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Abstract

The increasing performance and decreasing cost of processors and memory are

causing system intelligence to move from the CPU to peripherals such as disk drives.

Storage system designers are using this trend toward excessive computation capabil-

ity to perform more complex processing and optimizations directly inside the storage

devices. Taking advantage of the extra processing power on individual disk drives to

run application-level code has been called active storage in previous research. This

idea of moving portions of an applications processing to run directly at disk drives

can dramatically reduce data traffic and take advantage of the parallel storage already

present in large systems today.

This thesis contributes to active storage in two areas. We first demonstrate active

storage on an iSCSI OSD standards-based object oriented framework. This framework

can support a variety of data-intensive applications including database applications.

We then move on to exploring parallel databases and integrating active storage in such

systems. In particular, this work concentrates on finding out optimal data partitioning

for an active storage based database system.
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Chapter 1

Introduction

1.1 Motivation

The cost and silicon real estate needed for any particular computational need

is continually dropping. At some point, additional processing power can be had at

negligible cost. The question then becomes simply where to place this computation

power in a system to support the widest range of tasks efficiently. The contention of

this work is that processing power is already moving into peripheral devices and that

applications can achieve significant performance gains by taking advantage of this

trend. Specifically, this work focuses on how data-intensive applications can directly

exploit the processing power of the controllers in individual commodity disk drives to

improve both individual application performance and system scalability.

The same trends in chip technology that are driving microprocessors toward ever

larger gate counts drive disk manufacturers to reduce cost and chip count in their de-

vices while simultaneously increasing the total amount of local processing power avail-

able on each device. One use for this increasing computation power on disk controllers

is to enrich their existing interface. For example, recent advances in network-attached

storage are integrating storage devices into general-purpose networks and offloading a

range of highlevel functions directly to the devices. This eliminates servers as a bot-

tleneck for data transfers between disks and clients and promises significant improved



2

scalability through higher-level interfaces.

At the same time, as systems get faster and cheaper, people compute on larger and

larger data sets. A large server system today will easily have a hundred disk drives

attached to it. This large number of drives is necessary either to provide sufficient

capacity or sufficient aggregate throughput for the target application. Taking this

trend and extrapolating to future drive capabilities gives a promising picture for on-

drive processing. A pessimistic value for the on-drive processing already in todays

commodity SCSI disk controllers is 400 MHz, with perhaps 100 MB/s of sustained

bandwidth in sequential access. This means that a system with one hundred disks

has 40 GHz of aggregate processing power and 10 GB/s of aggregate bandwidth at

the disks. Typical multiprocessor systems can not achieve these aggregate values in a

single node, but computing clusters can be constructed to achieve the same capability.

The advantage of the active disk cluster over a compute node cluster, is the ability

of the disk to manage the data directly on disk in terms of layout and scheduling.

Data processing at the disk can also reduce the amount of data transferred, thereby

reducing communication costs.

In addition, as storage is connected to a large collection of hosts by taking advan-

tage of network-attachment and storage area networks, the interconnection network

will rapidly become a principle bottleneck in large-scale applications. If data can

be processed directly by the devices at the “edges”of the network, then the amount

of data that must be transferred across this bottleneck can be significantly reduced.

This is the principle idea which fuels an Active Storage System.

In this thesis, we first explore Object Based storage devices, which store and man-

age data containers called objects. The NASD project from CMU [GVM00] [GNA+96]

was the initial introduction to the concept of object based storage. NASD pursues

the motion that aggregation of storage devices is best managed through a central

policy server (possibly a cluster of servers), while most commands and data transfers
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move directly between device and client, bypassing the server. Upon approval by

the central server, clients can access (directly and in parallel) all devices containing

data of interest. We then integrate the idea of such object based storage devices with

Active Storage Systems.

Next, we delve into the world of intensive data computation applications , such

as enterprise database applications. Database management systems (DBMS) provide

important support for commercial applications. Currently there is a rapidly growing

trend among businesses to analyze their increasing volumes of transaction data for

various types of trends, including sales and purchasing, inventory, and budget.The

emergence of these applications has fueled the need for parallel DBMS software from

commercial vendors. This thesis, in particular,focuses on how data partitioning in a

DBMS affects the performance. Based on our studies, we suggest an intelligent data

partitioning and application training system that improves performance in an Active

Storage based Database Application.

1.2 Active Disks

Active Disks are hailed to be the next-generation of disk drives that provide an

environment for executing application code directly at individual drives, thus provid-

ing the basis for an Active Storage System. By partitioning processing across hosts

and storage devices, it is possible to exploit the cycles available at storage, reduce

the load on the interconnection network, and perform more efficient scheduling. For

example, an application that applies selective filters to the stored data and only ships

summary information across the network, or that makes scheduling decisions based

on local information at the individual drives can make more effective use of network

and host resources. This promises both improved individual application performance

and more scalable systems. The basic processing in an Active Disk system compared

to a traditional host-based system is illustrated in Figure 1.1. Instead of running
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Figure 1.1: Architecture of an Active Disk system vs. a traditional server
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all application processing at the host, and forcing all the raw data to move from

the disk drives, through the storage interconnect, and to the host before processing,

Active Disk applications execute on both the host and the disks. The core portion

of the applications data-intensive processing is extracted and executed in parallel

across all the disks in the system. The diagram in Figure 1.1 shows the Active Disks

as an extension of NASD (Network-Attached Secure Disks), which means they are

network-attached, present an object- instead of a block-level interface, and contain

provisions for a robust security system enforced directly at the drives. These three

characteristics are not strictly necessary for Active Disks, and one could definitely

imagine providing execution functionality in more traditional SCSI disks.

A proposal to perform data-intensive operations using processing elements directly

attached to disk drives may seem familiar to anyone who has worked in the database

area as the database machines that dominated database research in the 70s and 80s.

The concept of Active Disks is close to the ideas pursued in the work on database ma-

chines and many of the lessons from that work are applicable today. Since that time,

technology trends in several areas have shifted the picture considerably, providing an

opportunity to revisit the arguments explored in these projects.

1.2.1 Applications and Algorithms

There are a number of data-intensive database, data mining, and multimedia

applications, which with a few changes will allow for them to efficiently leverage an

Active Disk system. Listed below are a few of them.

1.2.1.1 Scans

The most compelling applications for Active Disks are the “embarrassingly par-

allel”scan operations that can be easily split among a set of drives and that perform

highly selective processing before the data is placed on the interconnection network.
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The first data mining application examined are database queries that wish to find

records in a database that are most similar to a particular, desirable record. For

the Active Disk system, each disk contains an integral number of records and the

comparisons are performed directly at the drives. The host sends the target record

to each of the disks which determine the k closest records in their portions of the

database. These lists are returned to the server which combines them to determine

the overall k closest records. Because the application reduces the records in a database

of arbitrary size to a constant-sized list of k records, the selectivity is arbitrarily large.

The second data mining application is the Apriori algorithm that computes asso-

ciation rules in sales transactions [RR95]. The computation is done in several passes,

first determining the items that occur most often in the transactions (the 1-itemsets)

and then using this information to generate pairs of items that occur often (2-itemsets)

and larger groupings (k-itemsets). For the Active Disks system, the counting portion

of each phase is performed directly at the drives. The central server produces the list

of candidate k-itemsets and provides this list to each of the disks. Each disk counts

its portion of the transactions locally, and returns these counts to the server. The

server then combines these counts and produces a list of candidate (k+1)-itemsets.

