was seen between the non-

journaling and the journaling file systems, where journaling file system made lot more

access to the disk. JFS and ReiserFS seem more efficient journaling file systems with

both of them making lesser accesses to the disk (Table 2.2). Because of such large

amount of difference in the number of accesses made on the disk due to journaling, use

of NOVRAM is suggested for collecting these transaction logs. NOVRAM contains

its memory even if on power loss. A close look at the file system performance showed

JFS providing more idle time at the disk level in comparison with other journaling

file systems – EXT3 and ReiserFS. This idle time could be used for the optimization

techniques such as those discussed in the Chapter 3.

In Chapter 3, we discussed the new multiple zone layout strategy, which improved

the system response time by 10-40% over the already existing reorganization tech-

niques. We however observed that under certain cases, we had to pay the penalty of

using these multiple zones. However, since these techniques are workload dependent,

we anticipate a design of a utility, which could dynamically analyze the workload and

68

suggest an optimum zone separation distance and stripe size for the RAID systems.

4.1 Future Work

In our work, we observed a significant improvement in the system response time

using the ALIZ algorithm over the FREQZ algorithm. However, its use is being

limited by the processing power of the system. This is because of the large number

of edges which are under consideration by the algorithm even after removing the

lower 10 percentile edges from the edge list [Hsu03]. Due to this, its use requires a

separate component with its own computation capability. We plan to mix the packed

extent layout technique with the ALIS algorithm to reduce the edge count and hence

increase its processing speed. Reduction in its processing power might help its easy

implementation at the driver level for improving the system performance.

Bibliography

[AS95] Sedat Akyurek and Kenneth Salem. Adaptive block rearrangement. In
ACM Transactions on Computer Systems, number 13(2):89–121,
1995.

[BC03] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel.
O’Reilly and Associated Inc, 2nd edition, 2003.

[BEBW98] Daniel Frank Moertl Brian Eric Bakke, Frederic Lawrence Huss and
Bruce Marshall Walk. Method and apparatus for adaptive localization
of frequently accessed, randomly accessed data, June 1998. US Patent
No. 5765204, Filed June 5, 1996.

[Bes00] S. Best. Jfs overview: How the journaled file system cuts system restart
time to the quick. http://www.ibm.com/developerworks/library/l-
jfs.html, January 2000.

[BHK+91] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff,
and John K. Ousterhout. Measurements of a distributed file system. In
Proceedings of the Symposium on Operating System Principles,
volume 25, pages 198–212, October 1991.

[Bla92] M. A. Blaze. Nfs tracing by passive network monitoring. In Proceed-
ings of the Winter USENIX Technical Conference, pages 333–344,
Winter 1992.

[BS02] Eitan Bachmat and Jiri Schindler. Analysis of methods for scheduling
low priority disk drive tasks. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 55–65,
2002.

[DO89] Fred Douglis and John K. Ousterhout. Log-structured file systems. In
COMPCON Proceedings, pages 124–129, Spring 1989.

[Don88] Shane Mc. Donald. Dynamically restructuring disk space for improved
file system performance. Technical report, Department of Computational
Science, University of Saskatchewan, Saskatoon, July 1988.

70

[ELMS03] Daniel Ellard, Jonathan Ledlie, Pia Malkani, and Margo Seltzer. Pas-
sive NFS tracing of email and research workloads. In Proceedings of
USENIX Conference on File and Storage Technologies, March
2003.

[GG97] Jim Gray and Goetx Graefe. The five minute rule ten years later, and
other computer storage rules of thumb. In Proceedings of the ACM
SIGMOD International Conference on Management of Data,
1997.

[GGP99] B. L. Worthington G.R. Ganger and Y.N. Patt. Disksim simulation en-
vironment version 3.0. http://www.pdl.cmu.edu/DiskSim, 1999.

[GNA+97] Garth A. Gibson, David F. Nagle, Khalil Amiri, Fay W. Chang, Howard
Gobioff, Chen Lee, Berend Ozceri, Erik Riedel, David Rochberg, and
Jim Zelenka. File server scaling with network-attached secure disks. In
Proceedings of the ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, June 1997.

[GS73] David D. Grossman and Harvey F. Silverman. Placement of records on
secondary storage device to minimize access time. volume 20, pages 429–
438, July 1973.

