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Abstract

Signature matching is a key problem in many network processing applications. Cur-

rent implementations of this process using software are time consuming and can not

meet gigabit bandwidth requirements. Implementing this process in hardware im-

proves the search time drastically and has several other advantages. This thesis aims

at a CAM based hardware implementation of this time consuming process for network

intrusion detection and directory lookup applications using reconfigurable hardware.

These designs are coded in VHDL targeting a Xilinx Virtex- II-P FPGA board with

embedded Power PC processor and are evaluated in terms of the speed and resource

utilization.



Chapter 1

Introduction

Many network processing applications require frequent use of string matching to

find the presence of a keyword. This signature matching process is currently imple-

mented in software. There are several software algorithms for string matching, but the

slowness of these implementations creates a bottleneck for growing gigabit network

configurations. A hardware implementation can speed up the signature matching pro-

cess considerably. This thesis gives two similar architectures for the hardware based

implementation of data matching for a network intrusion detector and for generic

lookup cache applications.

These architectures are flexible enough to handle variable sized keys as well as

provide a mechanism to do mapping in addition to string matching. The architecture

is based on temporally cascaded CAMs and is an extension of Motomura’s cellular

automata structure. As with Motomura’s design, processor element cells, external

to the CAM array, will process character match signals from the CAM and output

keyword match signals. The architecture is flexible enough to allow for ”approximate

word” matches as well. The key difference with Motomura’s design is the ability

to handle varying sized keywords without grouping and the ability to do key-to-

value mapping. This architecture is also compatible with further optimizations like

processing characters in parallel, prefix sharing, pattern partitioning etc to improve
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the performance. The compactness of each cellular automata element leads to a highly

efficient design in terms of both area and speed.

The rest of the thesis is organized as follows. The following chapter presents

background on string matching in software and hardware and a brief description of

the basics of FPGA technology. Details of the architecture and working of signa-

ture match processor for network intrusion detection and generic lookup cache are

explained in the following chapters.



Chapter 2

Related Work

2.1 String Matching

String matching is the process of finding out if a given string or pattern is present

in the data we have. String matching is a very common problem we encounter in the

computing world. We often search our computer for a specific file or we search some

text document for a specific keyword. There are different types of string matching

like exact string matching which as the name suggests looks for the presence of the

exact pattern in the search area. String matching with errors or approximate string

matching looks for a closest match for the input string in the search area.

String matching has many applications. The use of string matching in databases

and search engines is common. If we need to retrieve any data from the database,

we often will query the database using a string as the key. String matching is also

the underlying principle in the working of search engines. String matching is also

a key component in many network processing applications like network intrusion

detection and cache-lookup applications. Network intrusion detection is performed

by inspecting all the incoming data from the network. We look for a specific keyword

in form of a computer command or content in the data packet or an IP addresses.

Lookup cache applications for network processing also involve string matching. Both

string matching for network intrusion detection and generic look-up cache applications
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involves exact pattern matching.

2.1.1 String Matching Software Algorithms

There are many algorithms that deal with string matching including the Rabin

Karp algorithm [?], Knuth-Morris-Pratt [?] algorithm and the Boyer-Moore algo-

rithm [?]. Given an input string and a long data string in which we need to find

the presence of input string, the Rabin-Karp string searching algorithm uses hashing

functions to find the string match. This algorithm tries to find the match by com-

paring the hashes of the input string and substrings of the data string thus avoiding

character by character matching. The success of this algorithm however depends on

the efficient hashing function. The hashes should be efficiently calculative and eas-

ily calculative from identical strings. For example, let the input string be 135 and

let the data string be 131356. Let the hash be calculated by modulo 13. The hash

for 135 is 5, and the hashes calculated for 131, 313, 135, and 357 are 1, 1, 5, and

5 respectively. Hashes for 313, 135, and 357 can be easily calculated from hash for

131 by simple mathematical operations. The hash of the input string is compared

to the corresponding hashes of the substrings of the data string. Once there is a

match an additional character by character match reveals the exact string match. In

the pre processing stage, the hash values are calculated taking time complexity of

O(m), where m is the length of the input string. Finding the hashes of all the other

substrings of the data string of length n is a constant time operation. In the search

phase the hash value of the input string is compared to n−m substrings of the data

string. Once a match is found an additional character by character comparison is to

be done. The search phase takes worst case complexity of O(nm) time.

The Knuth-Morris-Pratt(KMP) algorithm matches the input string with data

string to be searched character by character. Once there is a mismatch the algorithm

slides the data string by the mismatch length and continues searching. For example let
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us suppose we are looking for a string ”bat” in the search space ”babat”. Initially the

algorithm checks the first character ”b” for which there is a match. Then it looks for

next character ”a” for which there is a match. Now it checks for the third character ”b”

which is a mismatch to the character ”t” in the input string. So the algorithm slides

the data string by two characters and start searching from the third character ”b”

in the data string. KMP algorithm compares input string and data string character

by character and omits some comparison when ever there is a mismatch as opposed

to the brute force string search algorithm which compares all characters in the input

and data string. In KMP the overall time to find a match is O(m+n) where m is the

length of input string or the keyword and n is the length of data string or the search

space.

Boyer-Moore is typically faster than the Knuth-Morris-Pratt method. It differs

from the latter in the way the input to the FSM is given. The algorithm scans

characters from the right to left. In case of a mismatch, the algorithm shifts the

data string to the right based on two pre-computed functions good suffix shift and

bad character shift. If there is a mismatch the data string is shifted in such a way

that the mismatched character aligns with one of the character in the input string if

present. Otherwise, the data string is shifted by the entire length of the input string

and the algorithm again starts looking for a match. The advantage of this method

is that we are eliminating the unnecessary character by character comparisons. By

starting comparison from right to left, if the right most characters give a mismatch

checking the characters to the left of mismatched character is useless, so we shift the

data string in such a way that it aligns with one of the character in the input string

if present or we shift the data string by the length of key word. Again we check the

character match for the right most character, thus eliminating unnecessary matches.

The time to do the string match varies from a best time of O(m/n) to a worst case

time of O(mn) with an average match time of O(n). Other algorithms on string
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matching represent the data string in a tree like structure and look in this tree for the

presence of input string. The search time is drastically reduced in these algorithms

but these algorithms require the preprocessing of the search space in to a tree like

structure.

2.1.2 Hardware vs. Software

Signature match processor can be implemented both as software program or hard-

ware design in FPGA. Software comes in the form of programming code that is used

to manipulate registers and gates. Hardware is a micro-controller or microprocessor

on-chip peripheral, off-chip device, or component. To look at some of the differ-

ences between hardware and software implementation of signature match processor,

Signature matching is the most computationally intensive process of the intrusion

detection process. NIDS spend more than 30 % of the computational time in this

process. Software implementation of signature matching is very slow. With larger

number of packets to be processed due to heavier network traffic, the situation is

worsened.

However, hardware implementation is much faster. To illustrate this say for ex-

ample we want to implement a simple operation C = A + B . In a software implemen-

tation, a higher language program is written to implement the above operation. This

program would then be converted into a series of micro operations to be performed

on microprocessor shown below.

Load R1, A

ADD R3, R1,B

Store R3, C

This implementation takes three cycles to complete. If we implement the same
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operation in an ASIC, a binary adder would implement A+B in a single cycle.

Software implementation of signature matching puts a lot of burden on the host

computer. The host computer can use these resources elsewhere. With hardware

implementation using FPGA, all the signature match process is done in the FPGA

and there will not be any burden on the systems hardware resources.

Software implementation has some advantages over hardware approach. In soft-

ware design it is more flexible to change the design at any stage. It is easy to modify

the code and obtain a new functionality from the code. The time compile the new de-

sign is little. It is easier to design and implement in software, there are no restrictions

in implementing the design. Any behavioral process can be implemented in software.

