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Abstract

Data intensive applications attempt to extract valuable information from large amounts

of data, but the ability to scalably and efficiently do so remains a intimidating challenge.

Efficient distributed parallel programming techniques are the key to achieving the perfor-

mance requirements for such computations. The most common cluster data parallel pro-

gramming methodology is to use message passing to communicate between computation

nodes. Recently, the MapReduce model has been introduced as a more efficient mechanism

to enable easy development of parallel applications to process large amounts of data on

large clusters. In this paper we analyze and compare the performance of MapReduce and

message passing in general and specifically for two data intensive computations: (a) Word-

Count and (b) Blast Like Alignment Tool (BLAT). This thesis also contributes to analyzing

active storage on an iSCSI OSD standards-based object oriented framework. The con-

cept of performing portions of computation directly at disk drives can drastically reduce

network contention and greatly improve efficiency of large parallel systems.
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Chapter 1

Introduction

1.1 Motivation

Computer science today is rapidly moving towards parallelism as a means to prevail

against increasing problem sizes and the declining rate of clock speed improvements. Par-

allel programming was developed as a means of improving performance and efficiency.

Parallel programming is a strategy to execute large and complex tasks faster by breaking

the computation into parts, each of which can be executed concurrently by being assigned

to multiple workers and coordinating the workers. The instructions in each part have the

ability to run simultaneously on different CPUs that can exist on a single machine, or they

can be on a set of computers connected through network.

The exponential growth of data has led to challenges in the computing field. In order

to meet the increased computing challenges we must be able to sample, aggregate and

perform timely analysis of the data. The advancement in data intensive computing has

favored to collect large amounts of data, taking us close to solving some complex problems

such as genomic searches and computation, data mining applications such as marketing,

surveillance, and fraud detection, and global climate change.

In order to process large amounts of data, the computations have to be distributed across
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multiple machines in order to finish in a reasonable amount of time. This could be achieved

by employing smaller cost efficient machines to carry out a part of the split cumbersome

computation. The main issues in carrying out a distributed computation are:

• Parallelize the computation,

• Distribute the data, and

• Handle failures.

These important issues in distributed computing collude to complicate the original sim-

ple computation with large amounts of complex code to deal with these issues. The explod-

ing data and ever-increasing need to integrate data leads to build large data-intensive appli-

cations. Building large data-intensive applications to handle exponentially growing data, to

process, analyze and extract valuable information in real time is a daunting challenge. The

most important aspect of a large data-intensive application development includes process

flow and communication, flexibility, synchronization, extensibility, scalability, stability,

availability and manageability.

Not only are parallel programs faster, they can also be used to solve problems on large

datasets using both local and non-local resources. When we have a set of computers con-

nected on a network, we have a vast pool of CPUs, and we often have the ability to read

and write very large files with a distributed file system. Parallel computing requires

• Multiple processors (workers),

• Network link between multiple processors,

• An environment to create and manage parallel processing which include the ad-

ministrator (to handle multiple workers)
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• A parallel programming paradigm, and finally

• An algorithm to split the problem into pieces for multiple workers to execute.

As a reaction of complexity, choosing between different distributed parallel program-

ming techniques to accommodate exponentially growing data with a finite amount of time

to do the required analysis becomes difficult. The major contribution of this work is to an-

alyze the two major distributed cluster parallel programming techniques - namely MapRe-

duce and message passing for data intensive applications.

In this thesis, we first explore the two chosen parallel programming techniques. Details

of the architecture and working have been dealt with in these sections. Next, we discuss

in depth about the two data intensive applications namely BLAT (BLAST Like Alignment

Tool) and WordCount which would employ the two parallel programming techniques to

benefit in computation. BLAT is a bioinformatics tool employed for genomic search based

on a query and WordCount which analyses a text file and gives the count of words, number

of lines and frequency of word occurance in the input file.We would then analyze the results

for the data intensive application and compare the techniques from the obtained result.

1.2 Parallel Computing

In the early days of computing, all the programs were serially executed. A program had

a sequence of instructions, and each instruction was executed one after the other in order.

All of these instructions were run on a single processor. Parallel computing was developed

as a means of improving performance, speed and efficiency.

The evolution of parallel computer architectures has recently created new trends and

challenges for both parallel application developers and end users. Parallel computing is a

form of computation in which many calculations are performed simultaneously, operating
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on the principle that large problems can often be divided into smaller ones, which are

then solved concurrently (in parallel). Parallel Computing are categorized by the level of

parallelism employed with multi-core and multi-processor comprised of many processing

units within a computer, while clusters, massively parallel processors (MPP), and grids use

multiple computers to work on the same task.

Parallel computer programs are more difficult to write than sequential ones, because the

simultaneous executions introduces several new potential hazards like data dependencies

which can lead to the race conditions and other software bugs. Understanding data de-

pendencies is fundamental in implementing parallel algorithms. No program can run more

quickly than the longest chain of dependent calculations (known as the critical path), since

calculations that depend upon prior calculations in the chain must be executed in order.

However, most algorithms do not consist of just a long chain of dependent calculations;

there are usually opportunities to execute independent calculations in parallel. Communi-

cation and synchronization between the different subtasks is typically one of the greatest

barriers to getting good parallel program performance. The speed-up of a program as a

result of parallelization is given by Amdahl’s law. In the next section we would study the

various architecture approaches of parallel computing. We would then categorize the two

chosen parallel programming techniques, namely the message passing and MapReduce.

We would learn about the advantages and disadvantage of each of the architectures.

1.2.1 Architecture Approaches

Parallel computing systems can be built on top of different hardware architectures, the

main three as shown in Figure 1.1.
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Figure 1.1: Parallel Computing Architecture. Adapted from [BFG+95]
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1.2.1.1 Shared Memory

In the shared-memory systems, multiple processors share a common central memory.

With this architecture, communication among the multiple processors is through the shared

memory, thus there is very little message overhead. In addition, the platform required to

establish parallel computing system is considerably less complex. Consequently, many

of the commercial parallel computing systems available today are based on the shared-

memory architecture.

The message passing interface(MPI) falls under this category. The principal MPI-1 had

no shared-memory concept and the next version namely, the MPI-2 has a limited shared-

memory concept. Nonetheless, MPI, one of the parallel programming techniques we ana-

lyze are regularly run on shared-memory computers since MPI encourages memory local-

ity.

1.2.1.2 Shared Disk

In shared-disk systems, the multiple processors, each with its private local memory,

share a pool of disks. Shared-disk systems usually doesn’t scale well for smaller machines.

Shared-disk systems overcome the central memory access bottleneck as in shared-memory

system, but introduce the difficult problem of controlling all processors access to all disks.

This can be especially difficult when the system comprises of a large number of processors

and disks. The system should have some means to make sure that all nodes in the system,

have a consistent view of data as it changes.

In addition, shared disks present the most challenging task of transaction management,

as there arises a need to co-ordinate global locking activities (without the help of shared-

memory) and to synchronize log writing among all processors. Shared-disk usually is

available for applications and services requiring only modest shared access to data as well
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as applications or workloads that are very difficult to partition. The shared-disk has the

advantages of quick adaptability to changing workloads, high availability and reduced data

partitioning.

1.2.1.3 Shared Nothing

With the shared-nothing architecture, each processor has its own memory as well as

one or more local disks. And, each node in the cluster has its own independent subset of

data it can work on independently without encountering resource contention from other

nodes. Except for the communication network, no other resources are shared among these

processors. Shared-nothing does not have the memory access bottleneck problem, nor does

it have the problem of interconnecting a large number of processors and disks. So shared-

nothing architecture offers excellent scalability and can be built on simpler and cheaper

hardware with ideal data partitioning. The major complexity in supporting the shared-

nothing architecture is the requirement of breaking a problem into multiple sunproblems

sent to different nodes in the system and merging the results generated by the multiple

nodes.

The second parallel programming technique, MapReduce we analyze falls under the

shared-nothing category. MapReduce is a wonderful example of specialized data store that

runs on a massive shared-nothing architecture. At the same time it keeps the computation

near the data. The shared-nothing architecture is the most cost-effective and promising

architecture for high-performance parallel programming technique.

1.2.2 Parallel Programming Techniques

The first step in developing an Parallel program [Ble96] is to identify a task that can

be partitioned and run concurrently on multiple machines. The task should be able to
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handle and manage the partitioned input data. The main things that have to be considered

when choosing a parallel programming technique for an application are the type of parallel

architecture being used and the type of processor communications used. Based all of these

considerations we have mainly chosen to analyze two of the Parallel computing systems

namely, message passing and MapReduce.

1.2.2.1 Message Passing Interface

Message Passing Interface is a specification for message passing. By itself, it is not

a library but more of a specification of what a library should be. Message passing is an

approach that makes the exchange of data cooperative among a set of interconnected com-

puters. MPI provides essential synchronization, and communication between the intercon-

nected computers. MPI remains one of the dominant models used in high-performance

parallel computing today. The main goals of message passing are practical, portable, flexi-

ble and efficient communication.

MPI [Bar] transforms itself to virtually any distributed memory parallel programming

model. MPI is commonly used to implement some shared memory models, such as Data

Parallel, on distributed memory architecture. Originally, MPI was designed for distributed

memory systems like MPP (Massively Parallel Processor). As the shared-memory systems

with the SMP/NUMA (Symmetric Multiprocessor/Non-Uniform Memory Access) archi-

tectures became popular, MPI implementations for these platforms emerged. Now-a-days

MPI is used on just about any parallel architecture not limited to massively parallel ma-

chines, SMP clusters, workstation clusters and heterogeneous networks.

One of the basic drawbacks of using the message passing technique is that all paral-

lelism is explicit. The programmer is responsible for correctly identifying parallelism and

implementing parallel algorithms using the available MPI constructs. In MPI-1 the num-
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ber of tasks dedicated to run a parallel program is static. This prevents new tasks being

dynamically spawned during run time. But this feature has been enhanced in MPI-2 which

remove the static process model of MPI-1. It provides routines to create new processes.

