
c
�

Copyright by John Attupurathu Chandy, 1996

PARALLEL ALGORITHMS FOR STANDARD CELL PLACEMENT
USING SIMULATED ANNEALING

BY

JOHN ATTUPURATHU CHANDY

S.B., Massachusetts Institute of Technology, 1989
M.S., University of Illinois at Urbana-Champaign, 1993

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1996

Urbana, Illinois

PARALLEL ALGORITHMS FOR STANDARD CELL PLACEMENT
USING SIMULATED ANNEALING

John Attupurathu Chandy, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1996

Prithviraj Banerjee, Advisor

As modern VLSI designs have become larger and more complicated, the computational re-

quirements for design automation tools have also increased. As a result, the parallelization of

these tools is of great importance. One of the more computationally intensive parts of the en-

tire VLSI design process is the placement process. Simulated-annealing-based approaches have

been the most popular and effective methods for cell placement. In this thesis, parallelization

approaches to simulated-annealing-based standard cell placement are presented.

In this work, four parallel algorithms have been investigated, with two that provide scalable

behavior as well as acceptable quality. The first is the parallel moves approach based on work

by Kim [1, 2]. The second algorithm is a multiple Markov chains approach that gives nearly

linear speedups with very little loss of quality. This approach is suitable for small scale mul-

tiprocessors and for circuits that are small enough to fit in the memory of a single node. The

next algorithm is known as speculative computation and is not as effective. The final algorithm

addresses the memory scalability problems by partitioning the circuit across the nodes. This

circuit-partitioned approach provides speedups to larger numbers of processors with little loss of

quality. All of the algorithms have been implemented using the ProperCAD II environment [3],

and the circuit-partitioned work has also been implemented using the Message Passing Interface

(MPI) [4].

The placement algorithms discussed above dealt only with minimization of the wirelength

and indirectly area minimization. For current high density circuits, this approach is no longer

appropriate, and more performance driven techniques are needed. We have, therefore, also de-

veloped a new algorithm for sequential timing driven cell placement. Because the addition of

timing driven features to standard cell placement adds significant overhead to the computation,

time, we have also developed an algorithm for its parallelization.

iii

To my family

iv

ACKNOWLEDGMENTS

I am grateful and indebted to my advisor, Professor Prithviraj Banerjee, for his continuous

encouragement and guidance. His ready support and accessibility have made it easy to work

with him. I would also like to thank the members of my committee, Professors W. Kent Fuchs,

Ibrahim Hajj, and C. L. Liu, for their valuable insights and comments in guiding this thesis.

I would like to thank all of the members of the ProperCAD and PARADIGM research groups

for their friendship as well as their technical help. John Holm, Antonio Lain, Dan Palermo, Am-

ber Roy-Chowdhury, and Shankar Ramaswamy, who have been here for most of my five years

at Illinois, have been invaluable in my survival here. I would especially like to thank Steven

Parkes for our countless discussions and for his assistance with ProperCAD. I would also like

to acknowledge Sungho Kim for his guidance in the specific area of placement.

Lastly and most importantly, I would like to thank my family, who have always supported

me in all my endeavors and continue to offer their constant encouragement and understanding.

v

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION ��� 1
1.1 Motivation ��� 1
1.2 ProperCAD II ��� 2

1.2.1 Actor basics ��� 4
1.2.2 ProperCAD II interface ��� 5
1.2.3 Related work in parallel software environments ����������������������� 8

1.3 Thesis Outline ��� 9

2 BACKGROUND AND RELATED WORK ��������������������������������������� 10
2.1 Simulated Annealing ��� 10
2.2

�����
	���������������
��� 12

2.3 Parallel Annealing Algorithms for Placement ��������������������������������� 13

3 PARALLEL MOVES APPROACH ��� 15
3.1 Algorithm ��� 15
3.2 Results and Analysis ��� 18
3.3 Summary ��� 21

4 MULTIPLE MARKOV CHAINS APPROACH ����������������������������������� 22
4.1 Synchronous Multiple Markov Chains ��� 23
4.2 Asynchronous Multiple Markov Chains ��������������������������������������� 24
4.3 Experimental Results ��� 28
4.4 Summary ��� 29

5 SPECULATIVE COMPUTATION APPROACH ��������������������������������� 32
5.1 Generalized Speculative Computation ��� 32
5.2 Speculative Computation for Placement ��������������������������������������� 34
5.3 Experimental Results and Analysis ��� 35
5.4 Summary ��� 38

6 CIRCUIT PARTITIONED APPROACH ��� 39
6.1 An Object-Oriented Cell Placement Algorithm ������������������������������� 39
6.2 Parallelism Through Inheritance ��� 41

6.2.1 Data distribution ��� 45

vi

6.3 Parallel Algorithm ��� 46
6.4 Error Control ��� 46

6.4.1 Wirelength error ��� 47
6.4.2 Overlap penalty error ��� 47
6.4.3 Row penalty error ��� 47
6.4.4 Dynamic error control ��� 50

6.5 Dynamic Redistribution ��� 51
6.6 Algorithm Analysis ��� 53
6.7 Experimental Results ��� 55

6.7.1 Speedup and quality ��� 55
6.7.2 Error control ��� 56
6.7.3 Comparison ��� 57

6.8 An MPI Implementation ��� 58
6.9 Summary ��� 62

7 TIMING DRIVEN APPROACH ��� 63
7.1 Timing Analysis ��� 64

7.1.1 Delay model ��� 64
7.1.2 Path delay analysis ��� 67

7.2 Timing Driven Placement ��� 70
7.2.1 Path delay cost calculation ��� 72

7.3 Experimental Results ��� 74
7.4 Parallel Timing Driven Placement ��� 76

7.4.1 Path delay analysis ��� 76
7.4.2 Parallel placement algorithm ��� 77
7.4.3 Experimental results ��� 77

7.5 Summary ��� 81

8 CONCLUSIONS ��� 82

REFERENCES ��� 84

VITA ��� 92

vii

LIST OF TABLES

Table Page

3.1 Circuit Information ��� 19
3.2

���������������
���
	���
Results (Sun SparcServer 1000E) ������������������������������� 19

3.3
���������������
���
	���

Results (Intel Paragon) ��� 19

4.1 Circuit Size Information ��� 26
4.2

���������������
���
	���� �
Results (Sun SparcServer 1000E) ����������������������������� 29

4.3
���������������
���
	���� �

Results (Intel Paragon) ��������������������������������������� 30
4.4

���������������
���
	���� �
Quality Improvement (Sun SparcServer 1000E) ��������������� 30

5.1
���������������
���
	����

Results (Sun 4/690MP) ��� 35
5.2 Task Time Measurements ��� 37

6.1
���������������
���
	�������

Results (Sun SparcServer 1000E) ��������������������������� 55
6.2

���������������
���
	�������
Results (Thinking Machines CM-5) ������������������������� 56

6.3
���������������
���
	�������

Results (Intel Paragon) ��������������������������������������� 56
6.4 Effect of Error Control ��� 57
6.5 Comparison with Previous Algorithms (Intel Paragon, 8 processors) ������������� 58
6.6

���������������
Wirelengths (Sun SparcServer 1000E) ��������������������������������� 59

6.7
���������������

Wirelengths (Intel Paragon) ��� 60
6.8 Comparison with Partitioned Placement (Sun SparcServer 1000E) ��������������� 62
6.9

���������������
Results (Intel Paragon, 128 processors) ��������������������������������� 62

7.1 Circuit Information ��� 75
7.2 Technology Parameters ��� 75
7.3 Timing Driven Placement Results ��� 75
7.4

����������������	 �������
Results (Sun SparcServer 1000E) ������������������������������� 80

7.5
����������������	 �������

Results (Intel Paragon) ��� 81

viii

LIST OF FIGURES

Figure Page

1.1 An overview of the ProperCAD project. ��� 3
1.2 Actor model with continuation passing. ��� 5

2.1 Standard cell placement. ��� 11
2.2

�����
	���������������
cost function components. ��� 12

3.1 Outline of the
�
���� ������������	���

algorithm. ��������������������������������������� 17
3.2 Moves in

�
�� ���������
����	����
. ��� 17

4.1 Message flow in actor based synchronous MMC. ��������������������������������� 24
4.2 Outline of the multiple Markov chains synchronous actor interface. ��������������� 25
4.3 Outline of the multiple Markov chains asynchronous actor interface. ������������� 27
4.4 Message flow in actor based asynchronous MMC. ��������������������������������� 28

5.1 Speculative computation trees. ��� 33
5.2 Seven-processor speculative computation timeline. ������������������������������� 34
5.3 Outline of the

�
���� ������������	����
algorithm. ��������������������������������������� 36

6.1 Relationships between objects. ��� 40
6.2 Core code for serial algorithm. ��� 42
6.3 Relationships between distributed objects. ��� 43
6.4 Code for

������������
and

��������������
. ��� 44

6.5 Code for
� � ��	���	��������

. ��� 45
6.6 Crossing nets. ��� 46
6.7 Fixed cells in bins. ��� 48
6.8 Effect of row penalty error. ��� 48
6.9 Example of desired row length adjustment. ��������������������������������������� 49
6.10 Target row length penalty. ��� 50
6.11 Code for repartitioning. ��� 52
6.12 Outline of the

�
���� ������������	��������
algorithm. ������������������������������������� 53

6.13 Effect of
�� and
� (primary1, SS1000, 8 processors). ��������������������������� 57
6.14

���������������
speedups (Sun SparcServer 1000E). ����������������������������������� 59

6.15
���������������

speedups (Intel Paragon). ��� 60
6.16 Example of eight-way circuit partitioning. ��� 61

ix

7.1 Routing alternatives for a net. ��� 66
7.2 Distributed RC models for net. ��� 66
7.3 Steiner approximation for nets. ��� 67
7.4 Delay analysis algorithms. ��� 68
7.5 Path construction algorithms. ��� 69
7.6 Longest path analysis. ��� 70
7.7 Moore model finite state machine. ��� 71
7.8 Sequential circuit transformation. ��� 71
7.9 Longest path cost determination. ��� 73
7.10 Timing driven placement algorithm. ��� 74
7.11 Parallel delay calculation algorithm. ��� 76
7.12 Parallel path construction algorithm. ��� 78
7.13 Parallel path construction algorithm (cont.). ��������������������������������������� 79
7.14 Outline of the

�����������
����	���� ���
algorithm. ��� 79

x

CHAPTER 1

INTRODUCTION

1.1 Motivation

With the rapid advances in VLSI process technology, circuit design is becoming increas-

ingly complex and in turn is placing ever higher demands on CAD tools. Designs containing

millions of transistors are typical, and it is expected that designs may approach 100 million tran-

sistors by the end of the decade. The computational resources needed to effectively design these

circuits are enormous. Each of the different phases in the VLSI design process can take several

hours to several days using existing CAD algorithms in current processing technology. With

the sizes of these designs growing, the CAD tools become increasingly taxing on the memory

resources of computers. As a result, with many modern designs, it is not possible to effectively

use existing CAD tools on the entire design because of memory shortage.

Parallel processing is fast becoming an attractive solution to reduce the inordinate amount of

time spent in VLSI circuit design. This fact has been recognized by several researchers in VLSI

CAD as evidenced in the recent literature for cell placement, floor planning, circuit extraction,

test generation, fault simulation, logic synthesis, etc [5]. Parallel processing can also address

the memory issue by using the distributed memory resources on a multiprocessor.

In this thesis, we examine one phase of the design process in detail, namely, standard cell

placement. Placement of standard cells is particularly expensive because of the inherent com-

pute intensive nature of simulated annealing, the most popular approach used for cell placement.

There have been several attempts to parallelize this algorithm, usually with quality results that

1

do not compare to the best available sequential algorithm, or with speedups that are not accept-

able.

In this work, four parallel algorithms have been investigated, with two that provide scal-

able behavior as well as acceptable quality. The first is the parallel moves approach based on

work by Kim [1, 2]. The second algorithm is a multiple Markov chains approach that gives

nearly linear speedups with very little loss of quality. This approach is suitable for small scale

multiprocessors and for circuits that are small enough to fit in the memory of a single node.

The next algorithm, known as speculative computation, is not as effective. The final algorithm

addresses the memory scalability problems by partitioning the circuit across the nodes. This

circuit-partitioned approach provides speedups to larger numbers of processors with little loss

of quality. All the algorithms have been implemented using the ProperCAD II environment [3],

and the circuit-partitioned work has also been implemented using the Message Passing Interface

(MPI) [4].

The placement algorithms discussed so far have dealt only with minimization of the wire-

length and indirectly area minimization. For current high density circuits, this cost function is

no longer appropriate. The delays associated with the wiring elements are more critical to the

performance of the circuit; thus, steps must be taken to minimize these delays. Timing driven

placement is the process of simultaneously minimizing the circuit area as well as minimizing

the critical path delays. In this thesis we also introduce a new algorithm for timing driven place-

ment as well as methods of parallelization.

Before describing the parallel algorithms, we will provide a brief overview of the Proper-

CAD II environment.

1.2 ProperCAD II

The use of parallel platforms, in spite of increasing availability, remains largely restricted

to well-structured numeric codes. Irregular applications in terms of data access patterns as well

as control flow are difficult to effectively and efficiently parallelize. The use of object-oriented

design techniques and the actor model of computation can address the use of parallel platforms

2

HybridsMultiprocessorsMulticomputers

Intel iPSC
Intel Paragon

IBM SP-1
TMC CM-5

SUN MP
Encore

SGI

Workstation clusters

ProperCAD Library

Actor Interface

Abstract Parallel
Architecture

Applications
 ProperEXT Extraction
 ProperDRC Layout Verification
 ProperTEST ATPG
 ProperGATEST ATPG
 ProperSYN Synthesis
 ProperMIS Synthesis
 ProperPLACE Placement
 ProperROUTE Routing
 ProperHITEC ATPG
 ProperPROOFS Fault Simulation
 ProperSIM Circuit Simulation
 ProperVHDL VHDL Simulation

MIS/SIS
HITEC/PROOFS
TimberWolfSC

...