In a hardware design process, changing the design is not easy. The time to synthesize

the new design can vary from few hours to few days. There are also some restrictions

in the design process, not every behavioral model can be synthesized in to a physical

circuit. Implementing these models in hardware will be a challenge. Debugging a

software program is easier due to availability of lot of debugging tools and ease of

insertion of debugging statements in to the program. The overall time to design and

implement a software project is little compared to a hardware project.

2.1.3 Hardware String Matching

Hardware based string matching is preferred over a software implementation for

data-intensive applications. It is used in applications like data mining that require

full text searching. For example, the Mercury System [?] is a prototype data mining

engine that uses a shift and add [?, ?] algorithm for exact string matching extended

for handling of mismatches. Hardware based string matching is commonly used for

IP lookup in routers.

Lot of research on hardware based text search or string matching has been made

by the FPGA community particularly with respect to network intrusion detection.
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Previous approaches to string matching in FPGAs have included finite automata

methods [?, ?, ?, ?]. Finite automata methods are often used to represent regular

expression signatures into hardware implementations. In these methods the regu-

lar expressions are represented as finite automata graphs and then these graphs are

translated to FPGA circuitry. These translations are very complex, leading to large

amounts of logic circuitry consumption and more area on an FPGA. The main disad-

vantage of these type of methods are that whenever there are changes in the keyword

set, the regular expressions have to be calculated again and the FPGA has to be

reprogrammed .

The more practical approach to string matching is the use of CAMs [?, ?, ?].

Content addressable memories have long been used for fast string matching against

multiple keywords. The use of content addressable memories for text search has

centered around two strategies: cellular automata [?, ?, ?] and finite state machines [?,

?]. The cellular automata methods cascade CAMs temporally and then use pointers

to propagate matches from one CAM set to another [?]. Motomura et al. have

described a cellular automata based architecture to do dictionary search in VLSI [?].

The keywords are grouped in 4 character segments and they allow for concatenating

groups to create larger keywords. Hirata et al. have designed an FSM-based CAM

search architecture that also accommodate variable length keywords by grouping

keywords into segments. These CAM-based designs are limited to string matching

applications where the only requirement is to detect the presence of the string in

a dictionary. This is the case with network intrusion detection, where the task is

to determine if an incoming packet contains a signature from a dictionary. As such,

several FPGA based network intrusion detection systems have used variations of these

CAM-based designs [?, ?, ?, ?, ?]. However, in mapping tasks such as LDAP or DNS

querying, apart from word match a translation to an ID or data structure is required.
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2.2 FPGA (Field Programmable Gate Array)

FPGAs have emerged as an attractive means of implementing logic circuits. FP-

GAs also provide a cheap and fast way for implementing VLSI circuits over a wide

variety of applications. They also have opened up new possibilities in designing re-

configurable digital systems. Chips with more than million transistors can be realized

in a VLSI circuit using full custom approach. In a full custom design all parts of the

VLSI circuit are carefully tailored to meet a set of specific requirements. The ap-

proach however requires extensive manufacturing efforts taking several months. The

result is high cost unless manufactured in large volumes. Certain products that need

the shortest time to enter the market and are sensitive to financial considerations in

development cannot afford the full custom approach. FPGAs have emerged as the

ultimate solution to market and risk problems.

FPGAs can be used in almost all digital applications. They are used as a re-

placement for ASICS for implementing digital logic; for example, FIFO controllers,

DRAM controller and other telecommunication applications. FPGAs can also be

used as replacements to several SSI chips resulting in substantial area reduction on

circuit boards. FPGAs are ideally useful in prototyping applications. The quick and

low cost implementation of logic circuits and the reconfigurable nature of FPGAs

makes them useful in prototyping complex ASICS. A whole new class of computers

can be constructed using in-circuit reprogrammable FPGAs. The present FPGAs

with embedded processors make them possible.

FPGAs arrived as an alternative to PLDs in 1984. They consist of a two dimen-

sional array of programmable blocks called configurable logic blocks (CLB). There

are horizontal routing channels between rows of blocks and vertical routing chan-

nels between columns connecting all the CLBs. Figure ?? [?] shows the diagram of

FPGA. It shows a two dimensional array of logic blocks that are connected through

programmable interconnect. Some FPGAs can be programmed only once. These
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devices employ anti-fuse technology. Other FPGAs use flash based technologies that

allow these FPGAs to be programmed and reprogrammed. Modern FPGAs have be-

come more advanced with more features supported internally. These features include

clock management for decreasing the clock delays, embedded memory to configure the

FPGA faster using stripes of memory distributed throughout the FPGA, Embedded

processors. Most modern FPGAs have processors embedded in the chip to implement

any user code in C or C++ for software hardware co design. Other features include

high speed I/O for high speed data communication.

2.2.1 Programming Technologies

2.2.1.1 Anti-fuse Technology

The basic principle of operation of FPGAs using antifuse is that they use an

antifuse to program the connection between different CLBs and routing channels.

The material used in different FPGAs differs. Antifuse normally is in high impedance

state but when high voltage is applied, the high impedance state can be turned to a

fused state thereby establishing an electrical conductive path.

PLICE, a type of antifuse employed in some Actel FPGAs. It consists of three

layers. The bottom layer composed of positively doped Silicon (n+ diffusion), the

middle layer is a dielectric (oxygen-nitrogen-oxygen insulator) and the top layer is

poly-silicon. It is shown in Figure ?? [?]

PLICE is programmed by placing a voltage of 18V across anti-fuse terminals and

driving a current of about 5ma through the device. This generates enough heat in the

dielectric to cause a melt down and form a conductive link between the poly-silicon

and n+ diffusion as shown in the figure. Both the bottom layer and top layer of the

antifuse are connected to the metal wires so that when programmed, a conductive

link between the metal layers is established as shown in Figure ?? [?].

The PLICE antifuse is manufactured by adding three specialized masks to normal
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Figure 2.1: FPGA Block [?]

Figure 2.2: PLICE: Programmable Low Impedance Circuit Element [?]
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Figure 2.3: PLICE - Structure [?]
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CMOS process. The chips required by the antifuse element are very small compared

to other technologies. The main disadvantages of antifuse based FPGAs are that they

require modifications to the basic CMOS transistors, e.g. EP-ROM transistors.

An EP-ROM transistor consists of two gates, a regular gate or select gate and

a floating gate. The floating gate is placed between the select gate and transistors

channel. This gate is electrically not connected to any circuitry. In the normal state

no charge exists on the floating gate and transistor can be turned on as a regular

CMOS gate using the select gate. However when the transistor is programmed, a

large current flows between the source and drain trapping some charge under the

floating gate. This trapped charge has effect of turning off the transistor, thus EP-

ROM transistor functions as programmable element. EP-ROM transistor can be

reprogrammed by removing the trapped charge under the floating gate. The main

disadvantage of the antifuse technology based FPGAs are that they are not in-system

programmable. When the FPGA is configured to a design, it can not be modified

without reconfiguring the entire circuit. Antifuse based FPGAs are programmed

offline using a device programmer. Once the chip is configured it cannot be altered.

However in antifuse technology device configuration is non volatile and needs no

external memory. This results in a very small chip area when fabricated.

2.2.1.2 Static RAM Programming Technology

SRAM programming technology is popular in several FPGAs manufactured by

XILINX. These transistors are good for prototyping. Most modern FPGAs are based

on SRAM configuration cells. These FPGAs offer unlimited re-programmability. In

these FPGAs programmable connections are made using pass transistors or multi-

plexers or LUTs that are controlled by external memory in SRAM cells. This control

process is illustrated in Figure ??.