The details of the architecture and the working are dealt in the following chapters.

1.2.2.2 MapReduce

MapReduce [DG08, had] is a programming framework which was inspired by the con-

cept of Map and Reduce from Lisp a functional language. In Lisp, a map task takes a

function and sequence of values as input. The map function then executes the function

by taking each value in order. The reduce function then combines all the elements of

the sequence using a binary operator. MapReduce was inspired by these concepts. The

MapReduce paradigm is summarized in the following quote [DG04]:

“The MapReduce Computation takes a set of key/value input pairs, and

produces a set of key/value output pairs. The user defines two functions in

the MapReduce library for computation: map and reduce. Map, a user-

defined program takes a set of input values and produces an intermediate

key/value pair. The reduce function another user program accepts the

intermediate key and set of values for that key. It merges them to a smaller

set of values. Typically the number of output files are same as the number

of reduce workers employed and each reduce invocation produces one

such file. The intermediate values are supplied to the reduce function via

an iterator. So it makes possible to handle large lists of values which do

not fit in memory.”
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The Map and Reduce functions are typically of the format:

map (k1,v1) –> list(k2,v2)

reduce (k2, list (v2)) –> list(v2)

It was developed by Google as a mechanism for processing large amounts of raw data.

These data was from the crawled web pages or documents and web request logs. The data

was so large that it could not be done on any single machine. It must be done by distribut-

ing the data across thousands of machines to be done in a reasonable amount of time. This

distributed computation implies parallel computing, as the same computation was done on

each CPU but with a different dataset. MapReduce is an abstraction that enables the Google

engineers to perform these as simple computations, while hiding the details of paralleliza-

tion, data partitioning, data distribution, load balancing and fault tolerance. Some of the

notable advantages using MapReduce framework are automatic parallelism and distribu-

tion, fault-tolerance, I/O scheduling, and status monitoring. The most important advantage

when handling large datasets being the automatic parallelization and distribution of pro-

cessing.

1.3 Data Intensive Application

Data Intensive Computing [dic, Bry, EPF08] is acquiring, analyzing, and processing

volumes of data. The ever advancing technology provides the ability to handle these

large data sets with economical storage, and faster bandwidth. These data sets evolve

from a variety of applications ranging from scientific research(e.g., bioinformatics, climate

change), transactional data (e.g., payroll, accounting) and environment(e.g., ozone layer,

water acoustics). The challenge of these large amount of data is to extract valuable infor-

mation in real-time.This problem could be split up as
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(1) accommodate ever-increasing data

(2) process and obtain valuable information

(3) convert information into human readable data

Data intensive computing requires a well structured set of principles. Many data-intensive

applications can be parallelized to achieve the required output specification. The data-

intensive applications demand reliability, high fault tolerance, real-time response and avail-

ability.

In this thesis, we mainly concentrate on two data intensive applications - the simple

Word Count application and the much more complicated BLAT application. Word Count

is derived from a MapReduce application and has been ported to MPI and BLAT was an

initial MPI application that has been ported to MapReduce. We would then employ the

parallel programming techniques, message passing and MapReduce tailored for these two

data intensive applications. The results from these experiments would be presented and

analyzed in the chapter 4. The following section briefs the data intensive applications.

1.3.1 Word Count

WordCount is an application that counts how often a word occurs, the total number

of words, lines and characters in a text file. Knowing the numbers of words is sometime

important, for instance when we are required to stay certain minimum or maximum bounds.

These applications may include a submission of conference or journal paper, a thesis report

or a story to be published. Currently there is a rapidly growing trend among businesses

to analyze their increasing volumes of URL access log files and analyze web server logs

to find popular URLs. This could enable them to acquire valuable information regarding
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the sources that have been using their website for various purposes. In the case of both the

message passing and MapReduce we look at the input is text files and the output as text

files, and the in the output, each line of which contains a word and the count of how often

it occurred, separated by a tab.

1.3.2 BLAT

The second data intensive application to be considered is BLAT (BLAST Like Align-

ment Tool) [Ken, Ken02]. BLAT is one of the most widely used bioinformatics tool. This is

commonly used to look up the location of a sequence in the genome or determine the exon

structure of an mRNA and also performs a rapid mRNA/DNA and cross-species protein

alignments. BLAT is an alignment tool like BLAST, but it has a different structure.When

the BLAT was used in real world, due to sequence divergence rates over evolutionary time

– the BLAT designed for DNA works well within humans and primates, while BLAT de-

signed for the protein sequences continues to find good matches within terrestrial verte-

brates and even earlier organisms for conserved proteins. Among the human genomic

sequences, protein BLAT gives a much better picture of gene families than DNA BLAT.

BLAT is very accurate and performs mRNA/DNA alignments 500 times faster than

existing alignment tools. It also does protein alignments 50 times faster. On DNA, BLAT

works by keeping only an index of an entire genome in memory rather than the genome

itself. These indexes takes less than a gigabyte of memory, thus enabling BLAT to provide

higher performance on a reasonably prices Linux machine. Thus, the target database of

BLAT on which the query is executed is not a set of GenBank sequences, but instead an

index derived from the assembly of the entire genome. So the obtained index – which uses

less than a gigabyte of RAM – consists of all non-overlapping 11-mers except for those

heavily involved in repeats. Thus the smaller size of index means that BLAT is far more
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easily mirrored. BLAT for the execution on a DNA sequence is designed to quickly find

sequences of 95% and greater similarity of length 40 bases or more. This BLAT of DNA

may miss more divergent or short sequence alignments. BLAT designed for execution on

protein sequences finds sequences of 80% and greater similarity of length 20 amino acids

or more.

BLAT can be used by experts to run large batch jobs and make internal parameter sen-

sitivity changes by installing command line BLAT. The indexing of the genomic sequence

provides a good advantage over the other genome matching tools.The index of the genome

is used to find areas of probable homology, which can then loaded into memory for a de-

tailed alignment. Protein BLAT is also designed to work in a similar manner, except with

4-mers rather than 11-mers. The protein index of a genomic sequence takes a little more

than 2 gigabytes.

On a practical approach, BLAT has several advantages over Blast:

• Faster execution and reduced time

• Ability to handle simultaneous queries in FASTA format

• Resulting output has five convenient options and very flexible

• Block alignment is detailed in natural genomic order.

The input file format for the BLAT application is the FASTA format. In bioinformatics,

the FASTA format is a text-based format for representing either nucleic acid sequences or

peptide sequences, in which base pairs or amino acids are represented using single-letter

codes. The format also allows for sequence names and comments to precede the sequences.

The simplicity of FASTA format makes it easy to manipulate and parse sequences using

text-processing tools.
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The genomic sequence is the database file on which a matching alignment called the

query is performed. The BLAT application deals with these database file and the query file.

The BLAT first reads the database file and creates an index of the genome. The index is in

the memory. The query file contains the sequence that has to be matched or aligned to the

genome. Then the BLAT performs the matching of the query to the created genomic index.

Both the database and query input files are FASTA format. The resulting output of BLAT is

flexible. By default the output is a simple tab-delimited file which describes the alignment.

The output only specifies the alignment position but does not include the sequence of the

alignment itself. Building an index of the genome typically using the BLAT takes 10 to 15

minutes.

When BLAT is run on a genome set, it is analogous to a database being queried. The

working of the BLAT application is similar to the grep application which does the query

matching on the available database. The resulting output would be the sequences names,

matched sequence position, and matching length from the database FASTA file.

1.3.3 Other Examples

As parallel computing become larger and faster, it becomes feasible to solve problems

that previously took too long to run. Parallel computing is used in a wide range of fields,

from bioinformatics (to do protein folding) to economics (to do simulation in mathematical

finance). Some common examples that can be considered applicable to the distributed par-

allel programming techniques are Count of URL Access Frequency, Matrix Multiplication,

Inverted Index, Distributed Sort, and Graph traversal.
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1.4 Outline

This thesis has been organized into 4 chapters. The first chapter gives the introduction

and lays the background for this work. It also briefly discusses the significance of MapRe-

duce and mpiJava. Section 1.2 elaborates the two parallel computing techniques with the

architecture overview and details the data intensive applications. Chapter 2 details the

architecture overview of the two parallel programming techniques namely, message pass-

ing and MapReduce. Chapter 2 also provides the specifications for tailoring the parallel

programming techniques for the chosen data intensive computation. Chapter 3 describes

the distributed application programming analysis and partitioning techniques for the large

data sets. Chapter 4 elaborates the performance measurements of MapReduce and Mes-

sage Passing for the chosen applications along with the timing analysis between the two

programming techniques. In the following Chapter 5 we will discuss how both MPI and

MapReduce can be mapped to an active storage system. Finally, in Chapter 6, we conclude

with our ideas for future work.



Chapter 2

Distributed Computation Programming Analysis

2.1 Introduction

The Data-Intensive Computing program aids in increasing our understanding of the ca-

pabilities and limitations of data-intensive computing. The criteria to choose among the

available data-intensive computing technique are the amount of data involved, the com-

puting capabilities and the underlying storage. The distributed parallel programming tech-

niques which we employ should have high-level parallelism, easier programming, high

reliability, higher performance, and economical.

In the following section, we describes in detail the two parallel programming techniques

we have selected to analyze for the chosen data-intensive applications. We would go in

depth about the architecture and working principles.

2.2 Message Passing Interface - An Overview

Message passing is the most commonly used paradigm for cluster-based parallel pro-

gramming. The Message Passing Interface (MPI) [mpi95, mpi97] is the standard used

to code parallel computing applications based on this paradigm. Derived datatypes, dy-

namic process management, point-to-point and collective communication are supported by
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MPI. This is provided through a shared, group-wide communicator, instead of socket pairs.

The MPI interface was developed with the intent of comprehending all of the available

message-passing constructs and features of various MPP and networked clusters so that

programs would execute on any type of system. MPI’s portability feature supports copy-

ing, compiling and execution of a program written for one architecture on another without

modification.MPI’s goals are high performance, scalability, and portability. MPI remains

the dominant model used in high-performance computing today.