6

Existing Serial
Algorithms

Parallel
Application

Figure 1.1: An overview of the ProperCAD project.

for unstructured problems. ProperCAD II is an object-oriented library supporting the design

of actor-based parallel programs [3, 6]. The library easily allows the design of data structures

with parallel semantics for use in irregular applications. Because the foundation is based on

C++, inheritance mechanisms allow creation of the distributed data structures from standard

C++ objects.

The major goal of the ProperCAD project [7] is to develop portable parallel algorithms for

VLSI CAD applications that will run on a range of parallel machines including shared memory

multiprocessors such as the Sun SparcServer 1000E and the SGI Challenge, distributed mem-

ory multicomputers such as the Intel Paragon, IBM SP-2, and Thinking Machines CM-5, and

networks of workstations (Figure 1.1).

The domain of VLSI CAD provides a rich class of irregular problems. With the rapid ad-

vances in VLSI process technology, increasingly complex circuit designs are placing ever higher

demands on CAD tools. The computational intensity of these tools makes parallel processing

an attractive solution [5]. However, most applications in this area are characterized by com-

plex interrelated data structures as well as irregular access patterns across these objects. These

3

properties make VLSI CAD applications particularly difficult to efficiently parallelize. The use

of the ProperCAD II library as well as C++ design techniques help to alleviate this problem.

The approach has been used on a wide variety of VLSI CAD problems including test gener-

ation [8], fault simulation [9], logic synthesis [10, 11], state assignment [12, 13], layout veri-

fication [14, 15], and VHDL simulation [16]. In this thesis, we demonstrate the use of these

techniques in a specific VLSI CAD problem, standard cell placement.

1.2.1 Actor basics

The ProperCAD II library expresses parallelism with a statically typed high level C++ ac-

tor based interface. The library is class library-based and allows multiple levels of abstraction

as well as incremental parallelization. Through the use of a fundamental object called an ac-

tor [17], the library provides mechanisms necessary for achieving concurrency. An actor object

consists of a thread of control that communicates with other actors by sending messages, and all

actor actions are in response to these messages. Specific actor methods are invoked to process

each type of message.

Figure 1.2(a) shows the three basic actions that a method in an actor can take: create new

actors, send messages to actors, and perform computations that change its state. In formal ac-

tor terminology, the changing state is actually a subset of the become operation as defined by

Agha [17]. When a method creates an actor, a message is sent to the run-time system with all

the information needed to construct an actor. When a method sends a message, a message con-

taining the arguments and the identity of the method to be invoked is sent to the run-time system

for later execution. Both actor creation and message sends are non-blocking calls. The model

only specifies that the actor be created or the task be run sometime in the future. Once a task

starts, it runs to completion and cannot be preempted.

The actor model lacks explicit sequencing primitives. Synchronization is implicit and arises

because of the single-threaded nature of individual actors. The return executed at the comple-

tion of an actor method is an implicit wait; the actor automatically becomes available for any

pending method invocations. Since an actor cannot suspend execution implicitly in the middle

4

to a Method in

Non-preemptible

an Actor

Task

Return to Task

Director

Send Message

Create

Actor
Send

Message

= computation

Method 1

Message which includes

Actor A::Method 2

as a continuation.

Message sent back

with result needed

by Actor A::Method 2.

(b) Continuation Passing Style

of execution.

Send

Message

Message

Sends a message with all the

information needed to constuct

Actor A Actor B

an actor.

(a) Actor Behaviors

Sends a message which contains

the arguments for the method.

Method 1

Method 2

Figure 1.2: Actor model with continuation passing.

of a computation, continuation-passing style (CPS) [18] is used to express control and data de-

pendencies. Figure 1.2(b) shows an example of continuation passing style. The actor model is

a message-driven model in which the method name is in the message and the method is the code

invoked upon message reception.

1.2.2 ProperCAD II interface

Applications created with the ProperCAD II library use five basic classes provided by the

library:
� � � ��

,
��� � � �� � � � ,

��� � � ���� ��� ���
,
� ����� ����� � � ����� , and

�������� � � � � .

1.2.2.1 Actor

All actor types are derived from the library supplied class,
��� � ��

. Adding the
��� � ��

base to

a class in a sequential object-oriented program enables the creation of actor methods and con-

tinuations as described below. These features allow the expression of parallelism. For example,

a user class may be created as follows.

��� �	�
��� ���� ����	���� � ��� ��������
�������

5

1.2.2.2 ActorName

Actor names serve the role of pointers and references for instances of actor classes. Because

normal pointers are not valid across processor boundaries, actor names provide the mechanism

for access of actors in a global namespace.

� �
� � � � � ������
�� ���
� �

��� � ���� � � ��� � �
��� ����� � � � ��� � � � ������
 �

1.2.2.3 ActorMethod and Continuation
��� � �������������� � are member functions which may be invoked asynchronously and remotely.

��� �������� �
����� � are executed via
� ��� � � ��� � � ����� � , the concurrent equivalent of member func-

tion pointers. An example of the definition and use of these constructs is shown below.

��� �	�
��� ���� ����	���� � ��� ������

� ���	� ���
������ ��
� �

� ��� � 	 � �� 	 � ����� ��
�� �

��� � �
� ����� ����	 ��� � ������� � � ���� � �����������������
�� � � �
���

��� � �
� 	 � ����	 ��� � ��� � � ���� ��� ������	 � ����� � � �
� �

�

The � �
� actor has a constructor which takes
� �������� � as an argument as well as a method

	 � �� � which takes
	 � ����� � as an argument. In order to allow creation of this actor remotely,

we need to add to the class a special nested class, New, which is derived from a templated
��������� � ����� ����� �

. Likewise, we can designate
	 � �� � as an actor method by creating a new

nested class
	 � derived from a templated

��� �������� �
�����
. The code below shows the use of

these constructs.

6

�

�
���

���
������ �
 � � �� �
��� � ���� � � ��� � �
��� ����� � � � ��� ��� � ���� � � ��� � ����� � ������� � � � � � �
� �
��
 �����
 � � ��� � ��� � � ����� ����� � � � ���
� � � � � � �

��� ��� � � � � �� ��� �

	 � ����� �
 	 � �� � �
� �
��
 	 �
 � � ��� � ��� � � ����� ����� ��� � ���
� � � � � � �

��� ����� � 	 � �� ��� �

�
���

�

To create the actor, we first optionally assign an
��� � ���� � � � to it. We then create a

� ��� � � �
	
� � ������� ������� � bound to that

��� ������ � ��� . Execution of the continuation will schedule construc-

tion of the actor. Note, that the actor is not created at this point but it is deferred until some point

in the future. We also have specified where the actor should be created, though this may option-

ally be indicated when the continuation is created. In order to invoke
	 � �� � asynchronously, we

similarly create a
������� � ��� � � ��� � ��������� bound to

����� � � � � . We can now treat
����� �

as member

function pointer and execute it directly causing a message send, or pass it to another method.

In this particular example, we execute it and because the actor has not been created but simply

scheduled for creation, the message becomes pending, waiting for construction of the actor.

1.2.2.4 �������
	�����	

Individual actors express neither internal parallelism nor data distribution. Collection types,

based on aggregates with explicit distributions, allow both object-internal concurrency as well

as data distribution. An aggregate is simply a collection or group of actors which share a com-

mon name [19]. An example of an aggregate would be a distributed array where different ele-

ments are stored on different actors. The use of aggregate representations removes the serializa-

7

tion step that would be required because of a gateway actor. The interface is similar to that of the
��� ����

class, and the creation and use of names and actor methods are accomplished similarly.

��� �	�
��� ���������� ����	���� � �����
���� � ��� ���
�������

Aggregates provide the necessary mechanisms for distributed data structures. Because of

the standard C++ interface, access to these distributed data structures is efficient. The benefit of

aggregates is apparent particularly in the circuit partitioned algorithm for parallel cell placement

described in Chapter 6.

1.2.3 Related work in parallel software environments

Several other researchers have produced work in environments to support irregular appli-

cations in object-oriented environments, such as Charm++ [20], CC++ [21], Concurrent Ag-

gregates/Concert [19, 22, 23], pC++ [24], and SDDG/DAGH [25]. Charm++ provides similar

run-time support for message driven applications to ProperCAD II. The primary differences are

Charm++’s lack of support for static message typing, as represented by first-class continuations,

and composability. Concurrent Aggregates is a pure actor functional language with support for

aggregates. pC++ is a language extension of C++ with support for data parallel semantics in

much the same manner as HPF [26]. Since it presents a data parallel view of the world, it is

difficult to express irregular problems such as VLSI CAD in this framework. CC++ achieves

concurrency through parallel constructs which allow particular code fragments to be performed

on different processing threads. This task parallelism approach can mimic many of the features

in an actor model. However, the ProperCAD II library does provide extra meta programmabil-

ity features that allow the program designer to change the behavior of the run time system such

as queuing policies, memory usage, and load balancing. SDDG/DAGH provides a collection

of C++ distributed data structures to support parallel adaptive finite difference codes based on

hierarchical adaptive mesh-refinement methods.

Other work to support irregular applications but are not targeted toward object-oriented en-

vironments include Multipol [27] and PARTI/CHAOS [28]. Multipol provides a library of dis-

tributed data structures for use with a message driven run-time system. The basic block of

8

computation is called an atomic thread, which is essentially the functional equivalent of an ac-

tor method. The PARTI/CHAOS library offers irregular run-time support for iterative irregular

computation in which the communication pattern is unchanged and predictable, but not resolv-

able at compile time. The library is most appropriate for finite element computations. Neither

Multipol nor PARTI/CHAOS allows parallelism via derivation as available in ProperCAD II.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 covers the background and related work in par-

allel standard cell placement. Chapter 3 describes the parallel moves approach based on work

by Kim [1, 2]. Chapters 4 and 5 describe the multiple Markov chains and speculative compu-

tation algorithms, respectively. The final parallel area driven placement algorithm, circuit par-

titioned, is discussed in Chapter 6. The algorithms for timing driven placement are introduced

in Chapter 7. The last chapter contains the conclusions and directions for future research.

9

CHAPTER 2

BACKGROUND AND RELATED WORK

Standard cell based design methodology allows a designer to build his or her design from a

library of predefined modules or cells. The placement problem involves placing these cells on a

VLSI layout, given a netlist that provides the connectivity between each cell and a library con-

taining layout information for each type of cell. This layout information includes the width and

height of the cell, the location of each pin, the presence of equivalent pins, and the possible pres-

ence of feed through paths within the cell. The primary goal of cell placement is to determine

the best location of each cell so as to minimize the total area of the layout and the length of the

nets connecting the cells together. With standard cell design, the layout is organized into equal

height rows, and the desired placement should have equal length rows, as shown in Figure 2.1.

2.1 Simulated Annealing

One of the more powerful algorithms for standard cell placement has been simulated an-

nealing. It is a suitable approach to problems like VLSI cell placement because they lack good

heuristic algorithms. Simulated annealing is analogous to the materials science problem of an-

nealing of solids. When annealing solids, the goal is to bring the solid into a low energy state,

for example, to generate crystal lattices in silicon or to soften glass and metals. The physical

process involves heating the material to allow atomic motion. Gradually, the material is cooled

carefully until the material freezes into the desired state. Briefly then, simulated annealing is

an iterative optimization software strategy that starts with a system in a disordered state, and

10

Figure 2.1: Standard cell placement.

through perturbations of the state, brings the system gradually to a low energy, and thus opti-

mal, state [29, 30]. The energy is a cost function of the system that is to be minimized. In the

context of cell placement, perturbations are simply moves of the cells to different locations on

the layout, and the energy is an approximated layout cost function.

As moves are made, any move that reduces the cost function is accepted. However, sim-

ulated annealing, unlike greedy algorithms, will also allow moves that increase the cost. The

effect of this change is to allow the solution to escape from local minima. In cases where the

cost is increased, the new state is accepted with probability

���������
	� (2.1)

where �� is the change in the cost or energy and � is the temperature of the system. The tem-

perature is an analog of the effect of temperature in crystal annealing. We start with an extremely

high temperature to allow nearly all moves to be accepted. Gradually, the temperature is reduced

until a termination condition is reached.

Theoretical studies show that simulated annealing is guaranteed to reach an optimal solu-

tion given enough time and proper monitoring of the temperature or annealing schedule. To

achieve this, at each temperature, the system must be at equilibrium before the temperature is

lowered again. However, it is impossible to guarantee equilibrium in finite time. In computing

11

Wirelength
Bounding Box

Row PenaltyOverlap Penalty

Figure 2.2:
� ����	�������
�������

cost function components.

applications, it is impractical to wait for the system to achieve equilibrium before changing the

temperature, so heuristics are used to develop a fast and near optimal schedule [31–34].

2.2 ���������
	�����������

One of the more popular uses of simulated annealing for placement has been the
� ����	����	

����� �����
cell placement tool [35–37]. The

�����
	���������������
cost function is defined in Eq. (2.2)

where � is the bounding box half perimeter estimate of the wirelength of all nets, ��� is the

penalty for the area overlap between cells in the same row, and ��� is the penalty for the dif-

ference between the actual row length and the desired row length. These cost parameters are

shown graphically in Figure 2.2. The coefficient terms � and � are adjusted using a feedback

control mechanism to arrive at optimal values.