A RAM cell controls the connection between the routing wires using pass transis-
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Figure 2.4: SRAM Programming Technology [?]
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tors ??(a). A different configuration using transmission gate or multiplexer is possible

as shown in fig ??(b,c). Since, SRAM is volatile; the FPGAs have to be reconfig-

ured every time the power is turned off. Alternatively a permanent memory cell like

ROM cell can be used to configure the FPGA to store the configuration even when

the power is turned off. SRAM based FPGA consumes a lot of chip space because

the SRAM cell consists at least five transistors. The advantage of these FPGAs is

that they can be reconfigured in circuit very quickly and they use standard CMOS

transistors.

2.2.1.3 Configurable Logic Blocks

CLBs are the main function blocks of FPGA. They implement the user logic. CLB

structure varies from one FPGA to the other. But the main components of FPGA

are the LUTs (Look Up Table), multiplexers and flip-flops.

A CLB of a Xilinx Virtex 2P FPGA consists of four slices and two tri-state buffers.

Each slice contains two function generators, two storage elements, arithmetic logic

gates and multiplexers. The function generators here are four-input LUTs. A four-

input LUT has 16 bits of distributed SRAM memory cells that store all the possible

combinations of a 4-bit logic. A 16-bit shift register controls the select of SRAM

memory cell. The storage elements are either in form of edge triggered flip-flops or

level sensitive latches.

Figure ?? [?] depicts a single slice of a CLB block in a Xilinx Virtex2P XC2VP30

FPGA. There are four such slices in a single CLB and there are 80x46 CLBs dis-

tributed in an array, a total of 14720 slices in a Virtex2P FPGA.

2.2.2 FPGA Design Flow

FPGA design flow describes how user logic can be translated to FPGA circuitry.

Figure ?? depicts the basic design flow for FPGAs.
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Figure 2.5: XILINX Combinational Logic Block [?]
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Figure 2.6: FPGA Design flow
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2.2.2.1 Design Entry

The first step in the design flow is design entry. Schematic capture and HDL

based design entry are two ways in which a designer can enter his design concept.

Schematic capture gives designers much more visibility into hardware. Schematic

capture involves a graphical interface to interconnect circuit blocks. These circuit

blocks are taken from a component library provided by the vendor. The disadvantages

of schematic capture are that it is difficult to enter complex designs in schematic entry

and it is very difficult to part the design to another FPGA.

An alternative way to specify user logic is to use hardware descriptive language

(HDL) like System C, VHDL and Verilog HDL. This approach is the best choice

for designers who conceptualize their logic in a software or algorithmic model. HDL

languages give the designer freedom to design a digital system at different levels of

abstractions ranging from algorithmic level to the gate level, to the switch level.

Using t this approach designer could model digital systems whose complexity varies

from that of a simple gate to a complete digital system. In this method, the digital

system can be described hierarchically. The main disadvantage of designing using

HDL method is that the user is isolated from the actual details of the hardware. The

software implements the entire design in the FPGA.

Other options for Schematic entry include State machine entry. State machine

entry works well for simple designs like system control that can be represented in a

visual format. State machine based entry method can be realized as logic function

that steps through a series of states. The disadvantages of this method are that it is

not ideal for implementing complex designs and tool support fir state machine entry

is minimal.
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2.2.2.2 Functional Verification

Verification is an important step in the design flow of logic design using FPGAs.

Verification ensures that the design works as expected. Verification of design is done

at different levels of abstraction from the resistor transfer level (RTL) to the actual

implementation of the design in the FPGA. The main purpose of verification is to

eliminate errors in the design functionality when implemented on FPGA. Verification

in HDL based design methods are done through the use of test-benches. Test benches

give stimuli to the user design. Functional verification is done through a series of

simulations. They are

RTL Simulation After design entry, the design conceptualized through schematic

capture or HDL entry is simulated. These simulations are done at different levels.

The top most level is the register transfer level simulation. This is also called the

behavioral simulation. Register Transfer level considers the circuit as a flow of data

between different registers. It ignores the logic details between the registers. It ig-

nores all the timing details involved. This simulation results vary to a large extent

compared to the actual results

Functional Simulations functional simulations are run after the synthesis

process. Functional simulations are more accurate than RTL simulations but they

are more complex taking more time to complete the simulations. The signals modeled

in functional simulations have values of ’0’, ’1’ and ’U’ and ’X’ for logic value 0, 1,

un-initialized and unknown state. Functional simulations ignore timing details but

include unit delay, i.e. the delay is set to a fixed value.

Timing Analysis and Simulations Timing analysis analyzes the circuit in

detail calculating all the delay paths and their timing delays. Timing simulations

verify the functionality of the design with timing delays in all the data paths in the

circuit. The timing analysis can be performed after mapping and place and route

showing the design delays at these levels.
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Post map timing and route simulation takes into consideration the effect of logic

delays on the timing constrains, routing delays are not considered. Post place and

route simulations incorporate both the gate delays and also the routing delays to give

the final simulation result. Routing delays account for more than 50% of the total

delay. Post place and route simulations which are close to the circuit behavior when

implemented on an FPGA.

2.2.2.3 Physical Synthesis

Synthesis is the process of converting the design entered in the form of schematic

entry or HDL entry to Net-list. Net-list is a representation of inter-connections be-

tween various gates. Logic synthesis consists of two separate phases called logic

optimization and technology mapping. Logic optimization produces an optimized

network that is equivalent to the original Boolean network and technology mapping

transforms this optimized network in to a circuit that consists of minimum restricted

sets of FPGA blocks. The user can apply some constraints as input to the synthesis

process. Constraints include area constraints, timing constraints etc, Constraints can

be applied globally or to specific portions of design. This constraints help further in

optimizing the final net-list.

Logic Optimization

Logic optimization is the initial phase of logic synthesis. Here the original network

is restructured to reduce the cost of function calculated from the main Boolean net-

work. The purpose of logic optimization is to reduce the complexity of the network.

Optimization is achieved by removing the redundant and common sub expressions.

For example, consider a 4-input, 2-output network

F= abc+abd

G = ab+c+d
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The complexity of this network can be reduced by using new nodes e=ab and h=

c+d using this intermediate node the two outputs can be expressed as

F=eh

G=e+h

The complexity of original network can be reduced, since the optimization phase

does not consider the type of elements that will be used in final circuit, it is called

technology independent logic optimization.

Technology Mapping Technology mapping transforms the optimized Boolean

network to the final circuit. Logic optimization process creates an optimized network.

Pieces of this network can be implemented by any of the available circuit elements.

Technology mapping specifies how this optimized network can be implemented with

the circuit elements like LUTs and how these elements can be connected to get the

final net-list. This net-list is further optimized to reduce the area and delay in the cir-

cuit. Conventional mapping techniques use simple gates like NAND, NOR and other

gates used in standard cell library to implement the optimized network. The complex

logic blocks used in the FPGA present difficulties for the library based approaches.

These logic blocks implement a large number of functions. Technology mapping deals

with implementing the original network with available CLBs in the FPGA

LUT Technology Mapping

Look-up-Tables (LUTs) are the basic blocks in the FPGA. A k input LUT corre-

sponds to a digital memory which can implement any Boolean function of k variables.

The k variables select one of the 2k by 1-bit memory that stores the truth table of

the Boolean function. For technology mapping one can think of a library cell based

mapping for LUTs but the difficulty is that the LUT implement a large number of

functions. A k input LUT implement 2k functions. For values of k greater than 3,

finding a standard cell library representing a k input look-up-table becomes imprac-
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tically large. There are different LUT technology mappers like chortle− crf [?, ?, ?]

technology mappers, mis − pga [?, ?, ?, ?] mapping etc. All these programs map

Boolean network to k input LUTs while trying to minimize the total number of LUTs

or improve the timing performance. For example consider a Boolean network as shown

in the Figure ?? [?], this network is being mapped to a LUT having four inputs. Here

the nodes a to m are the inputs to the network and the node z is the output node.