1.2.1.2 Sorting

There are many reasons for sorting a set of records, and sort is a popular system

benchmark. Sorting is most often done in the context of database systems, where it

is usually combined with another operation, as discussed in the next sections. First,

the basics of sorting in an Active Disk system.

There are several ways to partition a sorting algorithm on Active Disks, depending

on the available functionality at the disks. The primary resource constraints for

sorting are the disk bandwidth (each item of data has to be read and written at least

once), network bandwidth (how often the data must move between the source disks,
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the host, and the destination disks on the interconnect), and memory size (which

determines how large individual runs in a multiple-pass sort will be). As we will

see, the main determinant of performance for large data sets turns out to be the

interconnect bottleneck.

The most common method for out-of-core sorting is Merge Sort [Knu79] [vN63]

which performs a sequence of in-memory sorts on small subsets of the data, followed

by a series of merge phases that combine the sorted subsets until the entire dataset

is in order.In an Active Disk algorithm, we save two of these transfers by having each

drive perform the sorting of its own data locally, and performing only the final merge

step at the host. Instead of providing the raw data to the host, the drives provide

already sorted runs that must simply be merged by the host.

A further extension that uses the ability to compute at the disks is to perform

the sort using only the keys and introduce a “shuffling”phase once the keys are in

sorted order. In practice, most in-core sorting is done on keys only, rather than entire

records, since keys are usually small relative to whole records. If we apply this in an

Active Disk system, we can save several network transfers and one write of the entire

data to disk by doing run formation using only the keys, instead of the full records.

1.3 Parallel Databases

Large-scale parallel processing technology has made giant strides in the past

decade, and there is no doubt that it has established place for itself. At this time,

however, almost all of the applications harnessing this technology are scientific or

engineering applications. The lack of commercial applications for these parallel pro-

cessors may in part be due to the perceived robustness and usability of these sys-

tems. When compared with mainframes, large-scale parallel processing systems do

not put much emphasis on availability and reliability and do not provide much soft-

ware support for system management and application development. However, the
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current generation of massively parallel processor systems, such as the IBM Scalable

POWERparallel Systems, are much more robust and easier to use. In the past, a

number of research prototypes, including Gamma [DSD+90], Bubba [BAC+90], and

XPRS [WM94], have tried to understand the issues in parallel databases. These and

other projects addressed important issues such as parallel algorithms for execution

of important database operations, query optimization techniques,data placement,and

database performance. The DB2 Parallel Edition (DB2 PE) [BFG+95], developed

by IBM, is another innovative parallel database software program that provides both

scalability and capacity, along with better query processing performance.

1.3.1 Architecture Approaches

Parallel database systems can be built on top of different hardware architectures,

the main three as shown in Figure 1.2.

1.3.1.1 Shared Memory

In shared-memory systems, multiple processors share a common central memory.

With this approach, communication among processors is through shared memory,

thus there is little message overhead. In addition, the software required to provide

parallel database processing is considerably less complex. Consequently, many com-

mercial parallel database systems available today are based on the shared-memory

architecture.

1.3.1.2 Shared Disk

In shared-disk systems, multiple processors,each with its local memory, share a

pool of disks. Shared-disk systems avoid the central memory access bottleneck, but

introduce the difficult problem of connecting all processors to all disks. This can be

especially difficult inth e caseof a large number of processors and disks. In addition,
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Figure 1.2: Parallel Database Approaches
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shared disks present the most challenging task of transaction management because of

the need to coordinate global locking activities (without the help of shared memory)

antdo synchronize log writing among all processors.

1.3.1.3 Shared Nothing

With the shared-nothing approach, each processor has its own memory as well

as local disks. Except for the communication network, no other resources are shared

among processors. Shared nothing does not have the memory access bottleneck prob-

lem, nor does it have the problem of interconnecting a large number of processors

and disks. The major complexity in supporting the shared-nothing approach is the

requirement of breaking a Structured Query Language (SQL) request into multiple

subrequests sent to different nodes in the system and merging the results generated

by multiple nodes.Researchers and developers havaer gued that the shared-nothing

approachis the most cost-effective alternative and the most promising approach for

high-performance parallel database systems

1.4 Outline

This thesis has been organized into 4 chapters. The first chapter gives the intro-

duction and lays the background for this work. It also briefly discusses about the

origin of Active Disks and the significance of parallel databases. Chapter 2 elabo-

rates on the framework that was developed to support active storage on object based

devices. Chapter 2 also provides our results of active computation done on our frame-

work. Chapter 3 discusses our methodology to build an efficient Active Storage based

parallel database system. Finally, in Chapter 4, we conclude with our ideas for future

work.



Chapter 2

Active Storage with Object Based Devices

2.1 Introduction

The database machines proposed and developed in the 70s and 80s are the main

relatives of Active Storage systems. They had special processing components that

handled the execution of portions of the function of a database system. These devices

were custom-designed to implement a particular algorithm and assumed a particular

set of queries and a particular data layout.

Previous work on active disks was brought to life by the very database machines

described above. They provide an environment for executing application code directly

at individual drives [Rie99]. By partitioning processing across hosts and storage

devices, it is possible to exploit the cycles available at storage, reduce the load on

the interconnection network, and perform more efficient scheduling. For example, an

application that applies selective filters to the stored data and only ships summary

information across the network, or that makes scheduling decisions based on local

information at the individual drives can make more effective use of network and host

resources. This promises both improved individual application performance and more

scalable systems.

In this chapter we demonstrate an object oriented framework for supporting ap-

plications that benefit from an Active Storage system, such as the Active Disks men-
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tioned previously. The framework can support a variety of data-intensive applications

including database operations. In the following sections, we describe the basic ap-

proach that was followed to come up with the framework. Then we go on to describe

the implementation details of the sample application developed, to test out the frame-

work. Finally we describe our experimental setup and compare the performance of

an existing single server system to a prototype system emulating Object Oriented

Active Disks.

2.2 Related Work

The basic idea of executing functions in processing elements directly attached to

individual disks was explored extensively in the context of database machines such

as CASSM [YL75], RAP [OSS75], and numerous others [DH81]. These machines

didn’t catch much public interest due to the limited performance of disks at the

time and the complexity of building and programming special-purpose hardware that

could only handle limited functions. Instead, database research has developed large-

scale, shared-nothing database servers with readily available processing elements. It

has recently been suggested that the logical extension is to perform all database

processing inside programmable, “smart” system peripherals [Gra97].

Prior work on Active Disks follows from network-attached secure disks (NASD),

in which computational power at the storage level for parallel and network file sys-

tem functions are exploited, as well as traditional storage optimizations [GNA+97,

GNA+98]. The NASD work experimented on several types of applications that can

benefit from Active Disks - including filters, multimedia, batching, and storage man-

agement - and enumerated the challenges to providing an execution environment on

commodity disk drives [Rie99, RGF98].

Acharya, et al. used the idea of Active Disks on a set of similar applications,

including database select, external sort, data cubes, and image processing, using an
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extended-firmware model for next-generation SCSI disks [AUS98]. Similarly, a group

at Berkeley has independently estimated the benefit of Active (Intelligent in their

terminology) Disks for improving the performance of large SMP systems running

scan, hash join, and sort operations in a database context [KPH98].