 � � ��� �!�"�#�$�%� � (2.2)

Moves are generated by choosing a random cell and then displacing it to a random location

on the layout. If a cell is already present at the new location, the two cells are exchanged. A

temperature dependent range limiter is used to limit the distance over which a cell can move.

Initially, the span of the range limiter is set such that a cell can move anywhere on the layout.

Subsequently, the span is decreased logarithmically with temperature. These range limiter up-

12

dates are made at the end of each of the 160 iterations into which
� ����	�������
�������

segments the

simulated annealing procedure. As the algorithm progresses, the temperature is gradually de-

creased by forcing the acceptance rate to follow a theoretically derived schedule that attempts

to keep the acceptance rate close to 44% during the middle region of annealing [33].
� ���
	 ���	

����� ����� � ���
also uses row bins to aid in the computation of overlap and row penalties, and early

rejection methods are used to speed up the decision process [38].

2.3 Parallel Annealing Algorithms for Placement

Because of the inherent computational costs associated with simulated annealing, several

methods have been proposed for the parallelization of the procedure [39]. Using the taxonomy

defined in [40], there are three major classes of parallel simulated annealing algorithms: serial-

like, asynchronous, and altered generation.

Serial-like algorithms preserve the convergence characteristics of the sequential algorithm

through the use of single move acceleration or serializable subsets. Kravitz and Rutenbar have

investigated both approaches and found that these algorithms have limited parallelism and are

more appropriate for shared memory architectures [41].

The second class of parallel simulated annealing techniques, altered generation, is distin-

guished from serial-like algorithms in that they do not follow the exact search space laid out by

the sequential algorithm. This is usually accomplished with a processor or group of processors

either exploring a restricted state space or using a restricted search on the entire state space.

To ensure proper global convergence, the global state is kept up to date through periodic solu-

tion exchanges or with a shared memory architecture. Parallel placement algorithms using this

strategy for shared memory machines include work by Darema et al. [42] and Natarajan and

Kirkpatrick [43]. Sun and Sechen have recently shown results achieving near linear speedup

on a network of workstations [44]. This method shows great promise for a few processors, but

it is unlikely that the convergence properties will hold as more processors are used.

The final class of parallel simulated annealing algorithms is the asynchronous or “parallel

moves” algorithm where each processor generates and evaluates moves independently. This

13

differs from altered generation methods in that the state space is not restricted. In other words,

each processor contains information on the entire circuit regardless of whether the global lay-

out information is accurate in the local processor. Obviously, the cost function calculations may

be incorrect because of the moves made by the other processors. There are various methods to

address the effect of error, but all involve some form of periodic updates. The number of up-

dates is directly related to the average acceptance rate of the particular annealing scheduling

chosen. Banerjee, Jones and Sargent [45] implemented a parallel placement algorithm using

the parallel move approach on an Intel hypercube multiprocessor and proposed several parti-

tioning strategies for the problem specific to the hypercube topology. Speedups of up to 12 on

16 processors were reported. Rose et al. [46] proposed a parallel algorithm on an experimen-

tal distributed memory multiprocessor. In that algorithm, they replaced the high temperature

portion of the parallel simulated annealing placer with a placement program based on a min-

cut algorithm and used a parallel moves strategy for lower temperatures. Speedups of 4 on five

processors were reported.

The only reported instance of large scale parallelism being applied to cell placement is the

use of parallel moves for SIMD machines. Both Casotto and Sangiovanni-Vincentelli [47] and

Wong and Fiebrich [48] have presented similar parallel simulated annealing placement algo-

rithms for the SIMD Connection Machine. These methods fall in between a completely asyn-

chronous approach and the altered generation methods. By completely distributing the circuit

state, the necessity for global updates is removed, while still allowing for asynchronous parallel

moves.

14

CHAPTER 3

PARALLEL MOVES APPROACH

3.1 Algorithm

In this chapter, we describe
�
�� ���������
����	����

, an implementation of parallel moves based

cell placement derived from work by Kim et al. [1, 2]. In the parallel moves algorithm, each

processor generates and evaluates moves independently. This leads to cost function inaccura-

cies that must be adequately addressed to arrive at good solutions.
���������������
���
	���

does so

through the use of periodic updates with specific dynamic error control mechanisms.

The application begins with a random input placement that is replicated on each available

physical processor. Using the aggregate class provided by the ProperCAD II library, an aggre-

gate named
� � ��	���	��������

is constructed to manage access to the circuit structure and maintain

a coherent state of the current placement. Each processor will have one representative of the

aggregate responsible for its local copy of the circuit. In addition, an
� �
� � � ����� � �� actor is

created per physical processor to perform the annealing steps, i.e. move, evaluate, and decide.

The placement is divided up topographically by rows, with the rows and its cells assigned to

separate
� �
��� � ����� ���� actors. Each actor is responsible for one row, and thus is only allowed

to attempt moves on cells in that row. If a cell is moved to a region owned by another actor, the

ownership of the cell is transferred to the new actor and the original actor is no longer responsi-

ble for moving that cell. Because an entire row, not a sub part, is owned by an actor, there will be

no error in the calculation of cell overlaps and row lengths during the simultaneous evaluation

of multiple moves. Note that this approach assumes that the number of rows is greater than or

15

equal to the number of actors. If not, the rows must be split into a number of subrows, in which

case, some overlap penalties may be calculated erroneously.

After partitioning, each
� �
� � � ����� � �� actor proceeds with the annealing algorithm outlined

in Figure 3.1. A valid cell is selected for perturbation, and then a displacement or exchange is

performed on that cell. As detailed below, there are two subclasses of moves for both displace-

ment and exchange, or four move types in total. The move type is determined by the intended

location of the selected cell A.

M1. Intra-actor Cell Displacement. Cell A moves to new location owned by the same actor.

M2. Intra-actor Cell Exchange. Two cells A and B owned by the same actor exchange their

locations.

M3. Inter-actor Cell Displacement. Cell A moves to new location owned by a different actor.

M4. Inter-actor Cell Exchange. Two cells A and B owned by different actors are exchanged.

An example of each type of move is shown in Figure 3.2. In the figure, assume that each

row is owned by different
� �
��� � ����� � � actors. Note that the three moves (M1, M2, M3) can be

done alone by actor 0, the owner of cell
�

. For the move M4, however, actor 0 needs permission

from actor 1 which owns cell B, as it is possible that cell B may have already been moved to an-

other location or is frozen because of some pending move. Because the information about cell B

may be out of date in the database of actor 0, it locks (or freezes) cell A and cell B and sends

an
� ��� ���� � � ��� ����� message to actor 1. After receiving the

� ��� � �� � � �
� ����� message, actor 1

examines the state of cell B and determines whether to allow the exchange. The decision is sent

back to actor 0 by sending the
� ��� �� ����� � � �� message. Upon receipt of the

� ��� �� ����� � � ��

message, actor 0 unlocks cells A and B, and the move is attempted if the returned answer is yes.

Actor 0 does not wait idly until the
� ��� �� ����� � � �� message is received - instead, it continues

annealing by making other moves with unfrozen cells that it owns.

If a move is accepted, the accepting actor must send the move to the
��� ��	��� ��������

aggre-

gate so that a consistent cell position database can be maintained. To amortize the startup cost

16

�
�� ���������
����	���� ���
1 while termination not reached
2 do while equilibrium not reached
3 do select cell

�
in this actor’s region

4 select new location for cell
�

5 if cell � at new location
6 then move is an exchange
7 determine move type

�����	�
����
�������������
8 evaluate move cost
9 if ACCEPT

� � � � ������� � � � ��� ���
10 then if

����� � � � ���
11 then FREEZE

� � � � �
12 send

� ��� � � ���! ��� "��# msg to
 ��%$'&(�)

13 else accept the move
14 update local database
15 send
 �(*�+) � msg to

 ��,$-&(�)
16
17 lower �
18

Figure 3.1: Outline of the
�
�� ���������
����	����

algorithm.

Anneal 0

Anneal 1B

EDAC

M3

M1

M4

M2

Figure 3.2: Moves in
���������������
���
	���

.

17

of sending a message, position update messages are held until a number of moves have been ac-

cepted. Although this reduces the total number of update messages sent among processors, there

is a drawback in this approach. As the frequency of update messages is reduced, the cell position

database on each
� � ��	� �	�������

representative becomes increasingly inaccurate, thereby caus-

ing the cost function calculation error to increase as well. This error, if too large, may prevent

the algorithm from converging to an optimal solution. Previous researchers [45, 47, 49] have

shown that simulated annealing is tolerant to some error in cost function calculations.

Since actor methods are non-blocking, the actor’s annealing process must give up control

every so often to allow the aggregate to gain computation time to respond to the update and
� ��� � �� � � �
� ����� messages. Therefore, a limit is placed on the number of moves that may be

performed in succession without interruption. The
��� ��	��� ��������

aggregate can then process

any waiting messages.
� �
��� � ����� � � will have rescheduled itself by sending itself a message

that will enable control to come back and the next set of moves can then be proposed and eval-

uated.
�
 �����������
����	���

includes a dynamic error control mechanism that adaptively controls the

frequency of the update messages in order to keep the error in the cost function relatively small.
�
�� ���������
����	����

also takes full advantage of the prioritized messages provided by the Prop-

erCAD II library to guide the run-time system to select critical messages. Load balancing is

achieved through inter-actor move suppression. These features are discussed in more detail

in [1, 2].

3.2 Results and Analysis

Results are presented for a set of benchmark circuits (Table 3.1) in Tables 3.2 and 3.3 for a

Sun SparcServer 1000 and Intel Paragon, respectively. W indicates the normalized wirelength

cost of the resultant placement, and S is the speedup compared to that for a single processor.

The algorithm provides moderate speedup with some loss of quality. The parallel placement

algorithms based on parallel moves are hindered because they must limit the cumulative error

18

Table 3.1: Circuit Information
ISCAS, Physical Design Workshop 91, and Other Industry Benchmarks

Number Number Initial
Circuit of cells of nets wirelength
fract 125 163 12839
s298 133 138 126984
s420 212 233 274056
primary1 760 1172 1202241
struct 1888 1920 388707
industry1 2271 2583 5301571
primary2 3014 3817 7292946
biomed 6417 5742 18844676
circuit 5812 7574 83198647
industry2 12142 13419 90099851
avq.large 25114 25384 129120230

Table 3.2:
�
���� ������������	���

Results (Sun SparcServer 1000E)

1 PE 4 PE 8 PE
Circuit W S W S W S
primary1 1.00 1.00 1.03 2.35 1.07 3.06
industry1 1.00 1.00 1.05 1.88 1.04 1.99
primary2 1.00 1.00 1.02 2.22 1.09 3.05
biomed 1.00 1.00 1.01 2.49 1.18 3.22
industry2 1.00 1.00 1.18 2.22 1.33 2.33
avq.large 1.00 1.00 1.44 1.84 1.14 2.90

Table 3.3:
���������������
���
	���

Results (Intel Paragon)

1 PE 4 PE 8 PE
Circuit W S W S W S
primary1 1.00 1.00 1.04 2.75 1.04 3.95
industry1 1.00 1.00 0.98 2.70 0.99 3.95
primary2 1.00 1.00 1.09 2.68 1.10 3.85
biomed 1.00 1.00 1.12 2.62 1.21 3.86
industry2 1.00 1.00 1.07 2.49 1.05 3.44

19

effects on the global cell database. This can cause a significant degradation in quality as the

number of processors increases.

Also, because of the necessary global updates, the speedups will likely not scale linearly

with the number of processors. Since every processor must perform these updates, this be-

comes essentially a serial bottleneck. In fact, because updates are done only for accepted moves,

speedups are intimately related to the acceptance rate. Consider if
) ��� is the time to propose and

evaluate a move, and
) � and

) � are the times to decide and update a move, respectively, the total

run time of a serial execution is

) ��� � ��� �) ��� �) � �) � � (3.1)

where � is the total number of moves attempted. In a parallel moves implementation the run

time is as follows:
)
	 � �

�
� �) ��� �) � �) � �� � ��� ���) ��� � (3.2)

where
�

is the number of processors, is the acceptance rate, and
) ��� is the time required

to perform another processor’s accepted move. Note because of the way
� ���
	 �������� �����

does

incremental wirelength cost estimates,
) ��� is not equivalent to

) � . The speedup can be charac-

terized as follows:

� �
) ��� �)
	 �

� � �) ��� �) � �) � ��� �) ��� �) � �) � �� � ��� ���) ��� � (3.3)

Measurements have shown that
) ��� is close to

) ��� �) � , and
) ��� �) ���) � . � Using these

assumptions,
�

simplifies to
�

������� � � ��� . Essentially, this limits the speedup to �� regardless of

the number of processors.

Recent work by Sun and Sechen [44] used a parallel moves approach that addresses this

problem with less frequent updates. The updates are made at specific intervals instead of for

every accepted move. In spite of the fewer updates, there is no reduction in quality, due possibly,

in part, to using a different serial algorithm at the core of their parallel implementation.
����� 	

Measurement details are shown in Table 5.2 in Chapter 5.

20

	��������������� � ���
[50] uses clustering of cells and has removed cell overlap, which appears to

make the update frequency less critical.