The function specified by the network is

Z= (abc + def ) (g + h + i) ( jk + lm)

The original network is partitioned in to a set of trees and each tree is separately

mapped to a k input LUT. This creates the final net list which can be implemented

on the FPGA. The main challenge in mapping is to decompose the Boolean network

to appropriate trees such that the total LUT count reduces or the timing improves.

2.2.2.4 Place and Route

Place and route ensures that the logic blocks generated after technology mapping

are appropriately placed on the FPGA such that the total area occupied by the

design on the FPGA is as small as possible. Placement also has to consider the ease

of aiding subsequent routing. It is an optimization problem. Most of the algorithms

that implement placement problems are based on heuristic approach. These methods

are based on assuming an initial placement model and after some number of iterations

a better placement model is achieved. The quality metrics for placement problem are

the area and the delay. One more factor to consider while using these algorithms is

the time to complete the iteration process. The iteration time should be practical.

Place and route takes about 90 percent of the total time taken to compile the entire

design flow using the EDA tools.

Routing is the process of identifying appropriate routing segments and switches

that connect all the modules that are placed on a FPGA. Good routing is critical for
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Figure 2.7: Illustrates the implementation of the network shown in (a) using a 5-input
LUTs as shown in (b). [?]
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a good design. The routing delay accounts for 45-65 % of the total delay time in the

circuit. Software that performs automatic routing has existed for years. The main

strategy used here is to divide the routing problem in to global routing and detailed

routing problems. A global router divides the routing resource to small regions and

assigns each net in the network to a subset of these regions. The detailed routing

decides on how to connect within each of the small regions. The maze algorithm

which is based on the Dijkstra’s algorithm is used for most of the routing problems.



Chapter 3

Network Intrusion Detection.

Network intrusion detection is the process of identifying and analyzing packets

that may signify an impending threat to organizations network. The Internet has

grown enormously in recent years. The amount of data being transmitted through

the network is rising exponentially. The amount of corporate and other individual net-

works is also rising sharply. Many corporate networks have been the target by hackers.

With the number of attacks on the rising, people began to focus on network security.

Intrusion can be in various forms like unauthorized access to databases,stealing con-

fidential data and modifying confidential data. Apart from these we are all familiar

with email viruses and spywares. When the network security is compromised, the cost

to repair or recover data lost is huge. This explains the need to prevent intrusion.

Network intrusion detection systems (NIDS) are one of the primary tools available

to help in creating a secure network infrastructure. These NIDS tools are deployed in

a network in various types of configurations like passive and host based configurations.

Both of the configurations accomplish the same goals in detecting and alerting when

there is an attack. The underlying technical approach, however, is vastly different.

In a host based system, NIDS monitor a single system. This type of configuration

has limited range protecting only the host computer. Such type of configuration is

useful in gateways, switches or routers. To the contrary passive NIDS entail using
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secondary node to analyze all the packets on the network thus protecting all the

computers connected to the network. Host based configuration is more complex to

install and maintain, all the systems connected to the network should have the NIDS

tools installed and frequent updates on all the machines are required to maintain solid

defense from intrusion.

NIDS inspect all the incoming packets for any suspicious data. The suspicious

data can be in various forms like the source and destination ip address, destination

port numbers or some header data. The definitions of suspicious data are given as

rules in SNORT, Hogwash, and several other Intrusion detection softwares. SNORT

is a popular open source network intrusion detection software suit. It has several

thousand rules that describe potential network security threats. A typical SNORT

rule is shown below

Alert udp $EXTERNAL NET any − > HOME NET 31335 (msg:”DDOSTrin00

Daemon to Master message detected”; content:”l44”; reference: arachnids, 186; classtype:

attempted-dos; Sid: 231; rev: 3 ;)

This rule describes one of the threats posed by the data l44 in the incoming

packet. NIDS prevents the packets containing suspicious data passing through the

network. Inspecting all the incoming packets for spurious data is a time consuming

process. With the number of rules given in snort ranging in few thousands, network

intrusion detection demands high system performance to process the data at full

network speed. A hardware based NIDS will be an ideal resource for applications

demanding high performance. This model is a CAM (content addressable memory)

based model CAMs have long been used for fast string matching against multiple

keywords. Use of CAMs in caches and IP address look-up table in routers is well

known.

A CAM based NIDS has an architecture where a set of signatures with a fixed

key size of k bits are stored in the CAM. The datagram packets coming in from the
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network are parsed and given as input to the signature match processor As packets

arrive from the network, each k bits could be matched against the CAM to see

if there was a match. If a match is found, It indicates the presence of malicious

content in the incoming packet. We can flag the packet for further analysis. Since

the signature set is stored in a writable CAM, CAM-based NIDs systems do not

need to reprogram the FPGA every time there is a change in the rule set. However,

unlike finite automata, CAM-based designs can not easily handle regular expressions,

though the use of TCAMs (ternary CAMs), does allow limited wildcard matching.

The primary problem with such an architecture is that NIDS signatures are not of

a fixed size. For example, the Snort rule-set has rules that match on content strings

that can be anywhere from 1 to 100 characters long. One solution could be to select

the value of k to accommodate the largest possible signature, though that will lead

to unused space within the CAM. The Granidt system uses such an approach with

a 160-bit wide CAM, thereby limiting signatures to 20 characters length. Using a

fixed value of k can also cause misses in the incoming stream because of signature

overlaps. For example, consider the case where the CAM contains two signatures

FOO and BAR, and the input stream is AFOOBARCD. The CAM will be presented

with k = 3 characters at once - AFO, OBA, and RCD. Because of overlap, none of

these will cause a match, even though the input stream obviously contains the two

signatures. Recent CAM-based designs have recognized this problem and taken a

sliding window approach that use single character comparators with shift registers

to propagate matches across clock cycles. Optimizations to these approaches include

processing characters in parallel, prefix sharing, and pattern partitioning.
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3.1 Signature Match Processor Architecture for Network

Intrusion Detection

An architectural overview of the SMP is shown in Figure ??. The SMP consists of

a control unit, a CAM character match array, a Signature Match array, a Signature

match buffer and address output logic. The SMP receives packets from the network

in a stream and outputs the address of any signature that is found in the packet. A

managing network processor or CPU can use this information to raise a network alert

or attempt to terminate the offending connection.

3.2 Character Match Array

The core of the SMP is in the character match array and the signature match array.

Cam is usually used in high speed pattern matching. In a Signature match processor,

the function of the CAM array is to generate a series of character matches based on

the input characters. In the signature match processor that has been designed two

versions of cam can be used. In one version of the architecture, the character match

array was implemented as an array of CAM cells into which the desired signatures were

loaded [?]. The CAM cells we have used are slightly different from the commercially

available CAMs. Each of the CAM cell contains 9 registers which store the content

of a single character in 8 registers and one extra cell stores a word end vector which

stores the one bit flag indicating the end of a keyword. A CAM cell is shown in the

Figure ??.

The advantage of the structure was that it was easy to update signatures simply by

writing into the CAM. The disadvantage, however, was that the CAM array was very

large in area. Moreover, the use of a CAM array prohibited the use of optimizations

such as parallelism and prefix sharing. Parallelism deals with processing character

matches in parallel and prefix sharing deals with optimizing the search space by
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grouping different keywords with common prefixes and reducing the total number of

CAM cells used storing all the keywords. Because of these limitations, we decided to

abandon the use of the CAM array and instead employ discrete comparators as was

used in [?, ?]. It has a similar structure to above cam cell but the cam cell can not

be updated with new data. Sacrificing the ability to update the signatures without

reconfiguring the FPGA is not a serious loss since signatures in a NIDS context

change relatively infrequently. The character match array is comprised of a series of

comparators, each of which matches on one of the possible incoming bytes. This, of

course, implies that there are 256 comparators to match all possible 8-bit characters.