Single Program Multiple data(SPMD) is one of the ways to achieve parallel computing

where a single program is split across a group of processes to execute concurrently with

localized data. MPI is designed to support SPMD model. So when developing an applica-

tion to be executed on a single MPP, then MPI has the advantage of higher communication

performance and the ever desired ease of portability. MPI has a much richer set of com-

munication functions which makes it advantageous to use on an application with special

communication mode requirements.

The architecture of the MPI [MSW+05] is shown in figure 2.1. This shows two com-

ponents of the MPI architecture: message passing and process management. The upper

layers of message-passing are implemented using MPI code. MPI provides the implemen-

tation of point-to-point messages, in-built and user-defined data types, communicators and

collective operations. Its interface with lower layers are through the Abstract Device In-

terface(ADI). The ADI layer consists of a set of data structures and functions specified by

the implementation. The ADI layer mainly deals with the MPI requests (messages) and

functions to send, receive, and manipulate these requests.

MPI’s [GFB+04], [FK98] implementation language in general is different from the lan-

guage it supports at runtime. Most MPI implementations are a combination of C, C++ and

assembly language, and target C, C++, and Fortran programmers. MPI-CH and MPI-Ram
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Figure 2.1: MPI Architecture. Adapted from [MSW+05]
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are libraries that have implemented MPI functions in C and C++. However, Java programs

cannot use these libraries directly, for this reason mpiJava was designed to bridge Java

applications to the underlying MPI-CH or MPI-Ram functions. To achieve the promised

high communication performance, some of the notable forfeits were the lack of interop-

erability between two MPI implementations, and lack of ability to write a fault tolerant

application. One of the guarantee MPI specification provides is ability to quit the program

on error.The mpiJava [BCKL98], [mpia] interface is designed to provide essential virtual

topology, synchronization, and communication functionality between a set of computers in

a language-independent and language-specific way.To achieve the desired maximum per-

formance, each CPU is assigned only a single process during runtime.

The main reason for mpiJava to emerge was that, in 1990’s there has been a great

deal of interest in using Java for scientific and engineering computation, and in particular

for parallel computing [jav96], [Fox97], [Fox98]. Reason behind this was that Java, was

a simple, efficient and platform-neutral language. Java has some in-built packages for

communication, notably an easy-to-use interface to BSD sockets, and the Remote Method

Invocation (RMI) mechanism. These features interest the parallel programmers. mpiJava

was a implementation of the Java binding through a set of wrappers that use the Java native

methods interface (JNI) to call existing MPI implementations.

The existing MPI standard is explicitly object-based implementation. The C and For-

tran MPI bindings rely on “opaque objects” which can be manipulated only by acquiring

object handles from constructor functions, and passing the handles to suitable functions in

the library. But in the enhanced MPI-2 standard, the C++ binding collects these objects

into suitable class hierarchies and defines most of the library functions as class member

functions. The mpiJava [CFKL], [CGJS00] API follows this model, importing the struc-

ture of its class hierarchy directly from the C++ binding. The major classes of mpiJava are
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illustrated in Figure 2.2.

Figure 2.2: Principal Classes of mpiJava. Adapted from [BCKL98]

The basic class “MPI” has only static members. This module contains the global ser-

vices, such as initialization of MPI, and many global constants, including the default com-

municator COMM WORLD. The most important class in the mpiJava package is the com-

municator class “Comm”. The basic communication functions in mpiJava fall under the

members of Comm or its subclasses. As always in MPI, a communicator stands for a “col-

lective object” logically shared by a group of processors. The processes manages, typically

by addressing messages to their peers through the common communicator. The standard

send and receive operation of MPI fall under the “Comm” class with interfaces as shown

below:

public void Send(Object buf, int offset, int count, Datatype datatype, int dest, int tag)

public Status Recv( Object buf, int offset, int count, Datatype datatype, int source, int tag)

In both send and receive, the actual argument corresponding to “buf” must be a Java
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array. In all mpiJava calls [CGJ+98], [CFZL97], the buffer array argument is followed

by an “offset” that specifies the element in the array where the message actually starts.

Another class which deals with the the type of the elements in the message buffers passed

to send, receive, and all other communication functions, is the “Datatype” class. Some of

the basic datatypes are predefined in the package. These mainly correspond to the primitive

types of Java, shown in Table 2.2.

MPI Datatype Java Datatype
MPI.BYTE byte
MPI.CHAR char
MPI.SHORT short
MPI.BOOLEAN boolean
MPI.INT int
MPI.LONG long
MPI.FLOAT float
MPI.DOUBLE double
MPI.PACKED

Table 2.1: Basic datatypes of mpiJava

The mpiJava provides all the derived datatype constructors of standard MPI, with only

one limitation: it places significant restrictions on its binding of “MPI TYPE STRUCT”.

Similarly, MPI destructors can be absorbed into Java object destructors, which are called

automatically by the Java garbage collector. Also, the explicit calls to the MPI destructor

functions are typically omitted from the Java user interface (they are absorbed into final-

ize methods). There are some exceptions made for the “Comm” and “Request” classes.

“MPI COMM FREE” is a collective operation, and the user must ensure that calls are

made at consistent times by all processors involved–the call can’t be left to the garbage

collector. Similar is the case for “MPI REQUEST FREE”.

However, even mpiJava has not been able to handle and recover faults automatically.
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mpiJava has static nature, wherein, the processes are created during the initialization and as-

signed process numbers,every process keeps details of every other processes, new processes

cannot be generated during runtime. This static nature of mpiJava favors in achieving the

higher performance. The main features include the checkpointing done at frequent inter-

vals and restarting a compute node on failure.This can be quite inefficient when involving

a larger system.When the mpiJava tasks reside on the same data node, the communication

can be over the switch network or through shared memory concept. But when there are

large amounts of data that has to be communicated over the network it results in a signifi-

cant amount of I/O traffic sometimes leading to Network Contention.

2.3 MapReduce - An Architecture Overview

MapReduce [DG08, had] is a programming paradigm and framework developed by

Google for simplified, parallel data processing on clusters built of commodity hardware.As

its name implies, it was inspired by the Lisp (list-processing) functions map and reduce,

also known as accumulate. However, the MapReduce model behaves slightly differently

as all of the input, output, and intermediate data are expressed as key/value pairs. The

MapReduce [DG04] infrastructure is designed to handle the partitioning of data and distri-

bution of input key/value pair data across the cluster. The Model also employs a namenode

and jobtracker to distribute and execute the task across all of the available nodes on the

cluster.Each of the mapper function is assigned a input split it operates on and produces the

intermediate key/value pairs. The combiner does the process of shuffling and sorting all the

intermediate results. Finally these sorted keys are assigned to the reducer, which produces

the output key/value pairs. In some cases, the merge-sort [Knu79] [vN63] function may

be performed multiple times to get a single output file.

The advantage of MapReduce is the ability to distribute and process map and reduce
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Figure 2.3: MapReduce Execution Overview
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operations. The only concern is that the MapReduce job should have the capability of

splitting the job and be executing them in parallel. There might be some limitation to the

map job arising due to data availability and location of CPU’s near the data. Similarly,

the reduce job works on the results from the mapper stored in intermediate local disks.

For reduce, we need to ensure that records with the same intermediate key end up at the

same worker . This technique works well with large data sets. In addition to parallelism it

also provides a fairly good failure recovery. Due to the replication of available data, even

if a worker node fails, the job could be rescheduled to another node where the replicated

data resides. In MapReduce [ZKJ+08, RRP+07] model, each of the node has local hard

drives where the intermediate files are stored. These files can be remotely read by the

reducers. Thus MapReduce is a shared-nothing architecture. But all the MapReduce jobs

read from and write data to HDFS [hdf] which is shared by all the nodes. HDFS takes care

of the replication placing them on compute nodes around the cluster based on the specified

replication factor. Due to this shared-nothing architecture scalability can be easily achieved,

and the integrated HDFS makes thousands of disks appear like one.

Execution Overview

MapReduce execution begins when a map method has been initiated. The Map invo-

cations are distributed across multiple nodes by automatically partitioning the input data

set into a set of M splits. Each of the input split can be processed in parallel on multiple

machines. The Reduce invocations are distributed by partitioning the intermediate key/-

value pairs using a partitioning function. The number of partitions(R) and the partitioning

function for the reduce phase are specified by the user. The MapReduce job for a specific

application has all of the functions to deal with input data such as input reading, record

reader and input splitting. It also has the modified Map, Combine and Reduce phase tai-

lored to match the application. Finally it provides the specifications for the output writer.
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Figure 2.3 illustrates the overall MapReduce Execution Overview. When an user applica-

tion calls the MapReduce function, the following are the sequence of execution:

• The MapReduce library in the user job for the application first splits the input files

into “M” pieces typically of the size 16 MB(megabytes) to 64 MB per input split.

• The input data split are the replicated on the available nodes depending on the

replication factor specified by the user.

• It then starts up many copies of the application program on the cluster of machines.

• One such copy is the most important called the JobTracker or the Master. All of

the other copies are the workers which are assigned work by the Master. There are

“M” map tasks and “R” reduce tasks to be assigned to the workers. The master

assigns each of idle workers a map task or a reduce task.

• Each of the worker assigned to a map task has an assigned input split. It reads

the content of the input split, converts the input data into key/value pairs. These

key/value pairs are then passed to the user-defined Map function. The output of

the Map function are intermediate key/value pairs “I”. These intermediate pairs are

buffered in memory and passed on to the next phase in the MapReduce execution.

• Periodically, the buffered intermediate key/value pairs are shuffled and sorted so

that all occurrences of the same key are grouped together. This is done by the

combiner function. If the amount of intermediate key/value pairs is too large to fit

in memory, an external sort is used. These shuffled and sorted key/value pairs are

written to the local disks. The locations of the shuffled and sorted key/value pairs

on the local disk are sent to the JobTracker.
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• The shuffled and sorted intermediate key/value pairs from the local disk are par-

titioned into “R” regions by the partitioning function. The locations of these par-

titioned intermediate key/value pairs are passed by the JobTracker to the reduce

workers.