3.3 Summary

In this chapter, the parallel moves approach to parallel cell placement approach was de-

scribed. Parallel moves offers limited speedup potential with severe quality degradation prob-

lems. The main problem is that update frequency limits the speedup regardless of the number of

processors available. In addition, this algorithm is not memory scalable, since the circuit must

be replicated on all processors. These problems are addressed with other parallel algorithms

described in Chapters 4 and 6.

21

CHAPTER 4

MULTIPLE MARKOV CHAINS APPROACH

In this chapter we introduce the concept of multiple Markov chains, first presented as par-

allel clustered statistical cooling by Aarts et al. [51–53]. It was further refined by Lee and Lee,

who introduced an asynchronous approach to this methodology and, in particular, applied the

algorithm to the graph partitioning problem for shared memory multiprocessors [54, 55]. The

algorithm can be understood if the sequential simulated annealing procedure is considered as

a search path where moves are proposed and either accepted or rejected depending on particu-

lar cost evaluations and also a starting random seed. Each search path is essentially a Markov

chain, and parallelization is accomplished by initiating different chains (using different seeds)

on each processor. Each chain then explores the entire search space by independently perform-

ing the annealing perturbation, evaluation and decision steps. After each processor has com-

pleted the annealing schedule, the solutions are compared and the best is selected. Rose et al.

used a similar approach with the min-cut algorithm in the high-temperature region of the sim-

ulated annealing schedule [46]. Note that unlike the parallel moves approaches, each chain is

allowed to perform moves on the entire set of cells and not just a subset.

Of course, there is no speedup in this approach since each processor is individually perform-

ing the same amount of work as the sequential algorithm. There is, however, the opportunity for

better quality solutions. To achieve speedup, we must reduce the number of moves evaluated in

each chain by a factor of �� where
�

is the number of processors. Since the number of moves

determines the run time of the program, a reduction by a factor of �� will cause a speedup of
�

. Of course, such a reduction alone is not appropriate since the quality will decrease accord-

22

ingly. To take advantage of the use of multiple processors, some means of interaction between

the various chains are necessary.

4.1 Synchronous Multiple Markov Chains

One possible interaction scheme, called synchronous MMC with periodic exchange by Lee

and Lee, is to stop annealing and compare solutions at fixed intervals. This method allows each

Markov chain to update its local database with the best solution, and then continue. This ex-

change point serves as the end of a segment of computation and behaves as a barrier synchro-

nization point. According to the algorithm proposed by Aarts et al., the exchange point occurs

after every move. At the barrier, various application specific metrics can then be used to deter-

mine the best solution.

In an actor framework, each chain or search path is represented by a separate actor or thread

of control. Since the actor model can not assume a shared memory architecture, solution updates

must be done with message sends. The barrier at the end of each segment is implicitly achieved

through the use of these messages, as shown in Figure 4.1. When an actor has reached the end

of its segment, it propagates a solution metric up to a master actor through a reduction tree.

This metric is only a cost measurement of the solution and is not the entire global state. The

master thread will determine the best solution, and then directs the actor with the best solution

to broadcast its state to all other actors. In the example in Figure 4.1, actor 3 is determined

to have the best solution. The barrier could be implemented in a single phase manner if each

actor propagates its entire state to the master rather than just the cost metric. The master could

then broadcast the state itself rather than request the winning actor to broadcast it. However,

because of the size of the state in cell placement, the two-phase method is more efficient. The

implementation proposed by Lee and Lee can use a single phase by transferring the entire state

through shared memory.

When applied to the
� ���
	 �������� �����

placement tool, a natural point for solution exchanges

is the end of each
� ���
	����������� ���

iteration. Figure 4.2 shows a summary of the algorithm for

synchronous multiple Markov chains. As mentioned above, the entire cell database state is quite

23

Actor
0

Actor
1

Actor
2

Actor
3

Actor
6

Actor
4

Actor
5

Actor
7

Process
cost metric

Broadcast
cell state

Computation

Cell State
Message

Cost Metric
Message

Figure 4.1: Message flow in actor based synchronous MMC.

large. Table 4.1 shows for a sampling of circuits the cell database size needed for message trans-

fer.

4.2 Asynchronous Multiple Markov Chains

From examining Figure 4.1, it is obvious that barriers can be costly operations; an asyn-

chronous approach is preferred. Figure 4.3 shows a pseudocode for such an implementation.

Note that very few modifications have to be made to support the asynchronous method. In this

approach, the master actor does not perform any computation. Instead, it serves as a location

for the best available solution at any particular time. When an actor has completed an itera-

tion, it sends its solution metric to the master actor, and requests the best solution available.

The master thread on receipt of this request will determine if the received solution is better than

the local “best” solution. If it is better, the master will ask the requestor to send its state back,

by calling the SendCellState() method. Remember that the requestor had only sent the metric

initially. The requestor will then send its local state back to the master and continue with the

24

��� �
� � � �
������	� �� � � ����� � � ���
��� � � � � � �
�

��� � � ��� � � � � ��� � ������� � � � �����
� � ��� � �	�
� ��� � � � � � ���
	����������� ��� �	� �� � � ����� �����
	���
��� ����� � � � � � � ��� � ���
� �����
	��� � � � � � � � � ��� � ����� � � ���� �	���� � � �����

� � ��� � �
��� � � � � � � ��� �� � � � �� � � ��� � � ��� � �
���� ��� � � � � � � � � � � � � � � � � � � ����� ��� � �
� � � � � � � � � ��� ����� � �� ��� � � � � ��� � � ��� � � � � �

�
�
� � ���	� � � � ��� ��� ����� ��� �
�� � � �	� � � � � � � � � � � � � � �	� � ��
� � � � ���	 ������� � ����� ������������������ � � ����� � ��� � � � ��� � � � ���� �� � � � � ��� � �

�

��� �
� � � �
 �
��� �
�
� ����� � � � � � �
�

�
� ����� � �	� � �� � � � � � ���	� � � � � � � � � 	 �� � ��� �	� � � ��
�
� � � � � �� � � � ��� ��� � � � � �
��� � ������� � 	 � � � � � � � �
	� � � ��� � � ��	��������	� �� � � ����� � ����� � ��� � � � ��� � �

�

��� �
� � � ��� �	� � ��
 ����� ��� ��� ��� ��� ���������� � � � � �
������� � � � �
�

�
� � � ����� � � ��� � � � � � � ���� � � � 	�� ��� �� �
� � � �����
�
� ����� �	��
������ 	�� � � � � � � �� ���	� � � � � �� 	�� � � � � � ��� �
�
� ����� � � ��� ��� �
�� � � � � � � 	������ �� � � � � � � � �	� ����� �
�
� � � ���������� ����� �� �	��� ����� � � �
���� ��� 	� � � ��� � � � �	� �
�
� � ���
� � � � � � �
� � � � ���
�� � 	�� ��� �� ��� � � �	� ������� 	�� � ��� � ���
�� � � �

	�� � ��� � � ���� � � � � �
���� �
	�� � ��� � � ���� ��� � � ���

�
� � � � �
� ��� �
�� � � � � ��� � � � �

	�� � ��� � � �����	����
��� �
�
� ����� � � ��� � � �
�

Figure 4.2: Outline of the multiple Markov chains synchronous actor interface.

25

Table 4.1: Circuit Size Information
ISCAS and Physical Design Workshop 91 Benchmarks

Cell state
Circuit size (bytes)
fract 9636
s298 8884
s420 13844
primary1 65484
struct 119636
industry1 219220
primary2 1901814

next iteration with its own local state. If the master has determined that the received solution is

worse than the best solution, the master will simply send the current best state to the requestor.

At the cost of dedicating an extra processor for “master” usage, this asynchronous approach can

eliminate much of the idle time that was present earlier.

Graphically, this algorithm is illustrated in Figure 4.4. For example, Actor 2 has finished

its segment and sends its solution metric to the master that determines that its solution is the

best and sends a message back requesting Actor 2’s local state. While waiting for Actor 2’s

state, the master has in the meantime received a solution metric from Actor 1. Since it hasn’t

yet received Actor 2’s state, the master must compare Actor 1’s metric with the previous state.

It then determines that Actor 1 has an inferior solution, and thus sends the previous state back to

Actor 1. Note, because of the asynchronous behavior, Actor 1 was not able to receive the best

solution at that current point. This type of erroneous update is acceptable, since the actors can

correct themselves at future iterations, and it also provides an opportunity to escape from local

minima.

From Eq. (3.1), we can see that the parallel run time in an asynchronous MMC implemen-

tation becomes
)
	 � �

�
� �) ��� �) � �) � � �)

� (4.1)

where
)

� is the communication time. Since the time to send the solution metric is small,
)

� is

essentially the time to send the state, which is related to the size of the state. If
)

� is small, it is

26

��� �� � � � �
 � ���	� �� � � ��� � � ��������� � � � � � �
�

��� � � ��� � � � � ��� � ������� � � � �����
� � ��� � �	�
� ��� � � � � � ���
	����������� ��� �	� �� � � ����� �����
	���
��� ����� � � � � � � ��� � ���
� �����
	��� � � � � � � � � ��� � ����� � � ���� �	���� � � �����

� � ��� � �
��� � � � � � � ��� �� � � � �� � � ��� � � ��� � �
���� ��� � � � � � � � � � � � � � � � � � � ����� ��� � �
� � � � � � � � � ��� ����� � �� ��� � � � � ��� � � ��� � � � � �

�
�
� � ���	� � � � ��� ��� ����� ��� �
�� � � �	� � � � � � � � � � � � � �
��� � �	� � �� � � � ��
� � � � ���	 ������� � ����� ������������������ � � ����� � ��� � � � ��� � � � ���� �� � � � � ��� � �

�

��� �� � � � �
 ����� �
��������� � � � � � �
�

�
� ����� � �	� � �� � � � � � ���	� � � � � � � ���� � �� � � � � �
�
� � � ��� � � � � � � � ����� �	����� ��� 	�� � � � � � ���
� � � � ���	 ��� � � � � � ���
� ����� � � ��� � ��� � � ��� � � � � � � �
� ���	� �� � � ����� � ����� � ��� � � � � � � �

�

��� �� � � � ��� � � � �� � ����� � ����� ����������� ���
���� � � � �
 � �� � � ��� �
�

�
� � � ����� � � ��� � � � � � � ���� � � � 	�� ��� �� �
� � � ����� �	����� ���
�
� 	�� � � � � � � �� ��� � ����� � � � � � ���� � ��� � � � � � ���
�
� � ��� �� � � � �� � � � � � � � � ��������� � � �	� �� � � �����
�
� � �	�
� �
��� � ������� � 	 � � � � � � � � ��� ����� � � � � �
� � � � ���
�� � 	�� ��� �� ��� � � ��� � � ��� � � � � � � � � �
���� �

� � ����	������ � �
�
���
��� � � ��� � � �
��� � �

� � ����	���� ���	� �� � � ����� � ��� � � ��� � � � � � � �
�

��� �� � � � ��� � � � �� � � � � � � � ���
� �
��� � � � � � ��������� � � � � � �
�

��� � � ��� � � � � ��� � ������� � � � � � �
� ��� � � � � ��� � � � 	�� � � � � � � �
�

Figure 4.3: Outline of the multiple Markov chains asynchronous actor interface.

27

Actor
0

Actor
1

Master
Actor

Actor
2

Actor
3

Send/receive
cost metric
Send
cell state

Computation

Update
master state

Figure 4.4: Message flow in actor based asynchronous MMC.

obvious that the speedup for asynchronous MMC is perfectly linear, i.e.,
� � � . However,

)
� is

not necessarily small, and we must determine its effect. Comparing Tables 4.1 and 3.1 yields 80

as an approximate ratio of state size to number of cells. Since the state is communicated at every

one of
� � �
	����� ���������

’s 160 iterations, � �
� ��� �����)�� , where is the number of cells and

)��

is the per byte communication cost. Also, for
� ����	�������
�������

, � , the number of total moves, is

set to
� ����� ���	�
�
 ��� . Thus the speedup can be expressed as

� � � ���	�
�
 ��� �) ��� �) � �) � �
	� � �	�
�
 ��� �) ��� �) � �) � � � ���,)�� (4.2)

On an Intel Paragon,
) ��� �) � �) � is on the order of 50 to 100 � s, while

)��
is only 0.018 � s.

Thus it can be seen that
)

� is negligible, and the expected speedup should approach
�

.

4.3 Experimental Results

We examined the effectiveness of the asynchronous MMC algorithm on the Sun SparcServer

1000E as well as for the Intel Paragon as shown in Tables 4.2 and 4.3. The implementation of

the algorithm is called
���������������
���
	���� �

. We start at two processors because of the need for a

28

Table 4.2:
�
������������
���	���� �

Results (Sun SparcServer 1000E)

2 procs 4 procs 8 procs
Circuit W S W S W S
s298 1.00 1.00 1.04 2.74 1.07 6.51
s420 1.00 1.00 1.00 2.57 1.06 7.22
primary1 1.00 1.00 1.00 2.78 1.06 4.80
industry1 1.00 1.00 1.02 2.79 1.04 7.06
primary2 1.00 1.00 1.07 2.64 1.05 6.44
circuit 1.00 1.00 1.01 2.92 1.10 6.88
industry2 1.00 1.00 1.02 3.17 1.04 7.15

master processor. The quality of the solutions shows no degradation as the number of processors

increases - in fact, they sometimes show improvements because of the periodic exchange of

solutions. The algorithm scales much better than the parallel moves approach. As expected,

communication time is not significant since the number of messages sent is few. Note that the

speedup and quality are much better than can be achieved with a pure parallel moves strategy

as presented in the previous chapter.