In order to improve performance, it is desirable to be able to match several characters

within one clock cycle. Therefore, we use p rows of comparators, where p denotes

the degree of parallelism. As in Figure ??, there are p match signals per comparator

column. Also, for every clock cycle, exactly p of the 256p match signals from the

character match array will be asserted.

3.3 Signature Match Array

The signature match array is the distinguishing feature of the design. The Sig-

nature Match Array processes the character matches from the CAM array to find

the signature match. The signature match array is similar in concept to systolic

processing arrays that have been proposed for approximate word search matching in

CAM-based dictionaries [?, ?]. The array is comprised of an n x 1 array of processing

elements (PE) where n is the number of characters in the signature set to be matched

against. Thus, each PE represents one of the characters in the signature set, and like-

wise, the PE is connected to the character match array column that corresponds to

its character.

Figure ?? shows how the array would be connected for the string ABB. In general,

each PE has 2p inputs and p + 1 output. P of the inputs, represented by MX[1 : p],
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Figure 3.3: Character Match Array
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Figure 3.4: Signature Match Array.
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correspond to the p match signals from the character match array. X refers to the

character for which the PE is responsible. The remaining p inputs are carry signals

that forward match information from the previous PE, and likewise, p of the outputs

are carry signals to a subsequent character in a signature. The final output is a signal

that indicates a signature match was found. The signature output match signal is

only valid on PEs that signifies the end of a signature. In addition to knowing whether

the PE is at the end of a signature, the PE also knows if it is at the beginning of a

signature. A summary of the algorithm executed by each PE is shown below for p =

4 in pseudo-VHDL.

cout1 <= MX1 and (cin4 or sig beg);

cout2 <= MX2 and (cin1 or sig beg);

cout3 <= MX3 and (cin2 or sig beg);

cout4 temp <= MX4 and (cin3 or sig beg);

sig match <= sig end and cout1 or cout2 or cout3 or cout4 temp;

if ( clk’event and clk=’1’) then

cout4 <= cout4 temp;

end if;

The first part of the pseudo-VHDL generates the carry signals to propagate to the

next PE. A carry signal indicates that there is a signature match up to that character.

The basic idea is to check each of the MX signals for a match and then see if the

previous PE also found a signature match up to the previous byte. You must also

check if the PE is at the beginning of a signature, i.e. sig beg is ’1’. If the previous

PE has forwarded a signature match or we are at the beginning of a signature, the

PE can forward the signature match to the next PE. For example, if cin1 is ’1’, it

indicates that the previous PE has determined that the signature has matched up to
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itself, and the last matched character of the signature is in byte 1. Therefore, if the

current PE sees a match on byte 2, i.e. MX2 is ’1’, then you propagate a signature

match on cout2. If the PE is at the end of a signature, sig end is ’1’ and we are

going to forward a character match, then we know that we have matched on an entire

signature. This will allow us to flag the sig match signal.

From the pseudo-VHDL it can be seen that the pth carry out is registered in each PE.

This is because the only way a match can occur on MX1 is if it is at the beginning

of the signature or the last character on the previous clock cycle matched also. The

last character on the previous clock cycle corresponds to a registered version of the

pth carry out. The implications of this are that only one register is required per char-

acter in the signature set and moreover, the number of registers does not increase as

we increase parallelism. This is a significant savings compared to other comparator

based techniques which are O(L2) relative to the length of the signature [?]. As an

example of the PE algorithm, consider the following rule from Snort.

alert udp $EXTERNAL_NET

any -> $HOME_NET 31335

(msg:"DDOS Trin00 Daemon to Master

message detected"; content:"l44";

reference:arachnids,186;

classtype:attempted-dos;

sid:231; rev:3;)

The signature match arrays are shown in Figure ?? and the PEs are configured to

detect the signatures ”l44 ”and ”adsl”. Let us assume that the degree of parallelism

k= 2, i.e. the input string ”fl44” is presented to the SMP in two clock cycles. In

the first clock cycle the data ”fl” is presented and in the next clock cycle data ”44” is

presented. In the first clock cycle, the character ”l” matches in the second row and

that sets the register in the first PE corresponding to ”l”. In the second clock cycle,

the character ”4” matches in both rows. The first ’4’ PE will have cin2 set from the
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Figure 3.5: Signature Match Processor Example.
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’l’ PE. That allows it to forward a match to the second ’4’ PE on cout1. The second

’4’ PE will see cin1 set as well as MX2 and it can then determine a signature match

because it has sig end set as well.

3.4 Address Output Logic

The signature match array outputs a word match signal that indicates the presence

of a match. There can be more than one word match and word matches can be

detected at different cycles. For the SMP to be useful in the context of NIDS, we also

need to know the signature which caused the match. It is the address output logic

that finds which signature or signatures caused a match. In order to generate these

addresses, we use the signature match signals generated by the signature match array.

As the input string propagates through the CAM array, any time there is a signature

match, there will be a signature match signal at the end position of the signature.

Since there may be multiple signature matches in a single string and the signature

match signals can appear on different clock cycles, it is necessary to latch each word

match signal in the word match buffer. The word match buffer is a regular array of

flip-flops that stores all the signature matches. The buffer maintains the position of

the signature match. When the last character of the input string has passed through,

the word match buffer will then have values set at each location corresponding to the

end of a matched signature. When the last character has been reached, the match

address output logic can begin processing the word match buffer entries. In order to

find out the signature which caused a word match, we need to get the beginning of

the signature address from end of the signature address returned by the word match

buffer.

Previous work by Bu and Chandy [?] used a start address RAM that stores the

beginning address of each signature. The address output logic simply reads the RAM

entries starting from end to beginning. For each start address matches. The buffer
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maintains the position of the signature match. When the last character of the input

string has passed through, the word match buffer will then have values set at each

location corresponding to the end of a matched signature. When the last character

has been reached, the match address output logic can begin processing the word

match buffer entries. In order to find out the signature which caused a word match,

we need to get the beginning of the signature address from end of the signature

address returned by the word match buffer. A start address RAM that stores the

beginning address of each signature can be used to get to the start address of each

signature. The address output logic simply reads the RAM entries starting from end

to beginning. For each start address A read from RAM address i, the position A-1

of the word match buffer is verified. A positive match indicates a signature match

corresponding to the start address located at the i-1 th position of the RAM. This

method takes S cycles to perform the logic, where S is the number of signatures.

Larger values of S would result in a longer time delay in performing the logic.

In this thesis, I present match address output logic (MAO logic) which has the

structure of a binary tree. The goal here is to get to the start position of signature from

the match positions stored in word match buffer. This is accomplished by propagating

the word match signal at the end position of the signature to the start position of

the signature. This gives the matched position location of the signature (MP) in the

CAM. Whenever the CAM character match array is updated these connections must

be updated as well. The MP is given as input to MAO (matched address output)

logic block which has the structure of a binary tree.

Figure ?? shows the binary tree and the logic for each of the block in the tree.

MAO logic separates multiple matches or signature and decodes the start address of

each matched signature. This logic generates a MAA (matched address available)

signal which tells the control circuitry that there are matches. Then a LP (Leftmost

Pointer) signal propagates back up the tree which is the leftmost MP signal. At each
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Figure 3.6: Match Address Output Logic.
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level of the tree, a bit of the address is generated from the LP signal at that level.

When the LP signal reaches the top of the tree, it is used to reset the register of the

MP signal that was just encoded. On the next clock cycle, the MAO can then encode

the next left-most MP entry. For M matches found for a particular input string, the

MAO logic takes M cycles to perform the logic. This is better than the S cycles taken

by the previous RAM-based implementation of the MAO logic. The MAO logic is

pipelined to increase the clock frequency.