Our work is most similar to recent work has examined the use of active disk

principles in the Lustre parallel file system [PNF07]. Their work uses a “filter” in

the object storage target stack that processes streams of data from defined active

objects. It differs from our work in that we allow the client to define an object-

oriented class structure for an object and uses the OSD framework as an asynchronous

RPC mechanism to access object methods. Thus, the execution is not dependent on

operating on streams of data, but can operate on the entire object if necessary.

2.3 Object-based Storage Devices

The Object-Based Storage Devices (OSD) specification [ANS08] has introduced a

new set of device-type specific commands into the SCSI standards family. The speci-

fication defines the OSD model and their required commands and command behavior.

Figure 2.1 illustrates the basic model of OSD in comparison to a traditional block-

based device model for a file system. The traditional functionality of file systems

is divided mainly so that the increased intelligence that is available in such storage

devices can be taken advantage of. Object-based Storage devices have the capability

of managing their storage capacity and exposes a file-like storage interface,objects,

to their hosts. These objects behave exactly like files. They can be created and de-

stroyed and can grow and shrink their size during their lifetimes. As in a file system,

commands are available that can be used to read or write any consecutive stream

of the bytes making up a storage object. The important difference here is that, in

addition to storing data in the form of objects, the OSD storage management com-

ponent also maintains other information about the objects in the form of attributes,
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Figure 2.1: Comparison of traditional and OSD storage models [DHH+06]
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e.g. size, usage quotas, security credentials and associated user name.

2.3.1 OSD Objects

Storage objects that are used to store regular data are called user objects in

the OSD specification. Three other kinds of objects are also defined within the

specification, namely, root objects, partition objects and collection objects. There

is one root object for every OSD logical unit [ANS04]. The root object forms the

top most module of an OSD logical unit, similar in concept to a partition table for a

logical unit of block devices. User objects are put into partitions that are represented

by partition objects. The maximum number of partitions permissible within a logical

unit is given by a quota defined for the logical unit in the root object. Every user

object belongs to one and only one partition. Collections are represented by collection

objects. Each collection object belongs to one and only one partition and may contain

zero or more user objects belonging to the same partition. Unlike user objects, the

other three kinds of objects do not contain a read/write data area. All relationships

between objects are represented by object attributes discussed in the next section.

The unique combination of the Partition ID and the User Object ID identifies

each OSD object as illustrated in Table 2.1. The ranges not specified in the table are

reserved.

Partition ID User Object ID Object type

0 0 root object
220 to 264 − 1 0 partition object
220 to 264 − 1 220 to 264 − 1 collection/user object

Table 2.1: Object identification numbers
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2.3.2 Object Attributes and Attribute Pages

Object attributes are used to associate meta data with any OSD object, i.e., root,

partition, collection or user. Attributes are organized in pages for identification and

reference. Attribute pages associated with an object is uniquely identified by their

attribute page numbers ranging from 0 to 232 - 1. This page number space is divided

into several segments so that page numbers in one segment can only be associated

with certain type of object. For instance, the first segment from 0x0 to 0x2FFFFFFF

can only be associated with user objects.

Attributes within an attribute page have similar sources or uses. Each of them

has an attribute number between 0x0 and 0xFFFFFFFE that is unique within the

attribute page. The last attribute number, i.e., 0xFFFFFFFF is used to represent all

attributes within the page when retrieving attributes.

The OSD specification defines a set of standard attribute pages and attributes

that can be found in [BMLX03]. Certain range of attribute pages and attribute

numbers are reserved for other standards, manufacturer specific or vendor specific

ones. By this way, new attributes can be defined to allow OSD to perform specific

management functions. In [LDR05], a new attribute page containing QoS related

attributes is defined to enable OSD to enforce QoS.

2.3.3 Commands

The OSD commands execution follows a request-response model as defined in SCSI

Architecture Model (SAM-3) [ANS04]. This model can be represented as a procedure

call as following: Service response = Execute Command(IN(I T L x Nexus, CDB,

Task Attribute, [Data-In Buffer Size], [Data- Out Buffer], [Data-Out Buffer Size],

[Command Reference Number), OUT([Data-In Buffer], [Sense Data], [Sense Data

Length], Status))

The meaning of all inputs and outputs are defined in SAM-3 [ANS04]. The OSD
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specification additionally also defines the contents and formats of CDB, Data-Out

Buffer, Data-Out Buffer Size, Data-in Buffer, Data-in Buffer Size and sense Data.

The OSD commands use the variable length CDB format defined in SPC-3 but

has a fixed length of 200 bytes. Each OSD command has an opcode 0x7F in CDB to

differentiate it from commands of other command sets. In the same CDB, a two-byte

service action field specifies one of the twenty-three OSD service requests defined in

the OSD specification. Some of the CDB fields are specific to service actions and

others are common for all commands. Every CDB has a Partition ID and a User

Object ID, the combination of which uniquely identifies the requested object in a

logical unit. Any OSD command may retrieve attributes and any OSD command

may store attributes. Twenty-eight bytes in CDB are used to define the attributes to

be set and retrieved. Two other common fields in CDB are capability and security

parameters that will be explained later.

Both Data-In Buffer and Data-Out Buffer contains multiple segments, including

command data segments, parameter data segments, set/get attribute segments and

integrity check value segments. Each segment is identified by the offset of its first

byte from the first byte of the buffer. Such offsets are referenced in CDB to indicate

where to get data and where to store data.

If the return status of an OSD command is CHECK CONDITION, sense data are

also returned to report errors generated in OSD logical units. The sense data contain

information that allows initiators to identify the OSD object in which the reported

error was detected. If possible, a specific byte or range of bytes within a user object is

identified as being associated with an error. Any applicable errors can be reported by

include the appropriate sense key and additional sense code to identify the condition.

The OSD specification chooses descriptor format sense data to report all errors so

several sense data descriptors can be returned together.
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2.3.4 Security Model

Figure 2.3 shows the OSD security model consisting of four components [ANS08,

FNN+05]: (a) Application Client, (b) Security Manager, (c) PolicyManager, and (d)

Object Based Storage Device (OBSD). Whenever an application client performs an

OSD operation, it first contacts the security manager in order to get a capability

including the operation permission and capability key to generate an integrity check

value with OSD Command Description Block (CDB). When the security manager

receives the capability request from the application client, it contacts the policy man-

ager to get a capability including the permission to perform the operation. After

obtaining the capability, the security manager creates a capability key with a key

shared between the security manager and OBSD and makes the credential consisting

of the capability and capability key, which is returned to the application client. Now

the application client copies the capability included in the credential to the capabil-

ity section of the CDB and generates an integrity check value for the CDB with the

received capability key. The CDB with the digested hash value called the request

integrity check value is sent to the OBSD. When the OBSD receives the CDB, it

checks the validity of the CDB with the request integrity check value. The shared

secret between the security manager and OBSD for the authentication of the CDB is

maintained by SET KEY and SET MASTER KEY commands [ANS08].

2.3.5 Reference Implementation

The reference OSD implementation used in this work consists of client components

and server components shown in Figure 2.2 as grayed blocks. The client components

include three kernel modules - the osd file system (osdfs), the scsi object device

driver (so) and the iSCSI initiator host driver. The osd file system is a simple file

system using object devices instead of block devices as its storage. The so driver is

a SCSI upper-level driver and it exports an object device interface to applications
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Figure 2.2: Overview of reference implementation [DHH+06]

Figure 2.3: OSD Security Model
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like osdfs. The iSCSI initiator driver is a SCSI low-level driver providing iSCSI

transport to access remote iSCSI targets over IP networks. The server components

include the iSCSI target server and the object storage server. The iSCSI target driver

implements the target side of the iSCSI transport protocol. The object target server

module manages the physical storage media and processes SCSI object commands.