Sun and Sechen have used a modified parallel moves approach to achieve similar speedup

results [44]. Though they use parallel moves and partitioned circuits, at each iteration, as in mul-

tiple Markov chains, solutions are exchanged among processors. They do not have to process

frequent update messages.

If improving the run time is not the goal,
�
������������
���	���� �

can be used in another mode

to provide better solutions for the same run time. Table 4.4 compares
� � �
	����� ���������

on one

processor with
�
�� ���������
����	���� �

on four processors. The solution quality is improved by an

average of 9% at a cost of only 3% in run time. To achieve that type of quality improvement in
� ����	�������
�������

would require significantly more computation time.

4.4 Summary

In this chapter, we discussed using multiple Markov chains for parallelizing simulated an-

nealing based cell placement. Conceptually a very simple algorithm, MMC, is a very promising

29

Table 4.3:
���������������
���
	���� �

Results (Intel Paragon)

2 procs 4 procs 8 procs
Circuit W S W S W S
s298 1.00 1.00 1.02 2.28 1.03 2.80
s420 1.00 1.00 1.01 2.84 1.09 5.91
primary1 1.00 1.00 1.01 2.78 1.06 5.67
industry1 1.00 1.00 1.01 2.99 1.03 6.76
primary2 1.00 1.00 1.02 2.93 1.09 6.75
circuit 1.00 1.00 1.07 2.97 1.08 6.90
industry2 1.00 1.00 0.95 3.13 1.09 6.79

Table 4.4:
�
 �����������
����	���� �

Quality Improvement (Sun SparcServer 1000E)

� ���
	����������� ��� �
 �����������
����	���� �

1 procs 4 procs
Circuit W S W S
biomed 1.00 1.00 0.82 0.95
circuit 1.00 1.00 0.91 0.98
industry2 1.00 1.00 0.97 0.94
avq.large 1.00 1.00 0.94 1.02

30

approach to parallelizing the cell placement problem. It offers excellent speedups with modest

degradations in quality. Multiple Markov chains can also be used to improve the quality of the

resultant placement at very little extra computation cost. The main disadvantage of this algo-

rithm is that it is not memory scalable, since the circuit must be replicated on all processors.

In addition, as the number of processors increases, the placement quality degrades, but not as

severely as with parallel moves.

31

CHAPTER 5

SPECULATIVE COMPUTATION APPROACH

Another approach recently suggested for generalized parallel simulated annealing is specu-

lative computation [56]. Witte et al. applied this approach to the task assignment problem and

found speedups approaching
� ����� � , where � is the number of processors. In this chapter, we

apply the concept of speculative computation to cell placement and determine the applicability

of such an approach. We first give a brief description of the algorithm.

5.1 Generalized Speculative Computation

A sequential simulated annealing schedule is simply a series of move proposals intended

to reduce some cost function as related to the particular problem. Each move consists of three

parts - the proposal or perturbation, evaluation, and decision. Only after these three parts are

completed is the next move started. Since the decision made by the next move is dependent on

the current state as determined by prior moves, simulated annealing is almost inherently serial in

nature. However, note that if none of the moves are accepted, the state does not change and the

opportunity exists for parallelizing moves. This is the approach taken by [41] and was recently

suggested again by [57]. Parallelization through speculative computation is similar except that

it also attempts to accelerate accepted moves as well.

Consider the decision tree of moves in Figure 5.1(a). The top node represents a move at-

tempted in a simulated annealing process. There are two possible decisions as a result of this

move - acceptance or rejection. Speculative computation will assign two different processors

32

reject

3

0

1

2

4

5 6

reject accept

reject accept

accept reject

3

0

1

2

reject

reject

0

1

2

accept

accept

3

accept

Figure 5.1: Speculative computation trees.

to speculatively work on the two possibilities before the parent move has completed. The re-

jection child can start at the same time as the parent, since it will assume that the state has not

changed. After the parent has completed the move proposal, it can then relay the new state to

the accept processor. The communication behavior is illustrated on the timeline in Figure 5.2.

In the figure,
) � is the time to propose and perform a move,

) � is the evaluation time, and
) � is

the decision time. In this example, the decision tree has gone from node 0 (accept) to node 4 (re-

ject) to node 5. Comparing the parallel time with the sequential time on the same graph shows

the potential speedups of speculative computation.

As the acceptance characteristics of the procedure vary, the shape and bias of the tree can

also change. For example, if the acceptance rate is high, it would make sense to generate a linear

tree of only acceptance nodes, and on the other hand, a very low acceptance rate would imply

the creation of only rejection nodes (Figures 5.1(b) and (c)). This latter mode is essentially the

mode in which the algorithms proposed by [41] and [57] operate. Witte et al. constructed an

analytical model that placed the speedup approximately at
� ������� �

��� � ���	� � �	��� � � . In the extreme, it is

also limited by the inverse of the annealing acceptance rate in the low temperature region and

the inverse of the rejection rate in the high temperature region. This latter limit is essentially

the serial subset length called

 � ���
 by Kravitz [41]. It was ignored by Witte et al. but it is

necessary since it accounts for the maximum expected length of each linear tree used at the

extreme temperature regions.

33

tm

0

1

2

3

4

5

6

Sequential

tm

tm

tm

tm

tm

tm

tm

te td

te td

te td

te td

te td

te td

te td

te td

tm te tdtm te td

Path taken is 0-4-5 (accept-reject)

Processor

Time

Figure 5.2: Seven-processor speculative computation timeline.

5.2 Speculative Computation for Placement

Since speculative computation seems to be a promising avenue to achieve at least some

speedup in the high temperature region, we decided to investigate the applicability of such an

approach to the cell placement problem. The problem fits naturally into an actor-based frame-

work, in that each speculated move can be represented by an actor. One of the major changes

we made to the algorithm was to add some asynchronous behavior by removing the need for a

centralized root processor that was required to start off each tree. Eliminating this synchroniza-

tion point allows multiple speculative trees to be active at once. Indexing was used to properly

order the execution of trees.

Another major modification made to Witte’s algorithm was to transfer only the move pro-

posal to the accept child rather than the entire state after the move. That is, if the root node were

to propose moving a cell to a new location, it would convey the cell number and new location to

the accept child, and the child would be responsible for duplicating the move. As with multiple

Markov chains, this decision was made because of the potentially large size of the cell state.

Once a speculative move has been determined to be false, the actor responsible for the move

34

Table 5.1:
�
������������
���	����

Results (Sun 4/690MP)

1 procs 2 procs 4 procs
Circuit W S W S W S
fract 1.00 1.00 1.00 0.30 1.00 0.22
s298 1.00 1.00 1.00 0.25 1.00 0.18
primary1 1.00 1.00 1.00 0.23 1.00 0.20

must then abort its move as well as all its parent’s moves. It must then update its cell database

with the moves from the correct path.

An outline of the algorithm is given in the code fragment in Figure 5.3. For simplicity, the

details of the asynchronous algorithm are not shown. The
��� � ���� � �� constructor creates the

child actors. If the actor is the root of the tree, it continues and evaluates the move. If it is

accepted, the accept child is told to continue while the reject child is aborted, and vice-versa if

the move is rejected. Once the state has been updated, a new tree can be started.

5.3 Experimental Results and Analysis

After the modifications were made, the implementation, called
�
���� ������������	����

, was run

on a variety of circuits and machines as shown in Table 5.1. As can be seen from the table,

the wirelengths are identical, as expected. The speedups, however, are disappointingly poor, as

indicated by the drastic slowdowns. The primary reason for this behavior is the faultiness of

Witte’s model when applied to cell placement - particularly
� ���
	����������� ���

. Witte makes two

main assumptions - the time to perform and propose a move is small compared to the evaluation

of the move, and second, the outcome of that move or the resultant state is easily communicable.

Consider the following analysis. The serial time for
� ����	�������
�������

as stated before is

) ��� � ��� �) ��� �) � �) � � (5.1)

35

� � � � � �
�
�
���
�
� � ��� � � � ��� ��� �
� � � � ������� � � � �� � ��� �
��� ������
��� � ����� ����
 � ���
 ������� � ��� � � ��� � � � � � � �
�

��� � ����� ����
 � � � ����� � ���� ��� � ���� � �
 ��� � � � �
�

��� � � ���������� � � � � � � � � � �
�� � � � ��� � ����� � ��� � ���� � � ������� � ��� � � ����
 ����� � � � ��� � �
�����
 � ��� � � ��� � � ����� � �� � � � ��� � � � � � � � � � � � �

�
� ������ � � � ����� � � � � � �	� � ��� � � � � � � � � � � � �
�
�

� ����������� � ����� � ��� � ���� � � ������� � ��� � � ����
 ����� � � � ��� � �
�����
 � ��� � � ��� � � ����� � � ��� ������� � � � � � � � � � � � �
� � � � � � ��� � � � � � ��� � � ����� � � �

�

� � ��� ��� � ��� � � �� � � ������� ����� � �
�

� � � � ��� ����� ��� ����� � � � � � �
� ������� ����� � � ������� ��� � ������� � � ��� ������� ������� � � � �
��	�����
 � � ��� � ��� � � ����� � � � � � � � ������� � � � �
��� � � � �
� � � � � � � � �
��� � � � ������� � ������������� � � � � � �
� � � � � ����� ��� �

 � ����� � ����� � � �� � ��� � � ��� � ��� � �� � ��� � � �

��� � ��� � � �� � ����� � � ������� ��� � ������� � � � � � � � � � � � � ����� ����� �
����
� ��� � � �

� ������� ����� � � ������� ��� � ������� � �� � � � ��� ������� � � � �
��	�����
 � � ��� � ��� � � ����� � � ��� ����� � ������� � � � �

�
�

� � ��� ��� � ��� � � �� � ��	������� �
�

�
� � � � � �� ������ � � � � � �
��	�� �
 ������� � ��� � � ��� � � � ��� ��� ��� ����� � � � � �
��	�� �
 ������� � ��� � � ��� � � �� � � � ��� ����� � � � � �

�

Figure 5.3: Outline of the
�
�� ���������
����	����

algorithm.

36

Table 5.2: Task Time Measurements

Task time (� �)
Proposal and evaluation

cell exchange 87.8
cell move 43.2

Accept 5.4
Update after accept

cell exchange 30.6
cell move 14.8

Speculative move
cell exchange 116.2
cell move 48.3

In terms of Witte’s model,
) ��� �) � �) � , and

) � is not incorporated into Witte’s model. In

a parallel implementation, the execution time is

)
	 � �
�

�
� � � � � � �)

� �� �) � �) ��� � � �) � �) � � (5.2)

where
�

is the expected length of the tree,
)

� is the time required for communicating a proposal,

and
) � � is the time required to perform a parent’s move. The speedup is

� � � �) ��� �) � �) � �� � � ��� �)
� � �) � �) ��� � � �) ��� �) � �) � (5.3)

The term
� � � � � �)

� �� �) � �) ��� � � is the cost due to performing the parent’s updates. If this

term is small, then the speedup is simply
�

, which in the extreme temperature regions is
�

, and

at worst is
� � � �

. However, our measurements have shown that this is not the case. In
� ���
	����	

����� �����
, the move and evaluation steps are combined into one for efficiency, since the process

of changing data structures to reflect the move also easily allows the incremental calculation

of the cost. The time to decide whether to accept is therefore minimal. After the move has

been accepted, the appropriate data structures must then be updated. We were able to measure

the times of various moves to gauge their impact on the algorithm (Table 5.2). Note that the

proposal and evaluation time is the largest portion of a full move.

37

Since our implementation requires the child node to redo the parent’s moves, we also mea-

sured the speculative move time(
) � �), that is, the time that a child node requires to perform

its parent’s move. This time is essentially the proposal and evaluation time plus some time to

update associated data structures. Note that even though the accept stage is not performed, the

times are comparable with a non-speculative move. With such times dominating the move time,

it is clear why cell placement parallelism through speculative computation is inefficient. For a

two-processor system, we found that 48.9% of an actor’s time was spent waiting for the other ac-

tor to finish. The primary reason for this idle time, which drastically hinders parallelism, is that,

because of the expense of performing speculative moves, parent nodes must wait for the child

to perform its moves as well as its parent’s moves. For a two-level tree, the child is performing

essentially twice as much work. The amount of idle time will increase with the number of levels

in the tree, though our asynchronous implementation attempts to address that by starting future

trees ahead of time.

Another problem that affects parallelization of
� � �
	����� ���������

is its relatively high accep-

tance rate. The steady region attempts to maintain an acceptance rate of 44%. Naturally, this

leads to poor speculative computation behavior, since a lot of work must be duplicated. On a

two-processor system, we found that 23.4% of the actor time was spent either performing par-

ent’s moves, aborting moves, or updating the other actor’s moves. In light of these problems

and those mentioned above, it is clear that speculative computation is not a feasible approach

to parallelization of cell placement.

5.4 Summary

In this chapter, we have described the speculative computation approach to parallel simu-

lated annealing and applied it to the cell placement problem. The characteristics of cell place-

ment make speculative computation an inadequate means of parallelization. Though it is ex-

cellent in terms of retaining solution quality, there is no opportunity for parallelism using this

method.

38

CHAPTER 6

CIRCUIT PARTITIONED APPROACH

As circuit sizes increase, it becomes more and more infeasible to adequately address VLSI

CAD problems on a single processor as a result of inordinate memory requirements. This is

especially true in the area of cell placement where design sizes are approaching 100,000 cells

and more. In the past, designers have partitioned the circuit into more manageable subcircuits

and then suffered a loss of quality on the placement of the subdivided circuit. In this chapter,

a method is presented that takes advantage of the large memory resources spread across multi-

ple processors in a parallel processing machine and still achieves faster placement times with-

out loss of quality. The implementation of this circuit partitioned parallel algorithm developed

using ProperCAD II is called
�
������������
���	�����
�

. We also present an implementation of the

algorithm using MPI.