3.5 Control Circuit

The control circuit manages the data flow through the SMP and also manages flow

control of the incoming packet. When an incoming packet is ready to be delivered, the

control circuit first resets the signature match array and also resets the word match

buffer. The control circuit then takes each byte in the incoming packet and presents

it to the character match array on every clock cycle. When the last character in the

packet has arrived, the address output logic is enabled. Because the address output

logic process is independent of the signature matching process, the control circuit can

start processing the next packet immediately.

3.6 Performance Analysis

Overall, the time to process a b byte packet is b/p+M+1 cycles where M is

the number of matches found in the packet. b/p corresponds to the time for the

packet to stream through the SMP signature matches and M + 1 is the time to

do the matched address output. Since the matched address output phase could be

completed in parallel with the signature match, we are left with a per-packet cycle

time of max(b/p,M + 1). If b/p > M + 1, which is the general case, the per-packet

cycle time is b/p, and the per-byte run-time is 1/p cycles.
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3.7 FPGA Implementation and Results

The signature match processor for network intrusion detection was designed using

the Xilinx Virtex- II Pro FPGA (XC2VP230-7). The design was written in VHDL

and Xilinxs ISE 6.3i design environment. The design was implemented on the Xilinx

XUP Virtex II Pro Development board using Xilinx’s Embedded Development Kit.

The Xilinx Virtex-II Pro FPGA contains two embedded 32-bit PowerPC 405 RISC

microprocessors and numerous soft ip cores The Xilinx XUP Virtex II Pro Devel-

opment board consists of the Virtex- II Pro FPGA with a number of peripherals

which can be used to build a complex system. The board runs with a clock signal

of 100Mhz frequency. The ISE was used for synthesis, place and route of the design

written in VHDL. Mentor Graphics ModelSim was used for functional verification of

the behavioral and place and route model of the design.

A Snort rule database consisting of small signature set with 95 rules comprising

1024 characters. Table ?? shows the resource utilization for different levels of par-

allelism. As can be seen, the circuit using binary tree structured MAO logic uses

roughly 1.5 flip-flops and 1.5 LUTs per CAM character compared to 2 flip-flops and

3 LUTs per CAM character of SMP using a start address RAM to implement the

MAO logic. The flip-flop is used to implement the PE register and the word match

buffer. The LUTs correspond roughly to the CAM, the PE logic, and the matched

address output logic. The flip-flops and LUTs can be mapped to almost 1 slice per

character for binary tree implementation of MAO logic compared to the other version

which uses roughly 2 slices per character.

Table

labeltbl:SMPcomp shows a comparison of our work with other recent related work in

FPGA implementations of signature matching. The performance metric is the ratio

between throughput and logic cells/char and is similar to that introduced in [?, ?] to

evaluate the trade offs between area and performance. This design is comparable in
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XC2VP30
Level of parallelism 1 2
Slices 423 697
Frequency(MHz) 245.1 230.6
Throughput(Gb/s) 2.0 3.7

Table 3.1: SMP Resource Utilization

performance to other work in the area, particularly other comparator based designs

[?, ?, ?]. What is particularly notable is that the number of logic cells/character is

significantly smaller than any other comparator based design. With increased paral-

lelism, the throughput should increase significantly. Larger signature sets may, how-

ever, decrease the operating frequency because of increased fanout from the character

match array.

In this chapter, an architecture for a hardware based network intrusion detec-

tion system (NIDS) using an innovative CAM-based signature match processor is

explained. Based on the current implementation of the SMP, incoming streams of

data can be processed at rates of nearly 4 Gbps. This is more than sufficient to handle

intrusion detection on current gigabit networks. Also in this chapter a unique design

of a priority address encoder is explained. This encoder will generate start addresses

for each of the multiple matches within a packet.
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Design Device Throughput (Gb/s) No. characters Logic cells/char Performance (Mb/s/cell)
Singaraju et al. Virtex 2VP30-7 3.7 1024 1.4 2711
Baker-Prasanna (8 byte) [?, ?] Virtex 2VP100-7 10.3 19584 2.0 5150
Bakaer-Prasanna (Tree) [?] Virtex 2VP100-7 2.0 19584 0.4 4848
Cho-Mangione-Smith (ROM) [?] Spartan3-2000 3.2 6805 0.9 3556
Sourdis-Pnevmatikatos [?] Virtex2-6000 9.7 18000 3.6 2694
Clark-Schimmel et al. [?] Virtex2-8000 7.0 17537 3.1 2245
Cho-Mangione-Smith (RDL) [?] Spartan3-2000 3.2 19021 1.6 2000
Hutchings et al. [?] VirtexE-2000 0.4 16028 2.5 160
Gokhale et al. [?] VirtexE-1000 2.2 640 15.2 145

Table 3.2: Comparision of NIDS FPGA Designs



Chapter 4

Generic Look-up Cache.

4.1 Introduction.

Apart from network intrusion detection, the signature match process can be used

in cache applications. Network processing often requires the ability to cache certain

frequently used values. Many network applications such as IP to Ethernet address

mappings and routing table lookups require mapping from one known value to an-

other value require the use of caches. It is common to use an Address Resolution

Protocol (ARP) cache that serves as a translation table to map layer 3 IP address

to corresponding layer 2 hardware addresses. If an entry is found in the ARP cache,

the network processor can avoid sending a ”who-is” message to determine the map-

ping. Routing tables that map IP destination addresses to network ports are another

application for caching as well.

A major function that network processors perform is packet routing. The packet

routing determines the incoming packets next hop by performing the routing table

lookup. This problem is equivalent to longest prefix matching. The routing table

consists of a set of entries, each containing a destination network address, a network

mask and an output port identifier. Given a destination IP address, routing lookup

can logically be thought of as follows. The network mask of an entry selects the most

significant bits from the destination address. If the result matches the destination
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network address of the entry, the output port identifier in the entry is a potential

lookup result. Among such matches, the entry with the longest mask is the final

lookup result.

Memory based caches or translation tables are easily implemented in software us-

ing a variety of data structures including hash tables, binary trees, tries, etc. However,

for high performance applications, such as multi-gigabit networks, it becomes more

and more difficult for general purpose processors or even specialized network proces-

sors to keep up. As a result, hardware based techniques have come into use, and for

the most part, these techniques have been based on associative or content-addressable

memories (CAM). [?, ?, ?].

The main advantage of using CAM is that the search time depends on the size of

input string rather than the routing table size as it is the case with most of the RAM

based techniques [?, ?]. CAM relies on fixed size keys. This is its main disadvantage.

When using Cams for searching, the input keys given to CAM must all be of the same

size. This limitation does not apply for search operations performed on fixed size keys.

Examples include routing table lookup and ARP caches, where IP addresses are all of

same size. However, for other applications that require pattern matching for keywords

of different sizes, fixed key size restriction on CAM can be problematic. Examples

include DNS look-up and signature matching for Intrusion detection. Tasks such as

DNS look-up and LDAP searches, or directory lookup require mapping a text string

to an ID or object data structure. Other tasks such as intrusion detection simply

require knowing whether a particular keyword is present in the search space or not.

These dictionary based tasks simply query the presence or absence of a particular

string.
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4.2 Architecture

Generic lookup cache can be taught as a coprocessor type component to a general

purpose or network processor design. The cache could be integrated into the processor

core or perhaps off-chip. A possible architecture is shown in Figure ??.

In a network processor (NP) setting, packets from the network can flow into the

NP which will do any necessary processing. In a higher level application such as

DNS queries, the network processor can query the lookup cache to do the actual

domain name resolution. If the hostname is present in the cache, the IP addressed

will be returned. The lookup cache can also sit on the memory bus to provide high

performance connectivity. As such, communications with the NP will be in memory

bus chunks. Thus, for a 32-bit bus, the IP address can easily be communicated in

one memory bus cycle. For a query where the return value is more than 32-bits as

with the results of an LDAP query, the lookup cache will return a memory pointer

to the LDAP object. An architectural overview of the lookup cache itself is shown in

Figure ??. The cache consists of a control unit, a CAM character match array and

a PE array. The control unit manages the lookup cache. The character match array

is an array of CAM cells that matches against incoming characters. The PE array

is an array of processing element cells - one for each character - and it is responsible

for performing word matches as opposed to the character matches done by the CAM
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array. The map table contains memory indexed by the PE number to retrieve values

corresponding to matched keys.