The functions and internal architectures of these components are elaborated elseware.

2.4 Basic Approach

To capitalize on the parallelism in an active storage system, we designed and

developed a Record Storage Application, the details of which are provided in the next

section. The application was modeled to closely resemble a database system. The

objective of this application development was to exemplify a framework that supports

the parallel execution of any kind of application, and to analyze the performance gains

of object oriented Active Disk computation over traditional single server systems.

2.4.1 Design Methodology

The basic design principles of developing an application to run in an Active Disk

environment are to

• Exploit parallelism in the data-intensive portion of the data processing

• Separate the code to be executed at the disks as much as possible, from

the code that controls the execution flow,so as to form self-contained and

manageable units, and

• Take advantage of variations in available resources during execution, by using

primitives.

These three principles allow for a great deal of performance and flexibility while

placing and executing the application code. The Active Disk application code is
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divided such that the core piece of code will be made to run at each of the drives,

while the high-level synchronization, control, or merging code is made to run at the

host. This forms a client-server parallel programming model as illustrated in Figure

2.4. Initialization of input parameters takes place at the host and is sent across to

all of the disks. Each of the disks operates on its own local data and produces its

portion of the final result. The host collects the results from all the disks and merges

them in an appropriate manner to form the final result. Since there is a portion of

code that runs at the host and processes data from the disks, it is always possible to

correct any incomplete or inaccurate computation at the drive, as long as the drive

functions always act conservatively. When the drive is in doubt whether to include a

particular record into its result set, it is expected to add the record anyway, so that

the final filtering done at the host will be able to make a better judgment about it.

One of the major objectives of this work was to be able to facilitate the transfer of

program files, related to an object type under consideration, to a OSD target which

has no prior knowledge about that object type. For instance, the target could be

ignorant of the methods that operate on a pdf or text file object. This capability

allows any kind of function to be invoked by the client on any target. For this reason,

we chose to implement our application in Java, thus allowing the methods pertaining

to each object type to be encapsulated within its own class. In order for the OSD

target to execute the methods, this Java code must first be downloaded to the target

and then executed. This class file transfer is achieved by setting an attribute on the

object where the attribute data is the JAR file associated with the class.

The class file, associated with the object as an attribute, defines the methods for

that object. A client can execute methods on that object by using the OSD com-

munication channel. The OSD T10 standard recently added the capability to specify

the presence of a CDB continuation segment in the Data- Out buffer by including

the CDB CONTINUATION LENGTH field to the basic OSD CDB format. This
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Figure 2.4: Basic structure of Active Disk computation via OSD
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field specifies the number of bytes in the CDB continuation segment of the Data-Out

buffer. The CDB CONTINUATION DESCRIPTOR TYPE field in the continuation

segment specifies the format of the following CDB descriptor type specific data. A

value of 0x0001h for the descriptor type supports scatter/gather features. The CDB

continuation segment is followed by the command data segment, if any, in the Data-

Out buffer. For our implementation we added a new CDB descriptor type, 0x0011h,

to indicate that the continuation segment contains class file attribute data. The com-

mand data segment of the Data-Out buffer carries the method invocation associated

with the command - i.e. the method name and parameters.

A java server runs on each OSD target, which takes in the requests coming from

the client and first determines the type of object that the client request is meant

for. Then the corresponding objects methods are executed. In the case of a class file

transfer, the java server first downloads the transferred class file to an appropriate

location and then uses the newly downloaded class to invoke the objects methods.

2.4.2 Sample APIs Developed

Two main functionalities that have been implemented in the application are the

record sorting and matching record search functions, which are expected to benefit the

most from such active disk computations. Sorting is a popular system benchmark and

is most often done in the context of database systems, where it is usually combined

with another operation. We use at the client a variant of the Merge Sort algorithm,

which is the most common out-of-core sorting methodology. Merge Sort is based on

the assumptions that: 1) it is less time consuming and less complex(requiring less

cycles) to sort a small list than a large list , and 2) fewer operations are required

to construct a sorted list from two sorted lists than from two unsorted lists. The

algorithm performs a sequence of recursive in-memory sorts on small subsets of the

data set, followed by a series of merge phases that combine the sorted subsets until
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the entire dataset is in order.

The matching record search function was implemented to emulate scan operations

in databases. When such searchs require a high degree of selectivity from a large

dataset, active storage computation can reduce the transfer of data from the servers

to the client , thereby decreasing network conjestion. Once the search results are

received from every server, then the job of the client is as trivial as to just append

them all together, thus forming the final result.

2.4.3 Approach and Implementation

This section provides an outline of the structure of the application described above,

that execute on Active Disks, including the design philosophy, the structure of the

on-drive code and the host code. The data path of the commands is as shown in

Figure 2.4.

Our implementation is based on the iSCSI OSD reference implementation devel-

oped by the University of Minnesota [DHH+06]. The reference implementation is

built using Linux kernel modules and user-level libraries as shown in Figure 2.2. The

kernel modules are used to implement a primitive OSD file system and the user-level

code provides the communication channel and the implementation of the OSD target

semantics. Since our framework does not require the use of the OSD file system, our

implementation is entirely user based.

2.4.3.1 Client Design

The client side of our application was designed to have APIs for multiple oper-

ations on an object , that can exploit the parallelism offered by such a framework.

Continuing with the above discussed examples of record sorting and searching, the

splitting of the application code is done as follows. Each target sorts the data set

it contains for the particular database object, in parallel, and transfers the sorted
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result back to the client. The client receives the sorted data sets from each of the

targets and merges them together to produce the final sorted result set. This scheme

of computation totally eliminates the need to transfer all the data initially to the

client for the sorting phase, as it is done directly at the target. In the case of record

search, each target searches for records matching the given search criteria and sends

back just the resulting records back to the client. The client, just as in the case

of sorting, collects the partial result records from all the OSD targets and combines

them together to produce the final search result. Since filtering of the data occurs

at each of the targets, the data that gets transferred across the network is just a

fraction of the initial data set, thereby reducing network bottleneck. The set of client

side APIs developed for testing this framework for database objects is as shown in

Figure 2.5. APIs for creation and manipulation of the objects are also provided, so

as form a complete system. Similar client classes can be developed for any type of

object, with APIs for the methods of interest.

Figure 2.5: Client side class diagrams
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Figure 2.6: OSD Target Server side class diagrams
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2.4.3.2 OSD Target Server Design

The target server is designed to have a dedicated process, constantly listening to

requests being sent from the client. In order to ensure the parallelism inherent with

Active Disk applications, the client spawns a thread for each server, while sending

requests. The individual server threads, forwards the requests from the client to

their respective servers, and waits to receive the response back from them. The main

mentionable classes here, in the database object example, are the ActiveServer and

the RequestHandler as shown in Figure 2.6. The ActiveServer class receives the

client requests and calls the appropriate function in the RequestHandler class. which

was downloaded from the client. The RequestHandler class is the one that contains

the methods for the object as described in the previous section.

In order to extend this framework to support multiple object types, a separate

RequestHandler class has to be generated for each object type. The appropriate

RequestHandler class is then called by the ActiveServer class depending on the object

type.This is made possible by utilizing the property of reflection in Java language.