• When the reduce workers are notified by the JobTracker about the intermediate

key/value pair locations, it uses remote procedure calls to read the stored data

from the local disks of the map workers.

• When the data assigned to the reduce worker are completely read, it iterates over

the sorted intermediate data. And for each unique intermediate key, it passes the

key and the corresponding intermediate values to the user-defined Reduce func-

tion. The output of the Reduce function are appended to an output file for the

corresponding reduce partition.

• When all the map tasks and reduce tasks have been completed, the master returns

the the control to the main program from where the user program was called.

After the MapReduce job has been successfully completed, the output of the MapReduce

function is available in “R” output files.

The master periodically pings every worker to detect any node failure. When there is

no response from a worker for a certain amount of time, the master considers the worker

to have failed. If the failed worker has completed a map task, the task is reset back to the

initial state, and the map task can now be assigned to any other idle worker. Similarly, any

map task or reduce task in progress has to be reset to initial state and the task becomes

eligible for rescheduling. Completed map tasks have to be re-scheduled and re-executed

on a node failure because the output of the map task will be stored in the local disk. So

when a node fails, the output becomes inaccessible. But this is not the case for the Reduce
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task completed on a failed node, since the output of the reduce task are always stored on a

global file system.

Data Flow

The major blocks involved in the working of MapReduce task is detailed below:

2.3.1 Input Reader

The Map/Reduce framework relies on the InputFormat of the job to validate them, split

the input file(s) into logical InputSplit instances of size 16MB to 64MB, each of which

is then assigned to an individual Mapper, and provide RecordReader to collect the input

record from logical split and present a record-oriented view to be processed by the Map-

per.Typically the input reader reads data from HDFS and generates key/value pairs.

2.3.2 Mapper

Map function, specified by the user program, takes an input split and produces a set of

intermediate key/value pairs. The intermediate key/value pairs are stored on the local disks

which are remotely read by the Reducer function. The input and output types of the Map

function are often different.

2.3.3 Combiner

The Combiner function, specified by the user program, remotely reads the intermediate

key/value pairs processed by different Map jobs located on the local disks. It then shuffles

and sorts the key/value pairs based on the intermediate key.
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2.3.4 Partitioner

The Partition function takes the sorted output of all of the maps from the combiner

and allocates to particular reducer. The partition function takes the key and the number of

reduces as arguments and returns the index of the desired reduce. MapReduce computing

system uses a default partition function hash(key) mod R. Typically it is done by hashing

the key and modulo the number of reduces.

2.3.5 Reducer

The Reduce function, also specified by the user program, accepts an intermediate key

and a set of values for that key from the combiner function. It then merges the set of

values in to a smaller set of values. A reducer always receives key/value pairs as input and

produces key/value pairs as output. For reduce worker, we need to ensure that records with

the same intermediate key end up at the same worker. For large datasets, the reducer may

perform the reduce action in multiple steps.

2.3.6 Output Writer

The Output Writer writes the output of the reduce to stable storage, usually the Hadoop

distributed file system.

2.3.7 GFS

The Google File System (GFS) [hdf, GGL03] is a distributed file system designed to run

on commodity hardware. Figure 2.4 depicts the architecture. There are many similarities

with the existing distributes file system whereas the notable differences include high fault

tolerance and ability to be built from commodity hardware. GFS is designed to support

large datasets, provide high data bandwidth and scale to thousands to nodes.
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Figure 2.4: GFS Architecture. Adapted from [hdf]
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GFS applications are designed to fall under the model of write-once-read-many. So a

files that are written once and are accessed multiple times result in high throughput data

access. So the parallel computing on large data sets could be one among them. Also when

the computation is carried out near data the network congestion could be reduced resulting

in increased throughput of the system. GFS provides interface to move application close

to data. GFS is designed to be portable on different platforms. GFS has the master/slave

architecture. The GFS has a single master, NameNode which keeps track of all the slaves,

and manages the namespace. There are many slaves, the DataNode which carry out the

process instructed by the master node. The input file(s) is usually split across the available

datanodes. The mapping of the blocks on the DataNodes is taken care of by the NameNode.

NameNode creates, deletes and renames the file blocks on the DataNode. DataNode also

performs these operations when instructed by the NameNode.

2.4 Parallel Programming for Data Intensive Computation

In this section we would discuss in detail the specifications for the applications to be

run on the parallel programming techniques.

2.4.1 Word Count Specification

We make use of the open source MapReduce WordCount [DG04, wor] example for our

implementation and analysis. This application speedily does the counting of word frequen-

cies in a collection of documents. In general, the input and output types of a Map/Reduce

job is specified as follows:

(input) < k1, v1 > − > map − > < k2, v2 > − > combine − > < k2, v2 > − > reduce

− > < k3, v3 > (output)
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We had to port the MapReduce implementation of WordCount application on to the

mpiJava implementation. This included the implementing of the basic working principle,

establish the required communication, distribute and coordinate the data among the various

computing nodes. The pseudo-code of the implementation is as follows:

c l a s s WordCount {

main ( S t r i n g [ ] a r g s ) t h r ow s MPIExcept ion {

MPI . I n i t ( a r g s ) ;

i f ( MPI .COMM WORLD. Rank ( ) ! = 0 ){

MPI .COMM WORLD. Send ( f i l e c o n t e n t , 0 , f i l e c o n t e n t . l e n g t h ,

MPI .CHAR, d e s t , t a g ) ;

}

e l s e {

S t a t u s s = MPI .COMM WORLD. Recv ( f i l e c o n t e n t , 0 ,

f i l e c o n t e n t . l e n g t h , MPI .CHAR,

Source . rank , t a g ) ;

}

MPI . F i n a l i z e ( ) ;

}

These are the basic and important communication that has to be executed on mpiJava for

any type of application. We could then extend this to suit our needs by adding the specific

commands to compute and execute the requirements for the corresponding application.

2.4.2 BLAT Specification

We make use of the open source BLAT MPI implementation for message passing tech-

nique.But had to perform a modification of transferring it from the original C language
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implementation to mpiJava implementation. We then developed the MapReduce imple-

mentation of the BLAT application by including the following functions to the existing

MapReduce framework. The main blocks that has to be added comprise of the Input reader,

Map, Reduce and Output Writer. The pseudo-codes below depict the requirements for im-

plementing the BLAT on MapReduce.

Input Reader: The user-defined code for the input formatting, reading and convert-

ing to key/value pairs follow this framework:

r e a d ( d i r ){

f o r each f i l e i n d i r {

emi t ( f i l e , c o n t e n t )

}

}

Map: The user-defined code for performing the mapping operation, namely the match-

ing of database file to the contents of the query file and would result in a key/value pairs

which are passed to the reduce function should follow this framework:

map ( S t r i n g key , S t r i n g v a l u e ){

query d a t a : r e a d from a f i l e

/ / key : d a t a b a s e f i l e

/ / v a l u e : p o s i t i o n o f que ry match ing i n t h e d a t a b a s e

E m i t I n t e r m e d i a t e ( query , p o s i t i o n ) ;

/ / The key i s i g n o r e d .

}

Reduce: The user-defined code would perform the process of combining the values

for a particular key from the results obtained from the preceding Map function and it should
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follow this framework:

r e d u c e ( S t r i n g key , I t e r a t o r v a l u e s ){

/ / key : que ry

/ / v a l u e s : a l i s t o f ma tch ing p o s i t i o n s

i n t r e s u l t = 0 ;

f o r each v i n v a l u e s :

r e s u l t += P a r s e I n t ( v ) ;

Emit ( v a l u e s ) ;

}

Output Writer: This is the function which does the operation of putting together

the results of the reduce function and publish the result to the global file system. The

user-defined code for the Output Writer should follow this framework:

w r i t e ( v a l u e s , d i r ){

/ / v a l u e s : a l i s t o f ma tch ing p o s i t i o n s

f i l e = d i r . c r e a t e ( ” r e s u l t ” )

f o r each query , v a l u e i n r e s u l t {

f i l e . w r i t e ( que ry + ”=” + v a l u e )

}

}

These were some of the additions and modifications that has to be incorporated to the

existing MapReduce framework. This modifications would result in a parallel program-

ming computing system which suited our applications needs.
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2.5 Summary

In this chapter, we introduced the two parallel programming techniques, mpiJava and

MapReduce. We discussed in detail the architecture and working of the techniques. With

the architecture and the handling capabilities of the computing system, we obtain the matu-

rity in choosing the application to match these parallel computing techniques. The changes

pertaining to the parallel programming techniques to best suit our data intensive applica-

tions were dealt with in detail. Apart from this we learnt how we could benefit from our

parallel computing by making use of these changes to fit the two applications. In the fol-

lowing chapters we would delve into the programming benefits and drawbacks faced as a

result of the proposed modifications.



Chapter 3

Comparison of Message Passing and MapReduce

programming

3.1 Introduction

With data-intensive computing being the daunting challenge in the handling large amount

of data to extract valuable information in real-time, parallel computing is the only possible

solution. The growth of data is exponential. So we should have appropriate computing

technique to acquire the best result. There has been numerous studies involving the parallel

programming technique to reduce the total computing time.

Several strategies have to be taken into account before choosing the parallel program-

ming technique. We have chosen to analyze the mpiJava and MapReduce programming

techniques. In the previous chapter, we have detailed their architecture and the benefits of

using each of the technique. We have also formulated a specification and algorithm required

to be implemented using these two techniques to handle our data intensive application.