4.3 Character Match Array

The core of the lookup cache is in the character match array and PE array. The

structure of CAM is similar to the CAM discussed earlier. The CAM stores the

keywords as 8-bit characters in an 8 by n array of CAM cells where n is equal to the

number of characters in the CAM. The detail of the CAM array is shown in Figure ??.

Each column in the CAM array corresponds to a character in a keyword. Each CAM

cell consists of a storage cell along with a bit comparator. In a VLSI implementation,

the storage cell would be a traditional 6-transistor SRAM cell and the comparison

function can be implemented with an additional three transistors. In an FPGA, the

storage cell would be a register and the comparator would be an XOR gate. If there

is a match, the output match line is pulled low. The column match line is shared as

a wired-NOR line between all the cells in the column. Thus, when an input character
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is applied to a column, the column match signal is active high when all 8 bits match.

The input character is applied simultaneously to all n columns in the array. The

layout of the CAM array is straightforward with each key immediately following the

other laid out in linear fashion. There is no hierarchy or precedence implied by the

ordering of the keys. Since one of the goals of the cache is the ability to match against

variable length keywords, we need someway to separate the keywords. To do so, we

add a storage cell in each column to indicate the end of a keyword. If the column

represents a character that is the end of a keyword, the cell would contain a ’1’, if

not, a ’0’.

4.4 PE Array

The uniqueness of the lookup cache is in the processor element (PE) array where

each PE is a finite state machine that carries out the approximate match algorithm.

The PE array is similar in concept to the cellular automaton processor arrays proposed

by Motomura et al. [?, ?]. The original Motomura design processed 4 match signals

from the CAM array in a 5x3 PE array. Thus, a n-column CAM array requires a

5n/4 x 3 PE array. This approach introduces an extra column into the PE array

for every 4 CAM array columns. We have modified the design so that the entire PE

array is comprised of just n columns of processing elements (PE). This simplification

of the PE array removes the extra ”fifth” column present in the Motomura design.

To perform a search on the lookup cache, the network processor will on successive

clock cycles apply each character of the key to the CAM array. Remember, that the

character is applied to all columns of the CAM array simultaneously. If an input

character matches a column in the CAM array, the match signal is set and passed

onto the corresponding PE for that column. Each PE holds a binary value called a

flag which indicates that the input keyword matches a keyword in the CAM up to this

point. The PE flags are labeled PE(i), the incoming match signals from the CAM
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array are labeled M(i), and the keyword end signals are labeled E(i), where i is the

character or column number. At the first clock cycle of the lookup process, we reset

each PE flag in the array to 0. As each character from the input sequence is presented

to the CAM array and subsequent matches are generated, it is the PE’s responsibility

to forward its match flag on to the subsequent PEs. The basic algorithm carried out

by PE(i) to find a match is shown below in Figure ??.

The word match signal, WM , is asserted when a match is found. The procedure

entailed in the algorithm basically pushes the flag across the array from the beginning

of a keyword, and as long as the incoming characters continue to match, the flag will

move to the end of the keyword. The if statement on line 1 checks if the current

column has a character match and if the character is the first character in a keyword.

We check if the character is at the beginning of the keyword by checking if either i=0

or the previous character is the end of a keyword. The second if on line 3 statement

checks if the previous PE has the flag and we have a character match in the current

column. This basically ensures that all previous characters in the keyword have

matched. The final if statement on line 6 checks if we have reached the end of the

keyword and sets the word match signal, WM .

As an example, consider a DNS cache with the following two entries.

10.0.0.1

foo 10.0.0.9

fubar 10.0.0.3 bar

Figure ??a shows the initial contents of the character match array and the PE array.

Before starting the match process, all the PEs have been reset to zero. Note that the

second o in foo and the r in bar are marked with an asterisk to indicate that the

m + 1st bit is 1 since each is the last character in the keyword. Figure ??b shows the

arrays when when looking for a match on foo. The network processor presents the
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lookup cache with one character of the input string on every clock cycle. With an

input string of foo, on the first clock cycle, the character f is presented to the CAM.

There is a match on the character 0 and character 3 of the character match array.

Since both are the first character of a keyword (foo and fubar respectively), PE(0)

and PE(3) are set to 1. On the next clock cycle, the second character, o, causes a

a match at two locations in the character match array, columns 1 and 2. The PE

array evaluates and sets PE(1) to 1 but does not set PE(2) to 1 because the PE in

the previous column, i.e. column 1, did not have its flag set. Note that the flag in

PE(3) drops out because the incoming character did not match the u in position 4.

On the next clock cycle, character o is presented to the CAM, moving the PE match

bit along as well. At this point, the PE flag has reached the end of a keyword and

we know that a word match has been found.

Since a new input character is presented every clock cycle, the keyword match

array can evaluate an entire input string in linear time relative to the size of the

input stream. The processing time is constant relative to the number of keywords.

Thus, compared to a normal associative memory, there is no loss in performance

to add variable sized key capability. However, there is an additional cost in circuit

complexity to add PEs to maintain keyword matching state.

Overall, with the design as shown, the time to search for a m byte keyword is m

cycles. Since the communication path between the lookup cache and the processor is

most likely larger than a byte, it seems reasonable that the lookup cache should be

able to process multiple bytes per cycle rather than a single byte per cycle. In order

to do so, we must be able to match multiple bytes against the CAM in each cycle.

One approach would be to use multiple copies of the CAM array and change the PE

to look at multiple match signals at once. The disadvantage of such an approach is

that it would greatly increase the size of the CAM array.

Instead, the approach that we have taken is to use aligned keywords in the CAM.
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In other words, each keyword is aligned on a multi-byte boundary. In our current

implementation, we have decided to align keywords on 4-byte or 32-bit boundaries.

This allows the network processor to present 4 bytes at a time to the CAM array. By

forcing keywords to be word aligned, the input bytes no longer have to be applied

to all columns of the CAM array. Instead byte 0 is applied to only columns j where

j mod 4 = 0, byte 1 to columns j where j mod 4 = 1 and so on. Aligning keywords

also allows the design to reduce the number of PEs to just one every 4 columns at the

cost of slightly more complex PE functionality. The new PE algorithm is shown in

Figure ??. Line 1 generates the M4 signal which represents whether all the attached

characters created matches. Line 2 generates a E4 signal which indicates that the

keyword ends in this 4-character grouping. Line 3 is a check if all characters match

and if this PE is at the beginning of a word. Line 5 is a check if all characters

match and the previous PE indicated a match as well. Finally line 10 generates a

word match (WM) signal if the PE is at the end of a keyword. Figure ?? shows the

previous example using word-aligned keywords.

4.4.1 Value Output

The PE array outputs a word match signal that indicates that a match was found.

However, for the lookup cache to be useful, we also need the value that corresponds

to the lookup match. The PE number is used as an index into a map table memory

which stores either the 32-bit value itself or an indirect pointer to the value object.

The map table has as many entries as there are PEs or n/4. If keywords are very

long, there is the potential for holes in the map table, as shown in Figure ??.