This extensible architecture makes it very easy to add new objects and their functions

to the framework. And as described above, the class file transfer capability allows the

newly created RequestHandler classes of the objects to be transferred to the targets,

along with the OSD commands. Thus extending the framework is made to become a

trivial task.

The protocol used here for the client server communication is iSCSI. Configuration

files have also been made use of, for specifying server parameters such as server names,

port numbers, and directory paths for the object creation and so on.

2.4.3.3 OSD Design Changes

The OSD implementation used had to be tailored to fit the requirements of the

application, in quite a few areas. The main idea adopted here was to relate the API of
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the object to an OSD command, such that issuing the OSD command from the OSD

initiator to an OSD target, would be equivalent to sending a request from the client

to a server via a TCP/IP socket connection. we chose to add a new OSD EXECUTE

METHOD command for these APIs, in order to keep the method execution code self

contained.

The interface between the Java application program client and the OSD client

is implemented as data pipes. The same holds for the interface between the OSD

target and the Java server program. When the application client issues a request, the

ACTIVEXEC module receives the request and packages it into an appropriate EX-

ECUTE METHOD command CDB. Application level parameters, if any, are placed

as object attribute values in the CDB, and so is the class file data. Once the CDB

reaches the OSD target, it is decapsulated and the parameters are passed to the java

server, which takes up the execution of the requested method.

2.5 Results

The experimental setup we used to test out our application is a 16 node Linux

cluster. One node was set up as the client machine and up to 8 nodes were used as

OSD targets. Several test runs were conducted, with varying number of targets and

varying data set sizes. Some of our experimental results are tabulated as below.

Table 2.2 show the results for a data set of 1 million records. The total sort time

is the time required for the client to issue sort execute methods to the targets and

then retrieve the data and do a merge sort locally. The average sort time is the

average time required on each target node to do the read from disk and then sort.

The results show that the targets sort times decrease linearly. The total sort time

shows improvement but is not linear with respect to the number of target nodes. The

reason for this is that the Java virtual machine begins to run against its heap size

limit and as a result the merge time takes longer than expected.
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We also measured the effect of using iSCSI as an RPC transport mechanism rather

than a purely TCP/IP socket based implementation. We constructed a socket-based

implementation that was hard coded to perform application-specific RPCs. Through

experiments, we found that the iSCSI OSD implementation is comparable in run-time

to the socketbased implementation with no more than 10performance for the iSCSI

implementation.

No. of OSD Targets Total Sort time (ms) Avg.Target Sort time (ms)
1 19931 16689
2 12645 8716
4 8761 4227
8 7437 2351

Table 2.2: Results for 1M Records

2.6 Summary

In this chapter, we have demonstrated an object-oriented active storage framework

built upon the iSCSI OSD standard. Many data-intensive applications have small

CPU and memory requirements and are attractive for execution across Active Disks.

Implementing this in the form of objects allows for better portability, reusability of

components, extensibility and other such advantages of object oriented programming.

A further improvement to this framework is to extend it to support any type of object.

Currently the application supports only List objects. Another idea to pursue is to

explore alternate methods for parallel programming, so as to reduce or even eliminate

the overhead introduced by multi-threading, for small data sizes.



Chapter 3

Active Storage for Database Applications

3.1 Introduction

Parallel query processing [GD92] has evolved from being a research idea (e.g.,

Gamma, XPRS [DSD+90] [WM94]) to being a standard feature provided by most

DBMS vendors (e.g., Tandem, Teradata, Oracle, Informix XPS, and DB2). The

parallelism in these systems is highly scalable, with vendors reporting good speedup

with even 1000s of parallel nodes [GD92].

Traditionally, parallel query systems have been classified as shared nothing (SN),

shared memory (SMP), and shared disk (SD) [Sto86]. A common characteristic of

all these three types is that they rely on dedicated processors, pre-configured and

pre-assigned for the parallel query task.

For SMP systems (and SMP nodes in SD/SN systems), this coupling is done in

hardware. In SD systems, the compute nodes are often connected by specialized

interconnects to a shared storage. SN systems are more loosely coupled due to a

cluster-architecture. But the compute nodes still need to be dedicated for the parallel

query task because the data is prepartitioned across the compute nodes (typically by

hash or range of a join column value). In general, both SN and SD systems rely on

partitioning as the primary means of parallelizing expensive query operations such as

hash joins.
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Active storage based database systems can be considered to be a shared nothing

parallel query system, with each disk having its own dedicated processor. Since no

resources are shared in a shared-nothing system, we make use of the idea of func-

tion shipping [BFG+95], wherein database operations are performed directly where

the data resides. This is indeed the whole idea of Active Disks, where aplication

processing is being pushed from the top tiers to as close to the actual data as possi-

ble. This minimizes network traffic by filtering out unimportant data and achieving

good parallelism. A major task in a shared-nothing implementation is to split the

incoming SQL request into many subtasks; these subtasks are then executed on dif-

ferent processors (if required, interprocess and interprocessor communication is used

for data exchanges). Typically, a coordinator serves as the application interface, re-

ceiving the SQL request and associated host variables and returning the answers to

the application.

In this chapter we propose an intelligent utility that gives suggestions to the DBA

on optimal data partitioning rules for a parallel database application, based on the

queries that come into the system. A parallel database uses multiple computation

nodes to accelerate data processing. Using multiple computation nodes often requires

that the data itself be split or partitioned across the different nodes, such that each

node is responsible for a subset or copy of the data. Our partitioning utility provides

a method to automatically partition or replicate data according to the requirements

of the database application. It also allows parallel databases to be used with smart

storage devices that can execute queries locally to the data. The organization of this

chapter is as follows. First, we describe specific database related cases where a DBMS

can benefit from an Active Storage System. Then we give the details of such a parallel

DBMS architecture and the components comprising it. Finally we will describe the

data partitioning utility, which helps to ease the transition of an enterprise DBMS to

an Active Storage DBMS.
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3.2 Potential Benefits

There are three main operations of importance in any relational database sys-

tem,namely,select, aggregation and joins. In this section , we describe how these

three operations can benefit from an Active Storage System.

3.2.1 Select

The select operation is an obvious candidate for an Active Disk function. The

where clause in a SQL query can be performed directly at the drives, returning only

the matching records to the host. The query is parsed by the host and the select

condition is provided to all the drives. The drives then search all the records in a

particular table in parallel and return only the records that match the search condition

to the host, who combines the received records to form the final query result. A sample

select query used in the TPC-D [Cou] benchmark is as given below:

select * from lineitem where l shipdate ≥ ‘1998 − 09 − 02′˙

3.2.2 Aggregation

The purpose of sorting in database systems is almost always as an input step to

another operation, either a join, an aggregation, or as the final step in a projection

(duplicate elimination). The biggest benefit of performing sorting at Active Disks

comes when it is combined with one of these other steps directly at the disks. Aggre-

gation combines a set of records to compute a final sum, average, or count of groups

of records with particular key values. If this summing or counting can be done at the

disks as records are sorted on the group by columns then the network traffic can be

greatly reduced by returning only the sums or counts from the individual disks for

final aggregation at the host. A sample aggregation operation is illustrated by the

query:
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select sum(l qty), sum(l price*(1-l disc)) group by l disc.