6.1 An Object-Oriented Cell Placement Algorithm

As with the work described in earlier chapters,
�
�� ���������
����	�������

is based on
� ���
	 ���	

����� �����
6.0. The current version of

� ����	�������
�������
, 7.0 could not be used because the code was

not available. The concepts of parallelization, though, will hold for the newer version as well.

To understand the parallelization procedure, some further explanation of the data structures used

in
� � �
	����� ���������

6.0 is necessary. The circuit information is described primarily with the use

of three arrays - the list of cells, the list of nets, and finally an array describing row information.

Each cell data structure contains positional information as well a linked list of pins that belong

39

BkList
Circuit

NtList

ClList

Figure 6.1: Relationships between objects.

to the cell. Likewise, each net data structure has bounding box information as well as a linked

list of pins that belong to the net. The pin data structures are shared by both the cell and net

linked lists.

In an object-oriented framework such as ProperCAD II, these data structures must be con-

verted to C++ objects. The cell and net structures are converted into
�������

and
��� �

C++ classes,

respectively. Of particular interest are the cell and net arrays, which now become the
������� � �

and
������� � � C++ objects. A

� � ��� � � object is used to keep track of row information as well as

the bins used for overlap penalty calculation. All the objects are integrated together in an object

called
� � �� ���	�

which manages the core annealing algorithm. In addition, the
��� ��	��� �

object

also contains many of the global parameters and flags that are relevant during annealing. In this

new formulation, the
� � ��	���	�

object makes requests to the
� ����� � � object to pick a

�
�����
to

move. A new location and possible cell to exchange with are chosen by making a request to the
� � � � � � data structure. The

� � �	���	�
object then asks the chosen

�
�����
to evaluate the net cost

of the move. This is done by making requests of the
� ����� � � on the appropriate

��� � � . Simi-

lar mechanisms are taken to calculate the row and overlap penalties. The relationships between

these objects are shown graphically in Figure 6.1.

The core algorithm is shown in the
� � �	���	� � � �
��� � � � � code fragment in Figure 6.2. The

� � �	���	�
object asks the

������� � � object through the
��� � � �
�
���
� � � method to pick a

�
�����
to

40

move. A new location for the cell is chosen by making a request to the
� � ��� � � data structure.

The
� � �� ���	�

object then asks the
� ��� � � � to evaluate the delta cost of the move of the cho-

sen
�
���
�

. If the move is accepted, then the data structures are updated through
��� � � � ���
���
� � �

which updates each net attached to
�
���
�

, through the
��� � � � ��� ��� � � method.

6.2 Parallelism Through Inheritance

To remain compatible with the arrays in the sequential code, we need arrays with distributed

semantics. This is accomplished easily with the use of aggregates [19]. An aggregate in its

simplest form is a collection of actors distributed across the available processors in the system.

In the case of an array, an aggregate acts as a single name for the array that has been decomposed

across many processors.

For example, we can simply create a new distributed class,
��������������

, that is derived from

the
� ��� � � � class as well as the aggregate class, as below.

��� �	�
� �
������������ ����	������ ������� � � ����	���� � ���������� � � � �
�
� ���
 ��� � � �
�
�����	� � �
�
���

���

By doing so, the
�
������������

class has representative actors on each processor that are respon-

sible for the cells allocated to that particular processor. Thus, a request made to access a partic-

ular cell can be made to the local representative actor which will then forward it on to the actor

on the thread where the cell is actually present. A similar transformation is done for
� ����� � � . In

total, there are aggregates for the cells (
�
������������

), nets (
������������

), and rows (
� ����� � ������), as

well as the
� � �	���	��������

that is derived from
� � ��	���	�

. The dashed line in Figure 6.3 indicates

the separation between two threads. Note that the individual cells and nets are not replicated.

How does this data distribution affect the transformation of the serial program to a parallel

version? The main operations in the
� � �� ���	�
 � �
��� � � � � method are picking a cell to move,

evaluating the move, deciding whether to accept, and updating the cell structure. The evaluation

41

��� � �
� � � ��	� �	� �
� ��� � � �
 � �
 � � �
� ��� � � �
 ��� � � � � � �
� � � � � �
 	 �
 � � �
�
�
�

���

� � �	���	� � � �
��� � � � �
�
��������� � � ���� � � � ������� ��� ��� � � ����� ��� ���

�
 � �
������� � � � � � �
��� � � � ����� � � �
�

� � �	���	� � �
 � ����������� � � � �
�
�
���
�
 � ����� � � � � � � � ��� � � �
�
�����	� � �
����������� � ������� � 	 � � � � � ����������� � ������� � � �
����� � � � � � � � � �
 � � � � � � � � � � ����� � � � ������� ������������ � ������� � �
� � � � ��� ��������� � � � � ��� � � ��� � � � �

� �
 � � � ��� � � � ���
����� � � ����� � ��������� � � ����� � �

�

� ��� � � �
 ��� � � �����
�����	� �
� ���
 � ����� � � � �	� ��� �
 ��������� � � � ��� � �
�
��� � �	� �� � � �� ��� � ��� � ���
� � �
� � � � ���� �
��������� � ���
 � ��� � ��� ��� �

���
�	�� ��� � � � ����� � � � ��� � � � ��������� � � ����� � �
��� � � � � � � ��� � � � ��� � � � � � �
 � �

�
�

Figure 6.2: Core code for serial algorithm.

42

Circuit

NetAggr

CellAggr

BlockAggr

Circuit CircuitAggr

Thread 0 Thread 1

Figure 6.3: Relationships between distributed objects.

and decision phases are independent of location of the cell. Picking a cell should be made only

from the local pool of cells. To accomplish this, we make
� ����� � � � ��� � � �
�
�����	� � a virtual

base function and rewrite the implementation as shown in Figure 6.4.

Likewise, although updating cells is a local operation, the updating of nets may not be lo-

cal because the adjacent nets are distributed. Therefore,
� ����� � �
 ���	� � � ����� � � � is now made

virtual and rewritten as in Figure 6.4. We use the continuation invocation mechanism to invoke

a remote
������������
 ��� � � � ��� ��� � � . The invocation of the remote method is asynchronous, so

the update is in effect a “lazy” update.

The presence of the updates causes an interesting problem. Since actor methods are run to

completion without preemption, if
��� ��	��� �
 � ����� � � � � is left as it is, the while loop will run

to completion before any update messages can be serviced by the run-time system. In order to

give these messages an opportunity to arrive, the while loop must be transformed into message-

driven code. As seen in Figure 6.5, through the use of virtual functions again, the � �
� � � � � �

method is modified to try only one move, and then re-enable itself by executing an asynchronous

continuation to itself. Similar transformations have been discussed in [58].

43

�
� ���
 �
������������ � ��� � � �
�
�����	� �
�
�
� ��� � ����� �
��� �

������� � � ��� � � �
 ��� � � ���
����� � � �
� ��������� � � � � � ��� � � ������� � ������� � � �
�

��� �	�
� ��� �������� ����	���� � � ����� � � ���
	���� � �����
���� � ��� �
� ����� ��� � � ����� � � � ��� �
 � �
��� �	�
� ��� � � � ��� � � ����	�� � � ��� � ����� ����� ����� � � � �
���

���

� � ��� ��� ��������
 ��� � � � ��� � � � � � �
 � � � � �	�������
 ��� � � � ��� � �
�
� � � � � ����� � � ��� � � � � �

������� � �
 ��� � � � ��� ��� � � ����� � � ����� � �
� ��� � � �

��� � � � ��� � �
 � ����� ����� � � ����� ������� � ��� � � � ��� � � ��� � � � �
��������� � ����� � ������� � �

�
�

Figure 6.4: Code for
� � �������

and
��������������

.

44

��� �	�
� � � ��	� �	�������
 ���
	���� � � � �	���	� ���
	���� � �����
���� � ��� �
� � ��� � �
��� � �	� � �
��� �	�
� � �
��� � �� ����	 ��� � ��� � � ���� ��� ����� ��� � �
���

���

� � ��� ��� ��	��� ��������
 � �
� � � � � �
�
�
 � �
����� ��� � � � � �
� � � ���� � � � � � ����� ��� ��� � � ����� ��� ��� �

� � ��	���	�������� � � �
��� � ��
 ������������� � ������� ������� � � ����� � � �
��� ����� � �

� ��� � � �
������� � ����� � � �

�
�

Figure 6.5: Code for
� � ��	���	��������

.

6.2.1 Data distribution

The circuit is read in on a single thread, and as each cell and net are read in, the associ-

ated data structures are distributed to the other threads. The process of determining those cells

which are assigned to a processor is done using a prepartitioning phase. There are two primary

concerns in our partitioning. First, the load balance must be maintained, i.e., each partition

should have roughly the same number of cells. Second, the number of nets cut should be min-

imized to decrease the interaction between partitions. The necessity of these requirements will

become clear in the following section on parallelization. Ratio cut methods have long been used

in the CAD community because of their effectiveness at reducing the cut size. However, these

methods are inappropriate for our use because they do not provide well-balanced partitions. We

have instead used a partitioning algorithm based on the Sanchis modification of the Fiduccia-

Mattheyses algorithm [59,60]. Graph partitioning methods such as recursive spectral bisection

or METIS may alternatively be used [61, 62].

45

local
nets

crossing
nets

Figure 6.6: Crossing nets.

6.3 Parallel Algorithm

Once the circuit has been read in and distributed, the annealing procedure can begin. The
� � �	���	��������

representative actor on each thread will then perform simulated annealing on its

partition of the entire circuit, by making the same requests as the serial
� � �� ���	�

object. Now,

these requests are handled by the
�
���
��������

class, so that when a request is made to move a

cell, the local
�
������������

representative picks one from the pool of cells available on its thread.

It does not supply cells from other threads. When a request is made to evaluate the cost of a cell

move, the connected
��� �

objects may be located on another thread. One option would be for

the
��� ��������

to send a message to the appropriate representative to request a calculation of the

cost. The overhead involved in the communication makes this prohibitive. Therefore, copies

of these nets that span multiple threads are replicated locally. An example of these “crossing”

nets is shown in Figure 6.6.

6.4 Error Control

As described above, each actor independently places its partition of cells without concern

for the remainder of cells. Obviously, this can cause inaccuracy in the calculation of cost. As

46

there are three components to the
�����
	���������������

cost function, there are likewise three main

cost errors - wirelength cost, overlap penalty cost, and row penalty cost.

6.4.1 Wirelength error

Though the effect of the wirelength error is decreased because of the partitioning to min-

imize net cut, at high temperatures with frequent movement of cells, it is clear that the error

will be significant at the partition borders. The “border” in this context is the cutline and may

bear no resemblance to the actual geographical placement border. In order to keep the threads

up to date with respect to wirelength cost, at fixed intervals, updates of this border information

are made in a two-stage process. In the first stage, each thread sends its pins that are on “cross-

ing” nets to the owner of the net. Once all the foreign pins for a net have been received, the net

information is distributed to all the threads that have a copy of that net.

6.4.2 Overlap penalty error

In addition to the wirelength error, even with a proper partitioning, overlap penalty error

is still a serious problem. Without knowing the overlap penalties due to cells on other proces-

sors, each partition will tend to collapse to the center of the layout. Therefore, each thread must

keep the penalties associated with the other cells but will assume that these “foreign” cells are

fixed. The bin structure is shown in Figure 6.7. The positions of the fixed cells are obtained by

performing cell position updates. Because of the cost of these updates, these are done very in-

frequently, at each
� ����	�������
�������

iteration. To further reduce the overlap penalty error, when

the cells from all the other threads have been received, each thread individually removes the

overlaps by shifting cells appropriately.

6.4.3 Row penalty error

The pin and cell updates address the wirelength and overlap errors, but they do not ade-

quately address the row penalty error. This error is particularly severe, because of a peculiar

“ping-pong” effect. The row penalty is used to force the final placement to have equal length

47

Row

Cell 1
(Local)

Fixed Cell
(Remote)

Bins
Overlap

Figure 6.7: Fixed cells in bins.

Desired
row length

2

3

4

1

(a) Iteration 1

Desired
row length

2

3

4

1

(b) Iteration 2

Figure 6.8: Effect of row penalty error.

rows, and in a parallel environment this can cause problems. Take for example, the situation in

Figure 6.8(a). Row 1 is too short and row 4 is too long; thus, all the threads will try to move

cells from row 4 to row 1. By the next iteration, row 1 has become too long and row 4 is now

too short (Figure 6.8(b)). It is clear that this type of row shifting will continue without making

any real progress in improving the placement.

We address this problem with three methods. The first is based on the observation that each

thread is trying to satisfy a short row without realizing that other threads are doing the same

thing. Therefore, we decrease the desired row length to take account of this. Depending on the

range limiter, each thread is expected to contribute only part of the cells required to equalize a

short row. For example, the placement from Figure 6.8(a) is redrawn in Figure 6.9 with a shorter

desired row length.

The second method of addressing the row penalty error is to update the actual row sizes at

distinct intervals. Since the amount of data sent is minimal, these updates can be done frequently

48

Adjusted
Desired

row length

2

3

4

1

(a) Iteration 1

2

3

4

1

(b) Iteration 2

Actual
Desired

row length

Figure 6.9: Example of desired row length adjustment.

without a loss of performance. These row updates are done using a lazy propagation update

method.