4.4.2 Cache Entry Replacement

Replacement in a cache with variable sized keys provides challenges that do not

exist in a normal cache. If keys and values are equal sized, one can simply mark an



51

entry as invalid and then reuse that entry without loss of capacity. With variable

sized keys, however, when we mark an entry as invalid, the next key to be inserted

may or may not fit into that space, thus leading to holes in the CAM array space. In

order to avoid this problem, whenever an entry in the cache is invalidated, all entries

that are to the right of the invalidated entry are shifted an appropriate number of

elements left. For example, in the array shown in Figure ??, if the ”fubar” entry

is deleted, we simply shift the ”bar” entry and all subsequent keywords 8 elements

to the left. Shifting in a CAM array is easily accomplished by wiring connections

from each CAM cell to the CAM cell in the previous column. The shift process

can be done in a number of cycles equal to the number of shifts. Deletion time is

thus proportional to m. We have not, as yet, addressed replacement policy, i.e. the

decision as to which entries to delete. The lookup cache always maintains track of the

last valid entry in the CAM array, so that it knows where to add a new entry. If there

is not enough space to store a new entry, the cache must then invoke a replacement

policy. Though currently not implemented, the lookup cache can provide mechanisms

for simple replacement policies such as LRU by providing counters for each entry. A

LIFO or FIFO replacement policy is trivially achieved by always shifting out the

leftmost or rightmost entry respectively. More complicated replacement policies can

be handled by the network processor.

4.5 Results

The signature match processor for generic cache lookup was designed using the

Xilinx Virtex- II Pro FPGA (XC2VP230-7). The design was written in VHDL and

Xilinxs ISE 6.3i design environment. The design was implemented on the Xilinx XUP

Virtex II Pro Development board using Xilinx’s Embedded Development Kit. The

Xilinx Virtex-II Pro FPGA contains two embedded 32-bit PowerPC 405 RISC micro-

processors and numerous soft ip cores The Xilinx XUP Virtex II Pro Development
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Number of characters 256 512 1024
Slices 2403 4812 9880
Frequency (MHz) 380.1 476.9 460.2
Throughput (MB/s) 1520 1908 1841
Searches per second 254M 318M 307M

Table 4.1: FPGA Implementation Characteristics

board consists of the Virtex- II Pro FPGA with a number of peripherals which can

be used to build a complex system. The board runs with a clock signal of 100Mhz

frequency. The ISE was used for synthesis, place and route of the design written in

VHDL. Mentor Graphics ModelSim was used for functional verification of the behav-

ioral and place and route model of the design. The EDK tools were used to integrate

the hardware design with an embedded processor based system. ’C’ programming

was used to program the embedded processor. EDK tools provide a ’C’ compiler and

are used to generate the updated bitstream to directly download on to the FPGA.

A lookup cache with different sized hosts files was implemented. The FPGA

implementation characteristics are shown in Table ??. The results show that the

cache can get very high throughput using an FPGA implementation. Assuming an

average keyword size of 6 characters, the cache can perform over 300 million searches

per second.

For comparison, a simple software string search test program was implemented

using the GNU C library’s hsearch function. Random strings were inserted into a

hash, and then the hash was continuously queried for those strings. The test program

Number of characters 256 512 1024
Time per search (ns) 1128 1305 1582
Searches per second 887K 766K 632K
Throughput (MB/s) 5.32 4.60 5.06

Table 4.2: Software Implementation
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was run on a 1GHz PowerPC computer and timed for just the search process, and the

results are shown in Table ??. As would be expected, the hardware implementation

performs the search much faster - in fact nearly three orders of magnitude faster.

Moreover, note that the speed of the hardware implementation is not dependent on the

size of the cache. In a software cache, the size of the cache does impact performance

even in a presumably constant order hash-based algorithm. This is because as the

size of the cache gets larger, the hash will tend to incur more collisions leading to

non constant-time behavior. Tree based algorithms are at best log n performance, so

offer no better performance than a best-case hash implementation.

The FPGA implementation provides a proof-of-concept, but a custom VLSI im-

plementation should get significantly higher throughput because of higher operating

frequencies. More importantly, a fully custom design can provide higher densities and

thus larger cache sizes. We expect the CAM cost per keyword byte to be roughly

78 transistors, comprising of 72 transistors for 8 9-transistor CAM bit cells and 6

transistors for the end of keyword cell. Each PE consumes roughly 64 transistors

and each map table entry consumes 384 transistors. Noting that each PE and map

table entry corresponds to 4 characters, the overall cost per keyword byte is 190 tran-

sistors. Including associated control logic, a 64KB cache would probably consume

roughly 13M transistors, which is a small fraction of the transistor budget on modern

microprocessors. As a point of comparison, Intel’s upcoming Montecito CPU uses

over 85% of the available 1.7 billion transistors on its L3 cache [?].

In this chapter, a new architecture for a hardware based lookup cache using an

innovative CAM-based design is explained. The cache is unique in that it can ac-

commodate variable string based searches making it amenable to a wide variety of

applications. Applications that are heavily dependent on table lookups can benefit

greatly from the use of such a cache. This design can process incoming streams at

rates of over 10 Gb/s. This is more than sufficient to handle network applications that
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require lookup capabilities such as DNS resolution, LDAP queries, and network intru-

sion detection. Non-networking applications including database queries, dictionary

search, linking are amongst others.
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1: if (M(i) = 1 and (E(i-1)=1 or i=0)) then

2:   PE(i)=1

3: else if (PE(i-1)=1 and M(i)=1) then

4:    PE(i)=1

5:    PE(i-1)=0

6: else if PE(i)=1 and E(i)=1 then

7:    PE(i)=0

8:    WM=1

9: end if

Figure 4.4: PE Algorithm.
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Figure 4.6: Lookup Cache Example with Word Aligned Keywords.

1:  M4(i) = M(4*i) and E(4*i) or

  M(4*i) and M(4*i+1) and E(4*i+1) or

  M(4*i) and M(4*i+1) and M(4*i+2) and E(4*i+2) or

  M(4*i) and M(4*i+1) and M(4*i+2) and M(4*i+3)

2:  E4(i) = E(4*i) or E(4*i+1) or E(4*i+2) or E(4*i+3)

3:  if (M4(i) = 1 and (E4(i-1)=1 or i=0)) then

4:     PE(i)=1

5:  else if (PE(i-1)=1 and M4(i)=1) then

6:   PE(i)=1

7:  else

8:     PE(i)=0

9:  end if

10: WM = PE(i) and E4(i)

Figure 4.7: PE Algorithm with Word-Aligned Keywords.
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Chapter 5

Conclusions

In this thesis, a novel architecture for a hardware based network intrusion de-

tection system (NIDS) using an innovative CAM-based signature match processor is

introduced. Based on the current implementation of the SMP, we can process incom-

ing streams at rates of nearly 4 Gbps. This is more than sufficient to handle intrusion

detection on current gigabit networks. This thesis also presents a unique design of

a priority address encoder that will generate addresses even in cases when there are

multiple matches within a packet. The SMP design also opens opportunities in other

applications besides NIDS. Any lookup that is based on nonfixed- size keys seems

to be an ideal candidate to take advantage of these SMPs. Some examples include

directory lookup in network storage applications, DNS lookup, and LDAP process-

ing. These are all applications that require large amounts of computational power

to perform string matching lookup based operations. We are investigating the use

of SMPs in these applications as well as developing extensions of the SMPs to sup-

port wildcards and approximate word matching capabilities as well. Other research

directions include improving the power characteristics of the SMPs.

This thesis also presents a new architecture for a hardware based lookup cache us-

ing an innovative CAM-based design. The cache is unique in that it can accommodate

variable string based searches making it amenable to a wide variety of applications.
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Applications that are heavily dependent on table lookups can benefit greatly from

the use of such a cache. We envision that there are several network processing appli-

cations that could take advantage of the lookup cache, and based on the prototype

implementation of the lookup cache, we can process incoming streams at rates of over

10 Gb/s. This is more than sufficient to handle network applications that require

lookup capabilities such as DNS resolution, LDAP queries, and network intrusion

detection. Non-networking applications include database queries, dictionary search,

linking amongst others.
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