3.2.3 Joins

A join combines data from two (or more) relations, so it is more complex than

the select or project, which operate on only a single relation at a time.The purpose

of a join is to combine two input relations, R and S on a single join attribute. If the

value of the attribute for a particular record in R matches any record in S, then the

combined record is output. Highly selective joins will benefit significantly from the

reduction in data transfer by operating directly at the drive level. When the relations

R and S are split properly accross all the disks, the joins can be performed in parallel

at each , with the final merging of results at the host. More details on join processing

appear in the subsequent sections.

3.3 Architecture Overview

The basic structure of a parallel DBMS is as shown in Figure 3.5. It consists

of a single client/frontend, which maintains a two way communication channel with

multiple database servers for query processing. When the client sends an SQL request,

it is forwarded in parallel to all the servers. The servers execute on their local data

and return the results to the client , where they are combined.

3.3.1 Partitioning Techniques

Once it is decided that the records of a table be split across multiple nodes, a

suitable partitioning technique need to be applied on each table to assign each table

row to a table partition. The common techniques in use today are listed below.
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3.3.1.1 Round-Robin

In this scheme, each row that is added to a table , is sent to one of the available

nodes sequentially in circular or round-robin fashion. This scheme ensures equal dis-

tribution of table rows across all nodes and hence a good technique to apply if load

balancing is of high priority. The main drawback is that the data is randomly dis-

tributed and hence related data will not be placed together. This can be troublesome

especially while processing joins.

3.3.1.2 Range

Range partitioning is a relatively simple scheme wherein table rows are split across

multiple nodes based on the value of a specified table attribute. Each node will hold

the rows of the table that fall within the attribute value range assigned to that node.

In this case, similar data end up being together. But the data need not be equally

distributed.

3.3.1.3 Hash

Hash partitoning is similar to range partitioning, except that here the table row

is sent to a particular node based on the hash value of the specified table attribute.

By chosing an efficient hash function, both equal distribution of data and co-location

of related rows can be acheived.

The strategy chosen for the query execution mainly depends on which of the above

mentioned partitioning techniques are used, as described below.

3.3.2 Query Execution Strategies

Query execution can be viewed as a flow of data along a plan path, with sends

and receives being used for intertask communication. A query optimizer typically

chooses :
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• The optimal join order.

• The optimal way to access each table and compute each join.

• The nodes on which operations needs to be performed.

• Decide between system resources and response time as the metric for deter-

mining cost of a plan.

Consider the simple query from the TPC-C [Cou]benchmark, given below:

select S NAME, S ADDRESS from SUPPLIERS where S REGION = ‘ASIA’˙

In such queries, the execution plan is pretty straightforward. Regardless of how the

SUPPLIER table data is split across the multiple nodes, each node has to return only

those tuples with S REGION = ‘ASIA’Ėven in the case of an aggregation operation,

such as a COUNT(*), each node need to return only its local count of tuples to the

coordinator. The coordinator then sums up all the counts to return the result to the

application. This is the plan depicted in Figure 3.1.

But when it comes to a join, an execution strategy decision actually has to be

made. Consider a basic join query, taken again from the TPC-C benchmark.

select CUSTNAME from CUSTOMERS, ORDERS where O CUSTKEY = C CUSTKEY

and O ORDERDATE ≥ ‘02 − 02 − 94′˙

The query selects the names of all customers who placed orders after a certain date.

It requires that the ORDERS and CUSTOMERS tables be joined on their CUSTKEY

attribute. This join operation can be performed by a variety of different strategies in

a parallel database environment.

3.3.2.1 Collocated Join

Let the partition keys of the ORDERS and CUSTOMERS tables be CUSTKEY

and let them be in the same nodegroup. Then, the records of both tables having a

particular CUSTKEY value will reside on the same node. For example, CUSTKEY
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value of 10000 may be mapped to node 100 but is the same for both tables. Thus,

the join operation can be performed on the local partitions of the two tables. No

data exchange is required, and the entire operation can be done in one node process

that scans the two tables and joins them and then ships the result to the coordinator.

Figure 3.2 shows the task structure for this join.

3.3.2.2 Directed Join

Let the partition key for CUSTOMERS be CUSTKEY and ORDERS be OR-

DERKEY. Here, we cannot perform a collocated join operation since records of the

ORDERS table with a particular CUSTKEY value could reside on all nodes. One

efficient way to match the CUSTKEYs of ORDERS and CUSTOMERS is to hash

the selected ORDERS rows using its CUSTKEY attribute and direct the rows to

the appropriate CUSTOMERS nodes. This strategy localizes the cost of the join to

partitions at each node and at the same time tries to minimize the data transfer.

Figure 3.3 represents this.

3.3.2.3 Broadcast Join

Consider the following query between the CUSTOMERS and SUPPLIERS table.

select CUSTNAME, SUPPNAME, C NATION from CUSTOMERS, SUPPLIERS

where C NATION = S NATION.

The query tries to find customers and suppliers in the same region. Let the parti-

tioning key for CUSTOMERS be CUSTKEY and that of SUPPLIERS be SUPPKEY.

Note that C NATION and S NATION could have been the respective partition keys

of the two tables; however, CUSTKEY and SUPPKEY are used more often in queries

and are more likely candidates. Given this, the optimizer cannot try to localize the

join operation on the C NATION and S NATION attributes. Hence, a strategy of

broadcasting the selected rows of either table to all the nodes of the other tables is
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Figure 3.1: Simple Query
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Figure 3.2: Collocated Joins
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considered. The broadcast essentially causes one ttaob blee materialized fully at each

node containing a partition of the other table. Now, a join at all nodes will produce

the complete result of the query.

3.3.2.4 Repartitioned Join

In this strategy, the optimizer decides to explicitly repartition both tables on

their joining attributes in order to localize and minimize the join effort. In the

example query previously described for broadcast joins, the optimizer will repartition

the CUSTOMERS table on C NATION and the SUPPLIERS table on S NATION

on some common set of nodes. The repartitioned tables can then be joined in a

collocated join fashion at each node, as shown in Figure 3.4

From the various query processing strategies described above, it is clear that a

central controller/coordinator is a necessity for seamless communication between the

client and the servers. It is the job of the coordinator to decide the routing of the

queries to the appropriate servers and combining of the results coming from multiple

nodes. Also, collocated join processing turns out to be the best candidate strategy for

query processing. Only for collocated joins is the need for transfer of tuples between

intermediate nodes completely eliminated, thus forming an efficient Active Storage

parallel database system.

3.3.3 Middleware Details

The main component of interest here is the middleware which sits between the

client and the servers. The middleware should have the capability to talk the database’s

backend and frontend protocol, and maintains a connection between them. There-

fore, a database application (frontend) thinks that the middleware is the actual DB

server, and the server (backend) sees the middleware as one of its clients. Because

the middleware is transparent to both the server and the client, an existing database
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Figure 3.3: Directed and Broadcast Join
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Figure 3.4: Repartitioned Join
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Figure 3.5: Parallel Database Architecture
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application can be used with the middleware almost without any change to its sources.

The middleware that is stuck between the client and the servers should cater to a

few important features, as described below.

3.3.3.1 Replication

Replication enables the same data to be copied to multiple database nodes. Tables

can be registered within the middleware, for replication beforehand. If a replication

rule has been set for a partcular table, then during table creation time, the table is

created across all the nodes attached to the middleware. And each record that is

added to the replicated table is in effect inserted into the replicated tables in each

node. Using the replication functionality enables creating a realtime backup on two

or more physical disks, so that the service can continue without stopping servers in

case of a disk failure.