[HS03] W. W. Hsu and A. J. Smith. Characteristics of I/O traffic in personal
computer and server workloads. IBM Journal of Research and De-
velopment, 42(2):347–372, 2003.

[Hsu03] Windsor W. Hsu. Dynamic locality improvement techniques for increas-
ing effective storage performance. Technical Report UCB/CSD-03-1223,
University of California, Computer Science Divison, 2003.

[JFS] Journaled file system technology for linux.
http://oss.software.ibm.com/jfs.

[Knu98] Donald E. Knuth. The Art of Computer Programming. Addison
Wesley Longman Publishing Co. Inc., Redwood City, CA, 2nd edition,
1998.

[KRK92] P. Biswas K. Ramakrishnan and R. Karelda. Analysis of file I/O traces
in commercial computing environments. In Proceedings of the ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 78–90, 1992.

[Mil91] Ethan L. Miller. Input/output behavior of supercomputing applications.
Technical Report UCB/CSD 91/616, University of California, Berkeley,
January 1991.

71

[MSC+86] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S.
Rosenthal, and F. D. Smith. Andrew: A distributed personal computing
environment. Communications of the ACM, 29(3), March 1986.

[NC04] Sumit Narayan and John A. Chandy. Trace based analysis of file system
effects on disk I/O. In International Symposium on Performance
Evaluation of Computer and Telecommunication Systems, June
2004.

[OCH+85] John K. Ousterhout, H. Da Costa, D. Harrison, J. A. Kunze, Michael D.
Kupfer, and J. G. Thompson. A trace-driven analysis of the UNIX 4.2
BSD file system. In Proceedings of the Symposium on Operating
System Principles, pages 15–24, December 1985.

[OSD03] Open Source Developement Labs. http://www.osdl.org, 2003.

[RCT94] T. Ts’o R. Card and S. Tweedie. Design and implementation of the
Second Extended File System. In Dutch International Symposium
on Linux, 1994.

[rei] Reiser file system. http://www.namesys.com.

[RLA00] Drew Roselli, Jacob Lorch, and Thomas E. Anderson. A comparison of
file system workloads. In Proceedings of the USENIX Technical
Conference, pages 41–54, June 2000.

[RW91] C. Ruemmler and J. Wilkes. Disk shuffling. Technical Report HPL-91-
156, Hewlett-Packard, October 1991.

[RW92] Chris Ruemmler and John Wilkes. UNIX disk access patterns. Technical
Report HPL-OSR-92-152, Hewlett-Packard, Palo Alto, CA, 1992.

[RW93] Chris Ruemmler and John Wilkes. A trace-driven analysis of working
set sizes. Technical Report HPL-OSR-93-23, Hewlett-Packard, Palo Alto,
CA, April 1993.

[Sat81] M. Satyanarayanan. A study of file sizes and functional lifetimes. In Pro-
ceedings of 8th ACM Symposium on Operating System Princi-
ples, pages 96–108, 1981.

[Smi85] A. J. Smith. Disk cache-miss ratio analysis and design considerations.
ACM Transactions on Computer Systems, 3(3):161–203, August
1985.

[SW96] Stefan Savage and John Wilkes. AFRAID – A frequently redundant array
of independent disks. In Proceedings of the USENIX Technical
Conference, pages 27–39, January 1996.

72

[Tra92] Transaction Processing Performance Council (TPC). TPC Benchmark
C Standard Specification Revision 1.1. Shanley Public Relations,
San Jose, CA, March 1992.

[TT02] T. Ts’o and S. Tweedie. Future directions for ext2/ext3 file systems. In
Proceedings of the USENIX Technical Conference, June 2002.

[Twe] Stephen Tweedie. http://www.redhat.com.

[UMT] The UMass trace repository. http://traces.cs.umass.edu.

[Ver01] VeriTest. NetBench 7.0.2. “http://www.netbench.com” 2001.

[Vog99] W. Vogels. File system usage in windows nt 4.0. In ACM Symposium
on Operating System Principles, pages 93–109, December 1999.

[WAP99] Randolph Y. Wang, Thomas E. Anderson, and David A. Patterson. Vir-
tual log based file systems for a programmable disk. In Proceedings of
Symposium on Operating Systems Design and Implementation,
pages 29–43, February 1999.

[Won] C.K. Wong. Minimizing expected head movement in one-dimensional and
two-dimensional mass storage systems. In ACM Computing Surveys,
volume 12, pages 167–178.