The final heuristic to reduce the row penalty error takes advantage of the penalty feedback

mechanism built into
� � �
	����� ���������

. Recall from Eq. (2.2) that the weight of the row penalty

in the cost function is adjusted with a sophisticated feedback mechanism. Using experimental

observations, the authors of
� � �
	����� ���������

have determined the optimal row penalty for each

iteration, and then they adjusted the feedback coefficient so that the annealing schedule was

close to this target penalty. Equation (6.1) shows the target penalty calculation.
� � is the total

row length.

�
�
� �

��� �� �
����� � ��� � � 	 �

�
� 	�� �
	 � � �

�
����� � � �
� ��� � (6.1)

In a parallel setting, our experiments have shown that this target penalty is not sufficient.

For example, Figure 6.10(a) shows the row penalty for the primary2 circuit for four processors

plotted against the iteration number. For comparison, the
� ���
	����������� ���

target penalty is plot-

ted. As can be seen, the target penalty is off considerably in the earlier iterations. This deviation

affects the � coefficient considerably and thus the cost function in Eq. (2.2) is biased towards

reducing the row penalty. For this reason, we use a modified target row penalty schedule as

shown in Eq. (6.2). � is the number of processors being used, and � is the break point. We

49

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100 120 140 160

R
ow

 p
en

al
ty

Iteration number

ProperPLACE 2.0 actual row penalty
TimberWolfSC target row penalty

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100 120 140 160

R
ow

 p
en

al
ty

Iteration number

ProperPLACE 2.0 actual row penalty
ProperPLACE 2.0 target row penalty

(a)
� ���
	 �������� �����

(b) adjusted for
�
������������
���	�����
�

Figure 6.10: Target row length penalty.

have found that this adjustment makes a tremendous positive effect on the quality of the circuit

placement. Note from Figure 6.10(b) that with this modification, the row penalty error is much

better controlled.

�
�
� �

������� ������
�
����� � � � � � � � � � � � � �

�

� � �
	 ���

�
����� � ��� � � 	 �

�
� 	 � ����� �
	 ��� �

�
����� � � �
� ��� �

(6.2)

6.4.4 Dynamic error control

The error control mechanisms described above rely heavily on the use of updates. The cell

updates are performed at fixed intervals; however, the absolute frequency of the row and pin

updates was not specified. We use a mechanism called dynamic error control, where the fre-

quency of the updates is adjusted according to the amount of error present. Several researchers

have determined that bounding the accumulated error to a constant factor of the temperature

will still guarantee convergence [34, 45].

50

6.5 Dynamic Redistribution

The final element of our parallel algorithm is the dynamic redistribution. As the annealing

schedule proceeds, the initial partition becomes more irrelevant since it corresponds very little

to the geographic partitioning of the rows. While the initial partitioning does reduce the amount

of communication in terms of pin updates, the partition being spread across many rows can af-

fect the row penalty calculations as well as cell mobility. For this reason, it is a good idea to

repartition the cells so that the partition actually reflects the geographical row-based partition.

The nets are assigned to the partition that contains the most cells from the particular net. The

repartitioning is started only after the cells have settled within some proximity to their final des-

tinations. This is done so that the net cut set will be reduced. Through empirical evidence, we

have determined that repartitioning should begin at the 40th
� ���
	 �������� �����

iteration, and every

four iterations thereafter until iteration 120. After this point, the range limiter is so small that

cells no longer move out of a row, so repartitioning is no longer necessary. Casotto et al. use

a repartitioning scheme as well, but they are forced to repartition much more often and use a

secondary simulated annealing procedure to perform the repartitioning [63]. Our method does

not require frequent repartitioning because of the use of other error control methods, and the

use of geographical row-based partitioning simplifies the partitioning procedure.

Redistribution is a synchronizing operation that has to be supported in an asynchronous

message-driven environment. Enforcing synchronization in such an environment can be done

by ensuring in the program flow that all threads arrive at the same point and process the synchro-

nization step. In the sample code in Figure 6.11,
� � �� ���	��������
 � �
��� � �	� � has been modified

to start up repartitioning when necessary as explained above. All the processors will find new

locations for their cells and send them to the appropriate place using the
� � � ��������� � continu-

ation. Once a processor has received all the
��� � ���
����� � � � � from all other processors, it can

re-enable the � �
��� � �	� � continuation once again. The waiting for
��� � ���
����� � � � becomes the

synchronization point, but once the � ����� � � � � � � ����� �
has been re-enabled, the asynchronous

behavior can start again.

51

� ����� � � ��	� �	�������

 � ����� � � � �
�
�� � �
���
����� � � � � �
� � � � ��� � ��� � ��� � � �	� ����� � � �

� � � ��� � � ��� � � � � ����������� � � � �
� � ���
� � � ���
� ����� � � � � � � � � ����� ��� �� � � ��� �
� �� � ��� � � ����������� ����� � ��� ������� � � � � � �

� ��� ����� � ��� � � � ���������
��� � � ����� � � � � � � � � �� �
� � � � � � ����� ��� � � � � ����� � � � � � � � �� �

�
� �� � ��� � � ��������� ������ � � � � � �
� � �

��������������
 ��� � ���
� ��� �
 � ����� � ��� � � ��� � ����� ��� � � � � � �� ���� � � ����� � � � � � � � � � �
��������� ��� � � � � � ��� �

�
� ��� � � � � � ���� � � � � � ����� ��� ��� � � ����� ��� � � �

��� ��	��� ��������
 � �
� � � ��
 � ����� � ��� � � ����� ����� ��� � ����� � � �
��������� � �

� ��� � � �
� � ��� � � ��� � � �

�
�

� ����� �
������������
 � � � ��������� � � ��� � ���
����� � � �
 ��� � � � �
�
��� �
��� � � �
� � � ��� ��� � � � � ����� � � � ����� � � � � � �
���
�
� � � ��� �
��� ��� ����� ������ � � � � �

� � ���	���� � 	 ��� � �
��� � � � �
��� ��	��� ��������
 � �
� � � ��
 � ����� � ��� � � ����� ����� ��� � � ��� � � � � �
��������� � �
��� �
��� � � �

�
�

Figure 6.11: Code for repartitioning.

52

�
�� ���������
����	������� ���
1 if actor on thread 0
2 then read circuit and distribute cells and nets to different threads
3 for each thread
4 do while termination not reached
5 do while

� ���
	 �������� �����
iteration not complete

6 do ATTEMPT-MOVE
���

7 +)) � � �) � ��& #) � �
8 if +)) � � �) � ��&(#)��
� � � �

9 then UPDATE-PINS
���

10 if +)) � � �) � ��& #)��
�� � � �

11 then UPDATE-ROWS
���

12 FIX-ROW-DESIRES
���

13 adjust
 and
��
14 UPDATE-FIXED-CELLS

���
15 REMOVE-OVERLAPS

���
16 if time to repartition
17 then REPARTITION

���

Figure 6.12: Outline of the
�
������������
���	�����
�

algorithm.

6.6 Algorithm Analysis

The
�
�� ���������
����	�������

algorithm is summarized in Figure 6.12, where
 is the number

of moves attempted between pin updates and
 � is the number of moves attempted between row

updates. These values are adjusted dynamically.

The major overhead contributions in
�
���� ������������	��������

are due to the communication in-

volved in the updates of the pins, rows, and cells. Assuming a balanced distribution of cells,

each thread will attempt
�� moves, where � is the number of moves attempted by

� ���
	 ���	

����� �����
, and

�
is the number of threads. Therefore, there are

������ pin updates and
������ row

updates.
� ���
	����������� ���

typically completes 160 iterations, which means that there are 160

cell updates. If we define speedup,
�

, as �
	��
�

�
���� , then we arrive at the following:

) ��� � � �) � (6.3)

53

)
	 � � �
�) � �

�
�
�

) � �
�

�
 �
) � �!� � � �) � � (6.4)

� � �) ��� �) � � � � �� � � � � �� � � � ��� �) � �

(6.5)

where
) � ,

) � ,) � � , and
) � � are the move attempt, pin update, row update, and cell update times,

respectively. Since repartitioning is done infrequently we can ignore this component. Assuming

a communication cost model of
)

�
�)

� � �)�� where
)
� is the overhead cost and

)��
is the per-byte

cost, an analysis of the communication pattern and typical circuit characteristics shows

) � � � ���)
� �

��� �)����
(6.6)

) � ��� � �)
� �

�	�)�� �
(6.7)

) � � � � � �)
� �

� � � �)�� � (6.8)

where is the number of cells and
�

is the number of rows.
� ���
	 �������� �����

statically sets the

number of moves, � , to
� ����� � �	�
�
 ��� . Substituting for � in Eq. (6.5) along with Eq. (6.8), we

can see that the
) � � term can be ignored in

�
. Likewise, if we simplify the communication model

and ignore
)
� , we arrive at

� � �) �) � � � � � ��
� � �� � � ��
� � (6.9)

It is clear that
 and
�� are the keys to determining the expected speedup. From experi-

ments, we have determined that setting
 � to 30 and
 to
�
 yield the best tradeoff between

quality and speedup.

54

Table 6.1:
���������������
���
	�������

Results (Sun SparcServer 1000E)

� ����	�������
������� �
���� ������������	��������

version 6.0 1 proc 4 procs 8 procs
Circuit Run time(s) W S W S W S
primary1

�,� �
�
�

1.02 1.16 1.01 2.79 1.03 5.83
industry1

� ��� �
�
�

1.01 1.23 1.06 3.20 1.08 4.36
primary2

� �%� �
�
�

1.01 1.11 1.02 3.20 1.03 6.05
biomed

� � � �
��� 0.92 1.16 1.08 2.20 1.10 5.04

industry2
�� ��� �

0.95 0.97 1.13 2.20 1.11 4.98
avq.large

� �%�	��
1.00 1.22 1.05 2.43 1.09 4.77

Average 0.98 1.14 1.06 2.67 1.07 5.17

6.7 Experimental Results

6.7.1 Speedup and quality

We ran
�
���� ������������	��������

on a Sun SparcServer 1000E, a shared memory multiproces-

sor, as well as two distributed memory machines, the Thinking Machines CM-5 and the Intel

Paragon. Results are presented for a set of benchmark circuits in Tables 6.1, 6.2, and 6.3. The

first column indicates the run time in seconds for the serial
� ���
	����������� ���

6.0 code running on

one processor. The following columns are the results for our parallel implementation. W repre-

sents the normalized wirelength cost of the resultant placement, and S is the speedup relative to

the serial
� � �
	����� ���������

. The dashed lines indicated that the circuit could not be run because

of excessive memory requirements. For these larger circuits (biomed, industry2, avq.large), the

reported
� ����	�������
�������

times are extrapolated from a Sun 4/690MP, a machine with compara-

ble uniprocessor performance.

These circuits show the advantage of using a circuit-partitioned approach to exploit the large

memory resources on distributed processors. As circuits get larger and larger, such an approach

is essential to place these circuits on memory starved machines. In addition, the algorithm pro-

vides speedups of 10 to 12 on 32 processors.

55

Table 6.2:
���������������
���
	�������

Results (Thinking Machines CM-5)

� ���
	����������� ��� �
���� ������������	��������

version 6.0 1 proc 8 procs 16 procs 32 procs
Circuit Run time(s) W S W S W S W S
primary1

�������
�
�

1.01 0.71 1.06 5.34 1.08 6.30
� �

industry1
� ���%�

� � 1.00 0.88 1.03 6.93 1.01 9.78 1.09 10.57
primary2

� � � �
�
�

1.03 1.00 1.06 4.07 1.09 7.43 1.13 9.89

biomed
�	� � ��

��� - - 1.05 4.54 1.13 6.20 1.10 9.89

industry2
� � �����

� � - - 1.04 5.04 1.08 7.44 1.10 10.14
Average 1.01 0.86 1.05 5.18 1.08 7.43 1.10 10.12

Table 6.3:
�
 �����������
����	�������

Results (Intel Paragon)

� ���
	����������� ��� �
���� ������������	��������

version 6.0 1 proc 8 procs 16 procs 32 procs
Circuit Run time(s) W S W S W S W S
primary1 � �

�
�
� �

1.01 0.93 1.00 4.41 1.08 6.42
� �

industry1
� ��� �

�
�

0.95 0.90 1.03 3.85 1.13 6.37 1.12 11.19
primary2

� � ���
��� 1.00 0.94 1.04 5.08 1.13 7.13 1.09 12.53

biomed
� �� ���

� � - - 1.03 2.73 1.06 6.62 1.07 12.06

industry2
��

� � ��� � - - 1.06 2.64 1.08 4.29 1.13 9.12

avq.large
� �,�

� ��� � - - - - 1.05 6.23 1.08 11.06
Average 0.99 0.92 1.02 3.74 1.09 6.18 1.10 11.19

6.7.2 Error control

We also compared the effect of
 � on the final quality and speedups. Figure 6.13 shows the

results for primary1 on an eight-processor SparcServer 1000. It can be seen that both
 � and

have significant effects on the quality and speedups. We have selected a
 � of 30 as an optimal

value.
 is more circuit dependent because the size of the pin update messages grows as the

circuit grows. Setting
 to
�
 provides the best tradeoff between performance and quality.

�
Estimated times extrapolated from Sun4 690/MP.�
Circuit was not large enough to be effectively partitioned over 32 processors.

56

275000

300000

325000

350000

375000

400000

500 1000 1500 2000 2500 3000 3500

Up

Ur=60

Ur=30

Ur=15

W
ire

le
n

g
th

60

65

70

75

80

85

90

500 1000 1500 2000 2500 3000 3500

Up

Ur=60

Ur=30

Ur=15

R
u

n
tim

e
 (

s)

(a) Effect on wirelength (b) Effect on run time

Figure 6.13: Effect of
 � and
 (primary1, SS1000, 8 processors).