3.3.3.2 Load Balancing

If a database is replicated, executing a SELECT query on any server should return

the same result. This paves way for exploiting the replication feature described above

,inorder to reduce the load on each server by distributing incoming SELECT queries

among multiple servers.This can greatly improve the system’s overall throughput

as multiple queries are being processed in parallel. At best, performance improves

proportionally to the number of backend servers available. Load balance works best

in a situation where there are a lot of users executing many queries at the same

time.

3.3.3.3 Parallel Querying

Just as in the replication of tables,in the parallel query mode also, the tables

are registered beforehand to be distributed across multiple nodes. Such registered
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tables are created on all the nodes. But unlike as in replication, the table records are

not inserted into all nodes. Instead, data partitioning rule functions can be set up

for each table, which takes a value for the partitioning key column, and returns the

corresponding DB node ID. When tuples are added to a table, it is added to the DB

node whose ID is returned by the partitioning function for that table. Hence each

tuple in the original table is going to reside in only one of the multiple nodes available.

When a query comes in, the middleware routes it to all the servers, thus enablinbg

the query be executed on all the servers concurrently to reduce the overall execution

time. The partial results obtained from query execution on each of the servers, are

collected by the middleware, where it is combined to form the final result, that is

returned to the client. It should also be possible to use replication in conjunction

with paralle querying.

Any generic middleware that provides for these functionalities can be used as the

coordinator for a parallel database system. Load balancing might not be required as

a feature in all cases, esecially if the parallel query data distribution functions are

efficient enough to ensure an equal distribution of data among all the nodes.

3.4 Partition Optimizer

Traditionally, the DBMS relies on partitioning to get parallelism in I/O, and to

reduce network traffic. The task here is to break up the select-project-join fragments,

with aggregation and group by(SPJAG) over tables in the shared storage into SPJAGs

over work-units that can be done on the coprocessors.

3.4.1 Partitioning Rules

Work allocation in parallel query plans is most popularly done through Exchange

[G.G90] operators. Both base tables and intermediate results are split according to

the join column as part of query execution, and each node gets to operate on a table
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Figure 3.6: Exchange-based plan for OxLxC [G.G90]
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subset with particular hash value (or range) of the join column. Figure 3.6 shows an

example plan. The problem with this work allocation approach as listed below:

• First, since tuples are shipped between plans, Exchange is very vulnerable to

load spikes and failures at even a single compute node.

• Shipping large sets of tuples between nodes also increase network bottleneck.

To avoid these limitation, we partition data not at the operator level but rather at

the join fragment level and send the entire SPJAG query to each node, to be run in-

dependently. The results from each node are then combined at the coordinator/client

node to produce the final result set of the query. In our architecture, the middleware

functions as the coordinator. But there are a few details to consider before being able

to send the entire query to each node.

Single table queries, whether they be selects, aggregates, group by etc, will work

flawlessly with any kind of partitioning scheme for the tables, with the SN network

architecture. This is so since there is no dependency for the query with any other

table and hence it does not matter how the tables other than the table of concern is

partitioned. The only consideration here is to partition the table on any one table

column equally across all the nodes, inorder to maximize parallel efficiency of the

system. But when it comes to two or multi table queries, such as joins, the choice of

the partitioning table column becomes a very cruicial decision. Since we are dealing

with static sets of table data in each of the nodes, the partitions should be such that

all the table tuples required to process a multi-table query, for eg. a join query, at any

node should lie within that node itself. Such a partition reduces, if not completely

eliminates transfer of immediate results between nodes. Hence the need to find the

optimal set of partitioning key columns for each table in the database.

The main idea behind our intelligent data partitioning utility is that , in any real

world enterprise database application, the queries that have to be processed by an
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application will belong to a certain finite set of queries. This finite set of queries

may be known either at the onset of the application or will gradually grow and

reach a steady state when the application stabilizes. Initially, the database tables are

partitioned on a key column, chosen intuitively by the DBA. This initial choice of the

key column can be made based on the expected probability of join queries, the size

of the tables, and the general purpose of the application. In the case of transitioning

an existing application to a parallel DB system,, there will be no initial partitioning.

The next step is to insert a query logger into the middleware, which will log all queries

that come into the DBMS, on a daily basis. The logged queries can then be used

as the input data for the partitioning utility. This helps in modeling the real-time,

real-world usage of the application.

The partitioning utility parses each of the logged queries and creates a mapping

between the different tables and their columns on which joins are being performed. It

also keeps a count of the number of times a join on each table column is being invoked.

The utility then selects the column , on which the maximum number of joins occur,

for each table. Finally, it outputs the selected key columns for each table, as the

optimal partitions. It might be necessary to analyse the queries logged on more than

a single day, depending on the usage of the system, inorder for the partitioning utility

to reach its decision and train the system more accurately.

Another piece of information that the utility uses to suggest an optimal partition,

is the size of the database tables, if provided. If it is seen that a particular table

is small in size, but accessed frequently in a lot of queries, then it makes sense to

replicate that table across all nodes. The utility will then suggest that table as a

candidate for replication on all the nodes, instead of partitioning it across the nodes.

Ultimately, the decision whether to repartition/replicate the tables depends on the

DataBase Administrator(DBA). The partitioning utility’s main purpose is to help the

DBA make a better decision, by analyzing the realtime usage of the system.
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3.5 Results

3.5.1 Database Specification

We make use of the open source PostgreSQL database,version 8.3.3, [Pos] for our

implementations and analysis. In database jargon, PostgreSQL uses a client/server

model. A PostgreSQL session consists of the following cooperating processes (pro-

grams):

• A server process, which manages the database files, accepts connections to

the database from client applications, and performs actions on the database

on behalf of the clients.

• The users client (frontend) application that wants to perform database oper-

ations. Client applications can be very diverse in nature: a client could be

a text-oriented tool, a graphical application, a web server that accesses the

database to display web pages, or a specialized database maintenance tool.

As is typical of client/server applications, the client and the server can be on different

hosts. In that case they communicate over a TCP/IP network connection.

3.5.2 Middleware Specification

PostgreSQL recently came up with a middleware called pgpool, that works be-

tween PostgreSQL servers and a PostgreSQL database client. It provides all the

features that we requires for our purposes and then some. Some of the execution

modes provided by pgpool as as listed below.

• Limiting exceeding connections,ie, queueing the excess inorder to reduce re-

source consumption and maintain system performance.

• Connection pooling, ie, reusing connections to the servers to reduce connec-

tion overhead and improve system throughput.
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• Replication.

• Load Balance.

• Parallel Query.

Pgpool has a main configuration file , in which the required modes of operation can

be set. The interdependence of the various modes are as shown in Table 3.1. The

System DB is a central database that maintains partition and replication rules, in

the format of a normal database table. Tables to be partitioned are registered in the

dist def table of System DB. The general format of a partitioning rule is as below.

CREATE TABLE dist def(

dbname TEXT, – database name

schema name TEXT, – schema name

table name TEXT, – table name

col name TEXT NOT NULL CHECK (col name = ANY (col list)), – partitioning

key column name

col list TEXT[] NOT NULL, – names of table attributes

type list TEXT[] NOT NULL, – types of table attributes

dist def func TEXT NOT NULL, – name of the partitioning rule function

PRIMARY KEY (dbname,schema name,table name));

Likewise, tables to be replicated are registered with the replicate def table, the format

of which is as given below.