This chapter analyzes the data intensive applications which we implemented using

Hadoop-MapReduce and mpiJava. It also describes the challenges we faced in implement-

ing them.
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3.2 Characteristics

The first step in developing parallel programming system is to first understand the prob-

lem that we wish to solve in parallel. Very often, manually developing parallel codes are

time consuming, complex, error-prone and iterative process. Whereas, in the fully auto-

matic parallelizing, the compiler analyzes the source code and identifies opportunities for

parallelism determines if parallelism would actually improve performance. Loops are the

most frequent target for automatic parallelization. In this section we would brief, the im-

portant characteristics of a distributed parallel computing system.

3.2.1 Communication

The tasks assigned for a partition are intended to execute concurrently but cannot, in

general, execute independently. The parallel computation to be performed in one task will

typically require some data associated with another task. Such associated data must then

be transferred between tasks so as to allow computation to proceed. This information flow

in the parallel computing technique design is specified in the communication phase of a

design. In the message passing, communication is important for the sending of messages to

recipients. Some forms of messages include function invocation, signals, and data packets.

The MPI relies on fine-grained communication and are explicit and generally quite visible

and under the control of the programmer. Factors to be considered when designing the

program’s inter-task communications are cost of communications, latency vs. bandwidth,

visibility of communications, synchronous vs. asynchronous communications, efficiency

of communications, overhead and complexity. In the case of MapReduce, communication

is required only between the master and the worker, there is no inter-worker communication

and thus, coarse-grained. The run-time system takes care of managing the required inter-
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machine communication.

3.2.2 Partitioning

The partitioning of data and tasks in developing a design is intended to expose and

extend the opportunities for parallel execution. Hence, the focus when employing a parti-

tioning techniques is on carefully defining a large number of small tasks in order to yield

what is termed a fine-grained decomposition of a large problem. Message passing doesn’t

have an automatic partitioning technique. Starting from the assignment of number of pro-

cess required, ways to partitioning the data, allotment of the partitioned data and task to

a particular process is all done by the developer. This may be an advantage when speak-

ing about the control over the program but a major disadvantage when looking at in terms

of the workload on the developer. On the other hand, MapReduce automatically paral-

lelizes the computation across large-scale clusters of machines. The run-time system takes

care of the details of partitioning the input dataset, and scheduling the program’s execution

across a set of machines. This allows programmers without any experience with parallel

and distributed computing systems to easily utilize the resources and advantages of a large

distributed system.

An important step in testing the programming is developing useful and comprehensive

test data. Traditionally, we rely on partitioning to get parallelism in I/O, and to reduce

network traffic. It can be considered a minimization of task idle time. Partitioning is a way

to divide a large data sets into separately divided chunks; the contents of each chunk being

determined by the partitioning technique. The multiple pieces of a large data sets give the

data administrator a lot of flexibility and manageability in dealing with them. This problem

can be compared to problems arising in real world work distribution processes like that of

scheduling all tasks needed to construct a large building. Proper partitioning of data will
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eventually boost performance. Load balancing is important to parallel computing systems

for performance reasons. For example, if all tasks are subject to a barrier synchronization

like in the case of message passing, the slowest task will determine the overall performance.

Some of the objectives that has to be taken in to consideration when partitioning data are

listed below;

• Whole task should be completed as fast as possible.

• Workers are very expensive to maintain and they should be kept busy. Depending

on the amount of workload choose the number of workers.

• Distribution of tasks has to be well planned when there is little work. And planning

plans a vital role, so can be done ahead of time.

• Work load should be fairly distributed. Each worker should carry out the same

amount of work.

• Clever processing order has to be used when there are precedence constraints.

3.2.2.1 Load Balancing

Load balancing for a parallel system is one of the most important problems which

has to be solved in order to enable the efficient use of parallel computer systems. Load

balancing partitions the data as near to equal size as possible, ensuring an even load across

your all the processors. The boundaries are identified by determining the total size of the

data and the actual number of the resulting partitions. The computational work of alloted

for each processor should be balanced, so that no processor will be waiting for others to

complete.This is the most common type of partitioning and is often useful for applications

that manage historical data, especially data warehouses. When considering array/matrix
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operations where each task performs similar work, even distribution of the data set among

the tasks is very important. For loop iterations where the work done in each iteration is

similar, we have to evenly distribute the iterations across the tasks. When considering

a heterogeneous mix of machines with varying performance characteristics, we have to be

sure to use some type of performance analysis tool to detect any load imbalances and adjust

work accordingly.

3.2.2.2 Intelligent Partitioning

Certain parallel programming tasks require load imbalances even if data is evenly dis-

tributed among tasks. Some of this types include sparse arrays, adaptive grid methods,

N-body simulations and genomic matching. When the amount of work each worker will

perform is intentionally variable, or is unable to be predicted, it may be helpful to use a

scheduler - task pool approach as in the case of MapReduce. As each worker finishes its

work, it queues to get a new piece of work. In order to employ such partitioning technique,

we have to design an algorithm which detects and handles load imbalances as they occur

dynamically within the code. For the WordCount application, Load Balancing would suite

to be best for consideration. As each of the worker would have nearly equal sized input

file to work on. But when considering the BLAT query computation, this might not be

work well. The large data set when partitioned equally may sometime result in splitting the

existing query match sequence. When this happens we might not get this existing match

in the output due to the improper partitioning employed. So for this type of critical con-

ditions we came up with a solution where we would determine the boundary of the equal

split. And from the succeeding partition replicate the beginning of the partition equal to the

query length and append to the previous partition. Thus the resulting partitions size would

be split length plus the query length.
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3.2.3 Synchronization

In computer science, synchronization refers to one of two distinct but related concepts:

namely synchronization of processes, and synchronization of data. Process synchroniza-

tion refers to the concept of multiple processes joining up or handshaking at a certain point,

so as to establish an agreement or commit to a certain sequence of action. It also refers to

the coordination of simultaneous threads or processes to complete a task in order to get cor-

rect run-time order and avoid unexpected race conditions. Some types of synchronization

include barrier, lock/semaphore, thread join, mutex and monitors. Data synchronization

is the concept of keeping multiple copies of a dataset in coherence with one another, or

to maintain data integrity view for all the processes. Some types of data synchronization

include file synchronization, cluster file systems, cache coherency, RAID, database replica-

tion, and journaling. In most cases, process synchronization primitives are commonly used

to implement data synchronization. Message passing utilizes barrier synchronization. This

implies that usually all tasks are involved, and each task performs its work until it reaches

the barrier, it then stops, or ”blocks”. When the last task reaches the barrier, all tasks are

synchronized. Then the tasks are automatically released to continue their work. In MapRe-

duce, the map task are carried out concurrently. When some of the map tasks finish, the

partitioner and combiner function shuffles and re-sorts the output of map and sends it to the

reduce function. Which then carried out its reduce task. When the last reduce task is done,

the final step is to write the final output to the global file system.

3.2.4 Fault Tolerance

Fault-tolerance is a property that enables a parallel computing system to continue op-

erating properly even in the event of the failure of (or one or more faults within) some of

its components. If at all the operating quality he system decreases, it is proportional to
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the severity of the failure, as compared to a navely-designed system in which even a small

component failure can cause total breakdown. Fault-tolerance is particularly sought-after

in applications requiring high-availability or life-critical. In case of failure, recovery from

errors in fault-tolerant systems can be either roll-forward or roll-back. When the system

detects that a failure, roll-forward recovery takes the system state at that time and corrects

it, to be able to continue with further computation. Roll-back recovery reverts the sys-

tem state back to some earlier, using checkpointing, and computations start from there. In

MapReduce on a node failure occurs, if the failed worker has completed a map task, the

task is reset back to the initial state, and the map task can now be assigned to any other idle

worker. Similarly, any map task or reduce task in progress has to be reset to initial state and

the task becomes eligible for rescheduling. But in message passing when failure occurs,

the failed node’s state is reset to that of last checkpoint. and all intervening computation

are wasted.

3.2.5 Programming Languages

A programming language is a structured mechanism for defining pieces of data and to

establish communication to the machine. We can express any type of computations that can

be performed by a machine. Programming languages can be used to convert any task to

be performed on a machine by specifying the behavior of a machine, to express algorithms

precisely, or as a mode of human communication. The message passing interface supports

C, C++, Java and Fortran making the programmers from various background utilize the

advantages of this technique. On the other hand, MapReduce supports Java, Hadoop pipes

supports C++, Hadoop Streaming supports scripting languages like python and perl.



42

3.3 Programming Styles

This section elaborates the programming styles adapted for the applications in detail.

We would brief each parallel programming technique for each of the data-intensive appli-

cation.

mpiJava implementation for WordCount: The technique adopted to implement the

mpiJava version was the similar master/slave model. Message passing is well-suited to

handling computations where a task is divided up into subtasks, with most of the processes

used to compute the subtasks and a few processes (often just one process) managing the

tasks. The manager is called the “master” and the others the “workers” or the “slaves”.

When implementing using mpiJava programming required careful tuning. There was a

considerable time that has to be spent for synchronization, data partitioning and paralleliz-

ing the code. But by considering parallel libraries in different parallel threads and avoiding

overlapping of communication and computation, we could obtain maximum performance-

oriented standard, trading off hardware latency and hardware bandwidth.

MapReduce implementation for WordCount: We make use of the open source MapRe-

duce WordCount [DG04, wor] example for our implementation and analysis. There was

not much of programming that had to be done for this application. We only had to do a few

modifications in the record reading feature of the input reader function.

mpiJava implementation for BLAT: BLAT was initially a MPI implementation in C,

and we had to port it to the mpiJava platform, and we had to spend some time parallelizing

the code, on the number of machines chosen for the experimental setup. We had to carefully

synchronize the machines and employ a partitioning technique manually to partition the

input data. We also had to deal with the distribution of the data to the worker nodes.
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MapReduce implementation for BLAT: Although MapReduce supports streaming

and pipes, currently there is no support for using applications written in C language. BLAT

is a bioinformatics genome tool written in C. So in order to use this application under

the MapReduce model, the solution we came up with this is to write a SWIG wrapper

class [Bea03], [Bea96] utilizing the Java Native Library(JNI) [Gor98] functions for the

map and reduce tasks in Java, and use these wrapper functions to execute the BLAT genome

searching. The input to the map function, database and the query files were placed in the

GFS. The map wrapper function reads the database file, and according to the specified

fileinput format creates the input split and stores them in the specified list of datanodes.