CREATE TABLE replicate def(

dbname TEXT, –database name

schema name TEXT, –schema name

table name TEXT, –table name

col list TEXT[] NOT NULL, – names of table attributes
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type list TEXT[] NOT NULL, – types of table attributes

PRIMARY KEY (dbname,schema name,table name));

As with the client and the servers, pgpool and the System DB can reside on a separate

nodes. For our experiments, we set Parallel Query mode to true and both Replication

Function/Mode Connection Pool Mode Replication Mode Parallel Query Mode
Connection Pool O O O

Replication X O X
Load Balance X O X
Parallel Query X X O
No. of Servers 1 or more 2 or more 2 or more

System DB required? no no yes

Table 3.1: Configuration modes for pgpool

and Load Balancing modes to false. If tables need to be replicated, set Replication

mode to true, add the table data and then restart pgpool with the above said mode

settings.

3.5.3 Testbench Schema

The testbench that we use for our setup is the OSDL’s Database Test Suite (OSDL-

DBT2) [Sui], inspired from the TPC-C benchmark [Cou]. The benchmark is centered

around the principal activities (transactions) of an order-entry environment. These

transactions include entering and delivering orders, recording payments, checking

the status of orders, and monitoring the level of stock at the warehouses. While

the benchmark portrays the activity of a wholesale supplier, it is not limited to the

activity of any particular business segment, but, rather represents any industry that

must manage, sell, or distribute a product or service.

The benchmark consists of eight tables , the schema of which is as shown in the

tables 3.2 to 3.9. We ran the benchmark for about 6 hours, with a warehouse

scale factor of 10 and a single connection. The cardinalities of the database tables,
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Column Name Column Type
w id INTEGER
w name VARCHAR(10)
w street 1 VARCHAR(20)
w street 2 VARCHAR(20)
w city VARCHAR(20)
w state char(2)
w zip char(9)
w tax REAL
w ytd NUMERIC

Table 3.2: Warehouse

Column Name Column Type
d id INTEGER
d w id INTEGER
d name VARCHAR(10)
d street 1 VARCHAR(20)
d street 2 VARCHAR(20)
d city VARCHAR(20)
d state char(2)
d zip char(9)
d tax REAL
d ytd NUMERIC
d next o id INTEGER

Table 3.3: District
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Column Name Column Type
c id INTEGER
c d id INTEGER
c w id INTEGER
c first VARCHAR(16)
c middle char(2)
c last VARCHAR(16)
c street 1 VARCHAR(20)
c street 2 VARCHAR(20)
c city VARCHAR(20)
c state char(2)
c zip char(9)
c phone char(16)
c since TIMESTAMP
c credit char(2)
c credit lim NUMERIC
c discount REAL
c balance NUMERIC
c ytd payment NUMERIC
c payment cnt REAL
c delivery cnt REAL

Table 3.4: Customer

Column Name Column Type
no o id INTEGER
no d id INTEGER
no w id INTEGER

Table 3.5: New Order

Column Name Column Type
o id INTEGER
o d id INTEGER
o w id INTEGER
o c id INTEGER
o entry d TIMESTAMP
o carrier id INTEGER
o ol cnt INTEGER
o all local REAL

Table 3.6: Orders
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Column Name Column Type
ol o id INTEGER
ol d id INTEGER
ol w id INTEGER
ol number INTEGER
ol i id INTEGER
ol supply w id INTEGER
ol delivery d TIMESTAMP
ol quantity REAL
ol amount REAL
ol dist info VARCHAR(24)

Table 3.7: Order Line

Column Name Column Type
i id INTEGER
i im id INTEGER
i name VARCHAR(24)
i price REAL
i data VARCHAR(50)

Table 3.8: Item
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Column Name Column Type
s i id INTEGER
s w id INTEGER
s quantity VARCHAR(24)
s dist 01 VARCHAR(24)
s dist 02 VARCHAR(24)
s dist 03 VARCHAR(24)
s dist 04 VARCHAR(24)
s dist 05 VARCHAR(24)
s dist 06 VARCHAR(24)
s dist 07 VARCHAR(24)
s dist 08 VARCHAR(24)
s dist 09 VARCHAR(24)
s dist 10 VARCHAR(24)
s ytd NUMERIC
s order cnt REAL
s remote cnt REAL
s data VARCHAR(50)

Table 3.9: Stock
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generated with the available benchmark scripts is as shown in Table 3.10. The

Table Name Cardinality
Warehouse 10

District 100
Customer 300000

Item 10000
Orders 300000
Stock 1000000

New order 90000
Order line 2848020

Table 3.10: Database Table Cardinalities

SQL queries thus generated, and logged with the query logger inserted into pgpool,

were used as the data for our data partitioning utility. The partitioning suggestions

returned by our utility is as summarized in Table 3.11. The partition suggestions

for the three DB tables as listed, are based on the real-time join queries that are

generated by the DBT2 benchmark. A suitable distribution function can now be set

up for the suggested tables, based on their suggested columns. Since the warehouse

table is small in size and frquently accessed, it is suggested to be replicated across all

nodes. It has to be noted here that even though the District table is comparitively

small in size, since it is suggested to be partitioned, it will not be suggested for

replication too. The tables that are not mentioned in the utility result can be hash

partitioned on any one of their columns as the location of such records will not affect

system performance.

3.6 Summary

In this chapter, we proposed and implemented a method for intelligent data par-

titioning for parallel databases.Current parallel databases partition data based on

a database administrators knowledge of the data structure and is partitioned stat-

ically by the database administrator. With large databases, it may be difficult for
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a database administrator to pick an optimal partition that delivers the best perfor-

mance. The novelty of our method is the use of query logging to analyze previous

queries and thus, create an optimal partition. Since it learns from past queries, it

can generate more efficient partitions than an administrator generated partition. An

avenue for further research in this area is to verify the partition algorithm on different

data sets and storage architectures. This thesis verifies the utility only on the open

source DBT2 benchmark. Also, these algorithms will need to be expanded to handle

multi-table joins and investigate query dependent layout strategies.
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Partitions
Table Name Column Name

stock s i id
order line ol w id
district d w id

Replications
warehouse

Table 3.11: Partition Result



Chapter 4

Conclusions

In this thesis, we explored Active Disks and the integration of Active Storage

Systems with real world applications. In particular, we investigated the Object-

based Storage Device (OSD) standard which provides a major step towards enabling

explicit application awareness in storage systems behind a standard, fully interoper-

able interface. OSD provides the right interface for an active storage system, which

prompted us to develop an object oriented framework for such application aware stor-

age systems. Our framework answers the question of how to enable downloading of

application code to storage nodes, thus allowing for explicit communication between

the application and the storage system. It also proves that application execution time

improves significantly, though not linearly, through active commputation.

This thesis also studied Active Storage for database applications, which is the

ideal candidate for utilizing the OSD framework described above. The database-

aware storage plans described in [RSI07] lays the ground work for such a system.

Our particular contribution was to develop an intelligent data partitioning method

that maximizes the efficiency and accuracy of a parallel database application built

on the premises of an OSD Active Storage system. This utility helps to remove the

inaccuracy inherent with the intuitive decision taken by the DBA on how to partition

data in such a parallel DB system. This is particularly important when an existing
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enterprise application is being migrated from a single server system to a multi server

parallel database system. In such a scenario, the right partitioning of the table data

is crucial inorder for the accurate operation of the system.
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