Each map task will process one of these input splits and the resulting intermediate output

will have the query matching done at the InputSplit received by the map function.

Overall, the new Mapper implementations are passed on to the new job configura-

tion(JobConf) via the JobConfigurable.configure(JobConf) method and overrides it to ini-

tialize themselves. The framework then calls map(WritableComparable, Writable, Output-

Collector, Reporter) method for each key/value pair in the InputSplit for that appliction.

Applications can then override the default Closeable.close() method to perform any re-

quired cleanup and final chores. Output key/value pairs do not need to be of the same types

as input pairs. A given input pair may map to zero or many output key/value pairs. Output

key/value pairs are collected with calls to OutputCollector.collect(WritableComparable,

Writable) and are written to the global file system.

This intermediate output is saved in the GFS. Hadoop’s runtime collects these locations

and sends them to the appropriate reduce tasks. The reduce tasks now have the partial

output. The reduce tasks performs the operation of sorting the received output and merging

them. The merged output file is then stored in GFS and the location is passed to the user

program, which then performs a similar operation to merge all of them in to a single output
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file. When programming for MapReduce the main concentration was on to getting the

core application done rather than data partitioning, memory management, communication

between jobs, synchronization parallelizing the code. All of these was taken care of by the

Hadoop framework.

3.4 Summary

In this chapter, we have presented new modifications to the existing parallel program-

ming techniques. under different workloads and different applications. The key findings

are that we have to choose parallel programming technique to suit our application require-

ments. We had also detailed about the importance of the proper partitioning technique to be

used for data partitioning. Current parallel programming applications, partition data based

on the database administrators knowledge of the data structure and is partitioned statically

by the administrator. The novelty of the intelligent partitioning technique is the use of

query length along with equal split length to create an optimal partition. The table 3.4

summarizes the basic characteristics comparison between mpiJava and MapReduce.
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Chapter 4

Quantitative Analysis

4.1 Introduction

Parallel computing techniques have been designed to handle large amounts of data to

perform data-intensive computing in order to extract valuable information in real-time.

As data growth has been exponential, the parallel computing environment has to be cho-

sen with utter care. All of this computation become possible with the parallel computing

technologies discussed in the previous chapter. Once the distributed parallel programming

technique, data-intensive application and partitioning techniques has been chosen the next

step is to evaluate the performance of the parallel computing for the specific application.

The experiments were performed with the parallel programming technique and data-

intensive applications discussed in the previous chapter. This section details the experimen-

tal results for the data intensive applications run on the two parallel programming setup.

The results have been discussed in two sections. The first section details the result from

Word Count application executed on the message passing and MapReduce framework. The

following section elaborates the execution results of BLAT application on message passing

and MapReduce framework.

The experimental setup we used to test out our application is a 16 node cluster with
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Fedora 9 Linux operating system version 2.6.25-14. Each of the node had Dual Core AMD

Opteron(tm) Processor, with a CPU speed of 1800 MHz. The Mpi version used for message

passing programs was openmpi-1.2.9. And the MapReduce programs were written in the

Yahoo’s open source version of Hadoop-0.18.3. Several experiments were conducted, with

varying number of nodes and varying data set sizes. Some of our experimental results are

tabulated and discussed in the following sections.

4.2 Timing Analysis

4.2.1 WordCount

We make use of the open source MapReduce WordCount [DG04, wor] example for

our implementation and analysis. This application speedily does the counting of word

frequencies in a collection of documents. The Word count application was ported on to

message passing interface. The first step we had to perform was to decide on how many

nodes will be executing the application. Then we had to do the distribution and managing

of the data, synchronization and proper communication by manual programming. Finally,

we incorporated the function of Word count as a class in the program. The synchronization

and proper communication between the computing nodes required careful tuning in order

to get the proper results.

For the WordCount application, we evaluate the overall performance of MapReduce

and mpiJava implementations by measuring the total execution time as the number of com-

puting nodes increases. For the WordCount application, the input file sizes were chosen to

be 90MB and 5.4GB. The result is tabulated in Table 4.2.1.

From Figure 4.1 we observe that MapReduce performs fairly well for large input data

sets, but when we evaluate the performance of MapReduce and mpiJava for the smaller data
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Figure 4.1: WordCount - Execution time vs Number of compute nodes - 90MB and 5.4GB
input file
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file we observe that there is a considerable overhead in MapReduce. Startup overhead is

caused by the propagation of program to all worker nodes. This also involves the formatting

of namespace in the NameNode, copying of the input data file to the GFS and to notify the

map nodes about the job assigned. When we analyzed how the actual time was spent during

a WordCount application run on a single compute node using MapReduce technique,it

turned out that the startup overhead took about 10 sec of the total computation time. The

actual Map job took about 49 sec and the shuffling, sorting and reducing took 2.9 sec. But

when the same job was carried out on increased compute nodes, the overhead startup time

was dominated by the reduced MapReduce computation, thus resulting in a performance

similar to that of the mpiJava. Thus the startup overhead was nearly eliminated when we

had 8 compute nodes.

4.2.2 BLAT

The second data intensive application to be considered is BLAT (BLAST Like Align-

ment Tool) [Ken, Ken02]. BLAT is one of the most widely used bioinformatics tool. This is

commonly used to look up the location of a sequence in the genome or determine the exon

structure of an mRNA and also performs a rapid mRNA/DNA and cross-species protein

alignments. The BLAT was originally an MPI implementation in C language. We had to

first port it on to mpiJava. We had used SWIG in order to get the conversion done from C

language to mpiJava. we had to spend some time parallelizing the code, on the number of

machines chosen for the experimental setup. We had to carefully synchronize the machines

and employ a partitioning technique manually to partition the input data. We also had to

deal with the distribution of the data to the worker nodes. The next step was to port the

MPI implementation to the MapReduce framework.

For this MapReduce implementation of the BLAT application we had to include the
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following functions to the existing MapReduce framework. The main blocks that has to

be added comprise of the Input reader, Map, Reduce and Output Writer.To evaluate the

MapReduce and mpiJava technique for BLAT we first measured the total execution time

it takes to process data by increasing the amount of data. The number of compute nodes

were fixed at 8.This shows that as the data grows the total execution time it takes with

MapReduce seems to be getting better than the mpiJava.Figure 4.2 depicts the result.

We performed another benchmark to see how MapReduce and mpiJava implementa-

tions scale as the number of computing nodes increases. For the BLAT application, the

input file sizes were fixed as 938 Megabytes(MB) and 1.9 Gigabytes(GB). This was run on

a cluster of 8 computing nodes, increasing in order of 1, 2, 4 and 8. The results are tabu-

lated in Table 4.2.2. As we increase the nodes the number of map tasks were also increased

so that each of the map task processes almost equal amount of data in every run.

MapReduce and mpiJava both show similar performance. The overhead induced by

the MapReduce implementations has negligible effect on the overall computation as the

amount of data accessed in each analysis is large. Figure 4.3 highlights the scalability

of the MapReduce technique. This also indicates how the speedup is achieved with the

increase in number of compute nodes.

4.3 Programming Comparison

The Message passing and MapReduce frameworks were had their own advantages and

disadvantages when used for executing an application. The Message passing required the

programmer to explicitly establish communication between the master-worker and worker-

worker. The partitioning of the data and the allocation of task to a worker has to be ex-

plicitly specified by the programmer. The synchronization task and need to tolerate failure

was a great challenge. Other than implementing the actual function, all of these had to
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Figure 4.2: BLAT - Execution time vs Volume of data on 8 compute nodes
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Figure 4.3: BLAT - Execution time vs number of compute nodes - 1.9GB and 938MB input
file
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be taken care of to establish a perfect working message passing environment for a specific

application. The advantage of using message passing is that it can be used for most of

the applications and does support numerous programming languages as described in the

previous sections.

When programming with the MapReduce framework, the communication, synchro-

nization, partitioning and fault tolerance was automatically done by the MapReduce frame-

work. So the main concentration of the programmer was to implement the actual functions

of the application. These have reduced the loads on the programmer and result in focus.

Although, they provide advantages, there happen to be drawbacks. Since the MapReduce

framework employs implicit communication, it cannot be employed to applications re-

questing inter-worker communication. It also can’t be used for applications that don’t

employ data partitioning. The following Table 4.3 gives in a glimpse the comparison of

message passing and MapReduce in terms of the total number of lines of code, the length

of common areas and percentage reduction in the code in MapReduce compared to message

passing.

No. of lines of code mpiJava MapReduce Common Code % reduction

WordCount 82 46 15 53.7%

BLAT 1870 1582 1100 37.4%

Table 4.3: Programming comparison of MapReduce and mpiJava
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4.4 Failure analysis

To evaluate the MapReduce and mpiJava performance when a node fails during the

execution of BLAT application, we first measured the total execution time it takes to process

data with the number of compute nodes fixed at 8. Then the experiment was repeated with

one of the nodes failing during runtime. In case of mpiJava, the system didn’t finish the

job. We had to wait for the failed node to resume and had to reschedule and restart the job

again. When the experiment was run on a MapReduce system, the master, when it found

a failed node, waited for one of the workers to finish and rescheduled the failed job to this

worker. The results are tabulated in Table 4.4.

4.5 Summary

The parallel programming techniques, mpiJava and MapReduce designed for the data-

intensive computations, WordCount and BLAT seemed to fair well. With the mentioned

modifications from the previous chapter, to the existing parallel programming techniques,

experiments were performed under different workloads and different conditions. The Word-

Count did fair well for larger files than for the smaller data sets with the MapReduce frame-

work. Whereas the BLAT application which was a matching algorithm seemed to perform

well with increasing data set and fixed compute nodes. The experiment conducted with a

failing node was the highlight of all this analysis. The mpiJava didn’t complete the assigned

job when a node failure occurred. But MapReduce did fair well even in the case of failing

nodes. But it did require some extra compute time in order to complete the rescheduled

job.
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Chapter 5

Active storage in Message Passing and MapReduce

5.1 Introduction

An important trend in the design of a storage subsystem is to provide an environment for

executing applications directly at disk drives. It also provides the capability of increasing

the intelligence at storage devices. Active disks happen to be the future of the disk drives.

By utilizing network-attached storage, we have an opportunity of executing many requests

directly at the storage devices without the intervention of the server. By partitioning the

processing at the storage disks, makes possible efficient scheduling and reduce the load of

interconnection network.

5.2 Active Storage with Object Based Devices

In this section we detail an object oriented framework for supporting applications that

benefit from an Active Storage system [JRC08], such as the Active Disks mentioned previ-

ously. This framework can support a variety of data-intensive applications. In the following

sections, we describe the basic working of object based devices(OSD). Some of the earlier

work on Active Disks follows from network-attached secure disks (NASD), in which com-

putational power at the storage level for parallel and network file system functions are ex-
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ploited, as well as traditional storage optimizations [GNA+97, GNA+98]. The NASD work

experimented on several types of applications that can benefit from Active Disks - includ-

ing filters, multimedia, batching, and storage management - and enumerated the challenges

to providing an execution environment on commodity disk drives [Rie99, RGF98].

5.2.1 Object-based Storage Devices

The Object-based Storage Devices (OSD) specification [ANS08] has introduced a new

set of device-type specific commands into the SCSI standards family. The specification

defines the OSD model and their required commands and command behavior.

Figure 5.1 illustrates the basic model of OSD in comparison to a traditional block-

based device model for a file system. The traditional functionality of file systems is divided

mainly to achieve increased intelligence in such storage devices. Object-based Storage de-

vices have the capability of managing their storage capacity and exposes a file-like storage

interface, “objects , to their hosts. These objects behave exactly like files.

5.2.1.1 OSD Objects

Storage objects that are used to store regular data are called user objects in the OSD

specification. There are three other kinds of objects defined within the specification, namely,

root objects, partition objects and collection objects. There is one root object for every OSD

logical unit [ANS04]. The root object forms the top most module of an OSD logical unit.

User objects are put into partitions that are represented by partition objects. The maximum

number of partitions permissible within a logical unit is given by a quota defined for the

logical unit in the root object. Every user object belongs to one and only one partition. Col-

lections are represented by collection objects. Each collection object belongs to one and

only one partition and may contain zero or more user objects belonging to the same par-
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Figure 5.1: Comparison of traditional and OSD storage models [DHH+06]
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Partition ID User Object ID Object type
0 0 root object

220 to 264 − 1 0 partition object
220 to 264 − 1 220 to 264 − 1 collection/user object

Table 5.1: Object identification numbers

tition. The unique combination of the Partition ID and the User Object ID identifies each

OSD object as illustrated in Table 5.1. The ranges not specified in the table are reserved.

5.2.1.2 Object Attributes and Attribute Pages

Object attributes are used to associate meta data with any OSD object, i.e., root, parti-

tion, collection or user. Attributes are organized in pages for identification and reference.

Attribute pages associated with an object is uniquely identified by their attribute page num-

bers ranging from 0 to 232 - 1. This page number space is divided into several segments

so that page numbers in one segment can only be associated with certain type of object.

For instance, the first segment from 0x0 to 0x2FFFFFFF can only be associated with user

objects.

Attributes within an attribute page have similar sources or uses. Each of them has an at-

tribute number between 0x0 and 0xFFFFFFFE that is unique within the attribute page. The

0xFFFFFFFF is used to represent all attributes within the page when retrieving attributes.

5.2.2 OSD commands

The OSD commands execution follows a request-response model as defined in SCSI

Architecture Model (SAM-3) [ANS04]. This model can be represented as a procedure call

as following: The OSD commands use the variable length Command Descriptor Block(CDB)

format defined in SPC-3 but have a fixed length of 200 bytes. An opcode 0x7F in CDB dif-
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ferentiates the OSD command from commands of other command sets. The service action

field in the CDB specifies one of the twentythree OSD service requests defined in the OSD

specification. Every CDB has a Partition ID and a User Object ID, to identify the requested

object in a logical unit. Any OSD command may retrieve attributes and any OSD command

may store attributes. Twenty-eight bytes in CDB are used to define the attributes to be set

and retrieved. Two other common fields in CDB are capability and security parameters.

When the execution of an OSD command results in errors, it returns a status of CHECK

CONDITION, along with sense data to report errors generated in OSD logical units. The

sense data contain information that allows initiators to identify the OSD object in which

the reported error was detected. Any error can be reported by including the appropriate

sense key and additional sense code to identify the condition. The OSD specification uses

descriptor format sense data so that several sense data descriptors can be returned together.

5.3 Basic Approach

To capitalize on the parallelism in an active storage system, we designed and developed

a Record Storage Application. The objective of this application development was to ex-

emplify a framework that supports the parallel execution of any kind of application, and to

analyze the performance gains of object oriented Active Disk computation over traditional

single server systems.

5.3.1 Design Methodology

The basic design principles of developing an application to run in an Active Disk envi-

ronment are to exploit parallelism in the data-intensive portion of the data processing, sep-

arate the code to be executed at the disks as much as possible, from the code that controls

the execution flow, so as to form self-contained and manageable units, and take advantage
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of variations in available resources during execution, by using primitives.These three prin-

ciples allow for a great deal of performance and flexibility while placing and executing the

application code. The Active Disk application code is divided such that the core piece of

code will be made to run at each of the drives, while the high-level synchronization, control,

or merging code is made to run at the host. This forms a client-server parallel programming

model as illustrated in Figure 5.2.

Figure 5.2: Basic structure of Active Disk computation via OSD

Initialization of input parameters takes place at the host and is sent across to all of the

disks. Each of the disks operates on its own local data and produces its portion of the final

result. The host collects the results from all the disks and merges them in an appropriate

manner to form the final result. One of the major objectives of this work was to be able to

facilitate the transfer of program files, related to an object type under consideration, to a

OSD target which has no prior knowledge about that object type. To perform this operation,

we chose to implement our application in Java, allowing methods pertaining to each object
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be encapsulated within its own class. For the OSD target to execute methods, this Java code

must be downloaded to the target and then executed. This class file transfer is achieved by

setting an attribute on the object where the attribute data is the JAR file associated with the

class.

The class file, associated with the object as an attribute, defines the methods for that

object. A Java server runs on each OSD target, which takes in the requests coming from

the client and first determines the type of object that the client request is meant for. Then

the corresponding objects methods are executed. In the case of a class file transfer, the Java

server first downloads the transferred class file to an appropriate location and then uses the

newly downloaded class to invoke the objects methods. The transfer of the OSD attribute

page was performed as a part of work. This determines the type of object to be executed.

5.3.2 Sample APIs Developed

Two main functionalities that have been implemented in the application are the record

sorting and matching record search functions, which are expected to benefit the most from

such active computations. We use at the client a variant of Merge Sort algorithm, which is

the most common out-of-core sorting methodology. Merge Sort is based on the assump-

tions that: 1) a small list will take fewer steps to sort than a large list , and 2) fewer steps

are required to construct a sorted list from two sorted lists than two unsorted lists. The

algorithm performs a sequence of in-memory sorts on small subsets of the data, followed

by a series of merge phases that combine the sorted subsets until the entire dataset is in

order.
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5.3.3 Implementation

This section provides an outline of the structure of the application described above, that

execute on Active Disks, including the design philosophy, the structure of the on-drive code

and the host code. Our implementation is based on the iSCSI OSD reference implementa-

tion developed by the University of Minnesota [DHH+06]. The reference implementation

is built using Linux kernel modules and user-level libraries. The kernel modules are used

to implement a primitive OSD file system and the user-level code provides the communi-

cation channel and the implementation of the OSD target semantics. Since our framework

does not require the use of the OSD file system, our implementation is entirely user based.

5.3.3.1 Client Design

The client side of our application was designed to have APIs for multiple operations on

an object , that can exploit the parallelism offered by such a framework. Continuing with

the above discussed examples of record sorting and searching, the splitting of the appli-

cation code is done as follows. Each target sorts the data set it contains for the particular

database object, in parallel, and transfers the sorted result back to the client. The client

receives the sorted data sets from each of the targets and merges them together to produce

the final sorted data set. This scheme of computation totally eliminates the need to transfer

the data to the client for the sorting phase, as it is done directly at the target. In the case of

record search, each target searches for records matching the given search criteria and sends

back just the resulting records back to the client. The client, just as in the case of sorting,

collects the partial result records from all the OSD targets and combines them together to

produce the final search result. Since filtering of the data occurs at each of the targets, the

data that gets transferred across the network is just a fraction of the initial data set, thereby

reducing network bottleneck.
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5.3.3.2 OSD Target Server Design

The target server is designed to have a dedicated process, constantly listening to re-

quests being sent from the client. In order to ensure the parallelism inherent with Active

Disk applications, the client spawns a thread for each server, while sending requests. The

individual server threads, send the requests to the client, and waits to receive the response

from their respective targets. The ActiveServer class receives the client requests and calls

the appropriate function in the RequestHandler which was downloaded from the client. The

RequestHandler class has the methods for the object as described in the previous section.

In order to extend this to support multiple object types, a separate RequestHandler class has

to be created for each object type. The appropriate RequestHandler class is then called by

the ActiveServer class depending in the object type. This extensible architecture makes it

very easy to add new objects and their functions to the framework. And as described above

, the class file transfer capability allows the newly created RequestHandler classes of the

objects to be transferred to the targets, along with the OSD commands. Thus extending the

framework is made to become a trivial task.

The protocol used here for the client server communication is iSCSI. Configuration files

have also been made use of, for specifying server parameters such as server names, port

numbers, and directory paths for the object creation and so on.

5.3.4 OSD Design Changes

The OSD implementation used had to be tailored to fit the requirements of the applica-

tion, in quite a few areas. The main idea adopted here was to relate the API of the object to

an OSD command, such that issuing the OSD command from the OSD initiator at the mas-

ter to an OSD target at the worker, would be equivalent to sending a request from the client

to a server via a TCP/IP socket connection. we could implement by adding a new OSD
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EXECUTE METHOD command for these APIs, in order to keep the method execution

code self contained.

The interface between the Java application program client and the OSD client can be im-

plemented as data pipes. The same holds for the interface between the OSD target and the

Java server program. When the application client issues a request, the “PARAEXECUTE”

module receives the request and packages it into an appropriate EXECUTE METHOD

command CDB. Application level parameters, if any, are placed as object attribute values

in the CDB, and so is the class file data. Once the CDB reaches the OSD target, it is de-

capsulated and the parameters are passed to the java server, which takes up the execution

of the requested method.

5.3.5 Results

The experimental setup we used to test out our application is a 16 node Linux cluster.

One node was set up as the client machine and up to 8 nodes were used as OSD targets.

Several test runs were conducted, with varying number of targets and varying data set sizes.

Some of our experimental results are tabulated as below.

Table 5.2 show the results for a data set of 1 million records. The total sort time is the

time required for the client to issue sort execute methods to the targets and then retrieve

the data and do a merge sort locally. The average sort time is the average time required on

each target node to do the read from disk and then sort. The results show that the targets

sort times decrease linearly. The total sort time shows improvement but is not linear with

respect to the number of target nodes. The reason for this is that the Java virtual machine

begins to run against its heap size limit and as a result the merge time takes longer than

expected.

We also measured the effect of using iSCSI as an RPC transport mechanism rather than



68

Total Avg. Target
No. of OSD Targets Sort time (ms) Sort time (ms)

1 19931 16689
2 12645 8716
4 8761 4227
8 7437 2351

Table 5.2: Results for 1M Records

a purely TCP/IP socket based implementation. We constructed a socket-based implemen-

tation that was hard coded to perform application-specific RPCs. Through experiments,

we found that the iSCSI OSD implementation is comparable in run-time to the socket-

based implementation with no more than 10% degradation in performance for the iSCSI

implementation.

5.4 Active storage in message passing and MapReduce

Active Storage moves I/O-intensive tasks from the compute nodes to the storage nodes

to profit their resources. The main benefits include local I/O operations, very low network

traffic, and better overall system performance. Active Storage enables scientific applica-

tions to exploit underutilized resources of storage nodes for computations involving data

located in secondary storage. As we have learnt in the earlier sections, the message pass-

ing and MapReduce framework fairs well for standard clusters. The message passing and

MapReduce perform a similar operation of data computation designed to be carried out

closer to data, than transferring data over the network. In this section we would see how

active storage would benefit message passing and MapReduce frameworks.

Instead of executing all application processing at the host, and forcing all the raw data

to move from the disk drives, through the storage interconnect, and to the host before pro-
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cessing, Active Disk applications execute concurrently on both the host and the disks. The

“core portion of the applications data-intensive computing is separated and executed in par-

allel across all the storage disks in the system. This has been the most promising aspect

of Active Disks, which enabled to leverage the parallelism in highly concurrent workloads

by striping across a large number of drives. This ability to perform on-drive computations

should be localized to small amounts of data, essentially performing a little processing as

data “ streams past” from the disk back to the network and the host. Some of the appli-

cations that may benefit from Active disk concepts are filtering (search, sort, matching),

storage management (backup,organization and optimization), specialized support (locks ,

transactions) and real-time (audio streaming, video server).

5.4.1 Architecture Overview

Message passing The basic structure for active storage implemantation on message

passing is shown in Figure 5.3. The Master side of the message passing should be designed

to have APIs for multiple operations on an object, that can exploit the parallelism offered

by such a framework. The MPI Send and MPI Recv command in the message passing

should be used for hand-shaking. The attributes of which method has to be executed at

the target are sent from the master. The worker on receiving the attributes and method to

be executed, perfoms the task and send the result back to the master.The Message passing

framework follows SIMD model. So it can benefit form the active storage setup. But the

major disadvantage of active storage is the absence of Inter-worker communication. As

the message passing requires frequent inter-process communication we have to implement

extra modules in order to acheive this when using active storage for message passing.

MapReduce The basic structure for active storage implemantation on message pass-

ing is shown in Figure 5.4. In MapReduce, the map task that need to be executed at the
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Figure 5.3: Active storage programming model for message passing

Figure 5.4: Active storage programming model for MapReduce
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target could be encapsulated in to an archive and transferred over to the target. Then we

could use method and attributes from the archive and execute the task alloted for the worker.

It receives the Map code from the host and does the map task with the data portion on the

local disk and then return the output back to the Master via the channel. As MapReduce

doesnt require inter-worker communication, so it can benefit greatly from active storage

concept. One of the major disadvantage when using MapReduce framework is the running

of a reduce task. This could be solved in either of the ways. We could either perform a

reduce task in two steps or a single step. For the two step case, we could assign a reduce

task at each of the worker nodes which ran a map task, which means the reduce task could

again work on local data. Then the result from each of the reduce job is transfered back

to the master node and run a overall Reduce task at the master. In the single step reduce

case, we could transfer all the result from each of the map task to the master and perform

the reduce task in one step at the master.

5.4.2 Application

The climate model prediction seems to be a good application for using active storage

on message passing and MapReduce framework. The data formats of the climate model is

in the form of striped and netCDF files formats. The striped files are broadly used in active

storage for performance. Active Storage efficiently deals with both types of files. The

storage nodes with relevant data only run processing components. Processing components

only compute on local chunk of available data. Active Storage efficiently deals with both

striped and netCDF files, eliminating > 95% of the network traffic.

The pseudocode for the execution of the netCDF format files from the climate predic-

tion application on message passing and MapReduce framework is as illustrated below:

<?xml v e r s i o n =”1.0”? >
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<r u l e >

< s t d f i l e s >

<s t d o u t >/ p a t h . out−${NODENAME}</ s t d o u t >

</ s t d f i l e s >

<match>

<p a t t e r n >/home / que ry . t x t </ p a t t e r n >

</match>

<program>

<p a t h a r c h =” any ”>/home / c l i m a t e . py </ pa th>

<arguments >/ p a t h a r g </ a rguments>

</ program>

<mapper>

<p a t h a r c h =” any ”>/home / c l i m a t e m a p p e r . py </ pa th>

<arguments >/ p a t h a r g ${CHUNKNUM} ${CHUNKSIZE}</ a rguments>

</mapper>

</ r u l e >

Key findings The Active Disks can be tailored to fit the requirements of any appli-

cation. The main idea that has to be adopted here was to port the raw data computation

on to the disks rather than doing it at the network end. For in the case of MapReduce,

When a map task is assigned to a node by the master, we could port the map function to

be executed to that assigned host. In that case the remote reading of data over the network

could be avoided. Thus the resulting network contention when employing large cluster of

nodes could be eliminated. One main place where this would not work is the reduce phase,

the reason is that the data for a reduce phase resides on multiple machines and we have to

perform a remote read in order to execute the reduce function.
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The same concept would work well when employed for message passing. But the major

disadvantage of the active storage concept being the absence of inter-node communication.

There is a lot of communication between the Master which issues the task and the Worker

which executes the command. But there is negligible communication between the workers.

This would work well for the MapReduce framework where there is no communication

within the workers. But this is not favorable for the message passing. There has to be

additional programming that has to be employed for using the active storage concept in

message passing.

Similar to the message passing and MapReduce framework, the Active Disk application

code can be divided such that the core piece of code will be made to run at each of the

drives, while the high-level synchronization, control, or merging code is made to run at the

host.

5.5 Summary

Remote execution of any application at the storage allows filter operations to be per-

formed closer to the data, allows exploitation of cycles at storage. This also supports man-

agement functions customized and updates without requiring the firmware upgrades. All

these features contribute to an improved individual application performance with an in-

creased scalable system. They also seem to match well with the MapReduce and message

passing framework defined in the previous chapters.



Chapter 6

Conclusion

In this paper, we have presented our analysis of distributed parallel programming tech-

niques MapReduce and mpiJava for data intensive computing applications. BLAT repre-

sents a data intensive computation that can be implemented in MapReduce to gain scal-

ability and efficiency. We have used our implementations to analyze up to 2GB of data.

WordCount illustrates that MapReduce can be slower due to the introduced startup over-

head for smaller datasets. However, this overhead becomes negligible as the input data size

grows. We analyzed the distributed programming techniques with 5.4GB of data.

Comparing the performance of the two data intensive applications using MapReduce

and mpiJava led to the following observations:

• Most data-intensive computation, can benefit from MapReduce technique to achieve

speedup and scalability.

• As the amount of data and computation increases the startup overhead induced by

MapReduce diminishes.

• MapReduce provides valuable fault tolerance. Even if a datanode fails due to the

replication feature, the computation could be successfully completed. But in the

mpiJava when a link is broken the whole computation will have to be rerun again.
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• MapReduce Provides Coarse-Grained Parallelism. So the I/O or network access

does not create a bottleneck.

• mpiJava is very sensitive to number of failing components thus programming re-

quires careful tuning.

Our experience shows that mpiJava could be used directly for data intensive compu-

tations. However, we strongly believe that some features such as fault tolerance, ease of

parallelization, usage of known programming languages, easier scalability, great flexibility

in placement, and scheduling exhibited by MapReduce could be effectively used by most

of data intensive computations which fall under the MapReduce model.

In this thesis, we have also analyzed how the active disks can be well incorporated into

the message passing and MapReduce framework. In addition, we have explored Active

Disks and in particular, the Object-based Storage Device (OSD) standard which provides

a major step towards enabling explicit application awareness in storage systems behind a

standard, fully interoperable interface.
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