Table 6.4: Effect of Error Control

� ����	�������
������� �
 �����������
����	�������
(8 procs)

1 proc No error control With error control
Circuit Wirelength Time(s) Wirelength Time(s) Wirelength Time(s)
primary1 294304 340.40 540142 50.35 302239 58.36
industry1 661644 1353.28 1052296 181.23 713913 312.65
primary2 1766174 3230.18 2499589 352.90 1864454 534.43

As a measure of the effectiveness of all the error control mechanisms, we turned off all these

mechanisms and compared the results. These are shown in Table 6.4. It can be seen that the

error control methods that we used contributed greatly to reducing the error, at a cost of some

speedup.

6.7.3 Comparison

We now compare this partitioned algorithm for parallel cell placement with the algorithms

detailed in earlier chapters, parallel moves (
�
�� ���������
����	����

), multiple Markov chains (
�
����
	

�������
����	���� �
), and speculative computation (

�
������������
���	����
). Table 6.5 shows the relative

wirelengths (W) and speedups (S) for a few circuits on an eight-processor Intel Paragon. The

partitioned algorithm does not offer speedups that are as good as
�
���� ������������	������

. However,

the key advantage is that the circuit has been partitioned allowing a very large circuit. Remem-

57

Table 6.5: Comparison with Previous Algorithms (Intel Paragon, 8 processors)

���������������
��� �
���� ����������� �
 �����������
��� ���������������
���

PART MMC PM SC
Circuit W S W S W S W S
primary1 1.06 4.99 1.06 5.67 1.04 3.95 1.00 0.20
primary2 1.09 4.79 1.09 6.75 1.10 3.85 1.00 0.20
avq.large 1.08 3.50 - - - - - -

ber that all previous parallel placement algorithms require the circuit to be duplicated, thereby

preventing very large circuits from being run. This is clear for the avq.large circuit which can

not be run with any of the algorithms because of inadequate memory. Moreover, the wirelengths

in
�
 �����������
����	�������

are comparable with those in
�
�� ���������
����	���� �

.

6.8 An MPI Implementation

Because of the wide variety of parallel architectures and thus programming models, there

has been a significant amount of work in creating a standard interface for writing message pass-

ing software. Among these are the Message Passing Interface [4], Parallel Virtual Machine

(PVM) [64], and p4 [65]. MPI seems to be gaining support as the de facto standard for an ac-

cepted message passing interface. It is an inclusive standard that supports virtually all styles of

send-receive communication, group protocols, reductions, and noncontiguous data structures.

In light of the popularity of the MPI standard, a version of the circuit partitioned algorithm

was implemented using the MPI protocol. This implementation will be compared with the Prop-

erCAD II version as a measurement of the efficiency of the ProperCAD II platform. Using an

actor model such as ProperCAD II offers certain programming conveniences and portability

across architectures, but it is not clear at what cost. This investigation should help answer that.

We implemented the algorithm using the Message Passing Interface (MPI) [66]. Using the

MPICH [67] library implementation of MPI, we were able to build an implementation of the

circuit partitioned algorithm called
���������������

. We ran
�����������
���

on a Sun SparcServer 1000E

as well as the Intel Paragon. The speedups and wirelengths for a set of benchmark circuits are

58

1

2

3

4

5

6

7

1 4 8

Number of Processors

avq.large
industry2
biomed
primary2
industry1
primary1

Sp
e

e
d

u
p

Circuit
340.4
1996.3
3230.2
9356.7

21556.0
52221.0

Serial
Runtime(s)

Figure 6.14:
�����������
���

speedups (Sun SparcServer 1000E).

shown in Figures 6.14 and 6.15, and Tables 6.6 and 6.7. The speedup graphs show an average

speedup of over 5 on 8 processors on the SparcServer and an average speedup of over 11 on

32 processors of the Paragon. The tables give the normalized wirelength cost of the resultant

placement, and the dashed lines indicate that the circuit could not be run because of excessive

memory requirements.

These results of
��� �������
��

are very similar to those for the
�
�� ���������
����	�������

version.

It is clear that the ProperCAD II environment does not present any significant overheads com-

Table 6.6:
�����������
���

Wirelengths (Sun SparcServer 1000E)

Circuit 1 proc 4 procs 8 procs
primary1 1.02 1.02 1.02
industry1 1.01 1.05 1.09
primary2 1.01 1.01 1.05
biomed 0.92 1.05 1.08
industry2 0.95 1.10 1.09
avq.large 1.00 1.07 1.07
Average 0.98 1.05 1.07

59

0

2

4

6

8

10

1 4 8 16

Number of Processors

avq.large
industry2
biomed
primary2
industry1
primary1

Sp
e

e
d

u
p

Circuit
786.7
3004.8
5108.7

16136.0
31777.0
62477.0

Serial
Runtime(s)

Figure 6.15:
�����������
���

speedups (Intel Paragon).

Table 6.7:
��� �������
��

Wirelengths (Intel Paragon)

Circuit 1 proc 4 procs 8 procs 16 procs
primary1 1.00 1.02 1.06 1.09
industry1 0.98 1.03 1.06 1.13
primary2 1.00 1.05 1.09 1.14
biomed - 1.04 1.04 1.08
industry2 - 1.07 1.06 1.09
avq.large - - 1.08 1.07
Average 0.99 1.04 1.07 1.10

60

Figure 6.16: Example of eight-way circuit partitioning.

pared to a normal message passing library such as MPI. The circuit partitioned algorithm ex-

hibits characteristics of an SPMD style of programming for which MPI is the natural interface.

Yet, the
�
���� ������������	��������

implementation is just as efficient, showing that ProperCAD II can

be used to write efficient SPMD code in spite of the message driven underlying model.

Using
�����������
���

we performed two more experiments to further show the usefulness of the

algorithm in situations where the circuit is too large to be placed in the memory of a single ma-

chine. The traditional approach has been to take these circuits, partition them, place each par-

tition separately and then merge the separate placements. As an example, Figure 6.16 shows

a large circuit that has been divided into eight smaller circuits. Each of these individual cir-

cuits can be placed independently and then finally combined into the larger placement. Using

a similar procedure, we took the largest circuit available to us, avq.large, and partitioned it into

eight subcircuits using the Fiduccia-Mattheyses method. Each partition is placed individually

using
�����
	���������������

and then merged back together. The results are shown in Table 6.8 along

with comparisons with
� ���
	����������� ���

and
�����������
���

. The run time reported for the partitioned
� ����	�������
�������

approach is the maximum of the run times for the eight partitions. Note that
�����������
���

has much better quality for roughly equivalent run times. Bear in mind, also, that

the time reported for the partitioned
� ����	�������
�������

approach includes only the placement time

and not the time for merging or partitioning the circuit.

In addition, we wanted to find how effective
�����������
���

is when run on a large number of

processors. Again using the avq.large circuit, we ran
��� �������
��

on an Intel Paragon with 128

61

Table 6.8: Comparison with Partitioned Placement (Sun SparcServer 1000E)

avq.large
Wirelength Run Time (s)

� ����	�������
�������
(1 processor) 11545887 79941

� ����	�������
�������
8-way partitioned (1 processor) 16642589 9699

�����������
���
(8 processors) 12406356 14975

Table 6.9:
�����������
���

Results (Intel Paragon, 128 processors)

avq.large
Wirelength Speedup

1 processor 11545887 -
16 processors 12406356 6.23
128 processors 28969401 55.1

processors. The results are shown in Table 6.9. Note that the quality suffers severely, so it is

clear that such an approach is not appropriate for a large number of processors unless the circuit

is sufficiently large. Current circuit sizes are not large enough to take advantage of such a large

number of processors, but in the future it is anticipated that circuits will be large enough.

6.9 Summary

In this chapter, we describe
�
�� ���������
����	�������

, a circuit partitioned approach to parallel

cell placement. Using sophisticated error control mechanisms to improve solution quality, the

algorithm is able to achieve reasonable speedups with moderate degradation in quality. Though

it does not provide the speedups seen in MMC, the primary advantage of partitioning the circuit

is that it helps memory scalability. We are able to run circuits that are too large to fit on one pro-

cessor by distributing it across the nodes of a multiprocessor. In addition, we also describe an

MPI implementation of this algorithm. The results show that the overheads in ProperCAD II to

support a message driven style of programming are no worse than for any other portable mes-

sage passing library.

62

CHAPTER 7

TIMING DRIVEN APPROACH

The placement algorithms discussed so far have dealt only with minimization of the wire-

length and indirectly area minimization. For current high density circuits, this cost function is

no longer appropriate. As VLSI designs grow and feature sizes shrink, overall circuit perfor-

mance becomes more closely related to the interconnect timing characteristics. Timing driven

placement is the process of simultaneously minimizing the circuit area as well as minimizing

the critical path delays. During the physical design process, a common heuristic used is to min-

imize total net wirelength as an approximation of the area. Minimizing the wirelength of a net

would seem to minimize the effect of interconnect delays. However, timing is not determined

solely by the delays of individual nets, but instead by a sequence of nets or a signal path. More-

over, only nets on the longest or critical paths in the circuit are of concern.

There have been two general approaches to timing driven placement - net based [68–70] and

path based [71–75]. Net based algorithms identify critical paths a priori and assign criticality

weights or upper bounds for each net in the path, and then guide the placement process based

on these bounds. The pre-timing analysis may not be able to effectively select measures for

each net; thus, the placement quality may suffer. Path based approaches address this problem

by doing complete path delay analysis during placement. This is, of course, at the cost of an

increase in computational complexity.

The other critical component of timing driven placement is the choice of the delay model

to approximate interconnect behavior. To simplify calculation, most previous approaches have

used a basic delay model. The simplest models are based on the assumption that pin to pin delay

63

is proportional to the net wirelength [69, 76]. Other more detailed models use a simplified RC

model where wire capacitance can be computed either as a function of fanout or proportional

to wire length [71–74]. These models do not take into consideration wire resistance, which is

becoming more and more important as designs scale down to submicron features. Additionally,

these models do not account for driver pin location or the delay characteristics of a distributed

RC tree.

In this chapter, we describe a new placement algorithm that incorporates a detailed inter-

connect model based on the Elmore delay model. It uses complete path delay information to

derive a placement that minimizes the longest path delay without sacrificing area quality. The

chapter is organized as follows. Section 7.1 describes the timing analysis methodology used in

this chapter. Section 7.2 details the algorithm used for placement, and the results are shown for

a few MCNC benchmark circuits in Section 7.3. Section 7.4 describes the parallel algorithm

and the results of the speedups on a Sun SparcServer 1000E and Intel Paragon.

7.1 Timing Analysis

7.1.1 Delay model

The best method available for accurate timing analysis of circuits is the SPICE circuit sim-

ulation tool. Because the computation requirements of SPICE are prohibitive, it is impracti-

cal to use it during placement. Linear delays proportional to net length are more tractable but

also more inaccurate. An intermediate model such as the Elmore delay [77] is of more interest

because of its accuracy and reasonable computation times. The Elmore delay model has been

shown to have very good correlation to SPICE computed timing analysis [78].

The Elmore delay model is useful for approximating delays of distributed RC trees. Given

a net tree rooted at a source pin �
 , the delay from �
 to a sink � � can be expressed as follows:

* � � �

 � �
�����
	 ��� � 	��
 � �

� ��� � $ ����� � � �� � (7.1)

64

where � � is the edge from pin � � to its parent and
$ ��� and

� ��� are the capacitance and resistance,

respectively, along that edge. � is the tree capacitance at pin � � , in other words, the sum of all

edge and sink capacitances on the tree rooted at pin � � . The * � ’s for all sink pins can be calculated

in a two-phase process. In the first step, the delays for each edge are calculated in a depth first

search of the tree; likewise, in the second traversal of the tree, the edge delays can be summed

up for each pin. Each step is an O(n) process where n is the number of pins on the net.

It is clear that the routing structure of the net significantly affects the computation of delays.

For example, the net in Figure 7.1(a) can be routed alternatively as in Figure 7.1(b), and the

equivalent RC models are shown in Figure 7.2. At node 3, there is an implicit Steiner pin that

has no sink capacitance. The delays from source to sink �
�

for the two routes are shown below.

* � � � �
 � � � � � $ � � � $
� �

$ ��� � $ �'� � $ � � �
 �
� � � � � � ��� � $ � �� � $ � �

(7.2)

* �
 � �
 � $�� � � � $
� �

$�� ��� � $ � � � ������ � $ � ���� � $ �	�
(7.3)

The example makes it clear that it is important that the routing be known before an accu-

rate delay can be computed. Several strategies exist to construct near-optimal Steiner trees for

improved performance during the routing process [79–81]. However, during placement, it is

impractical to use any of these algorithms to optimally route each net because of the computa-

tion time required to do so.

Instead, we quickly approximate the Steiner tree, by building a trunk based tree rooted on

the source node. The bounding box of each net is partitioned into a 4x1 grid as shown in Fig-

ure 7.3(a). If the source node is in the shaded region, a horizontal trunk is created and segments

are built off the trunk to connect sink pins to the trunk. Implicit Steiner pin points are created

where the segments meet the trunk. Likewise, if the source node is in the hatched region, seg-

ments are built off a vertical trunk. This Steiner tree construction methodology is very quick

and can be used effectively during the placement. The majority of nets in most designs have

two or three terminals. For two terminal nets, the trees generated by this heuristic are obviously

optimal. For three terminal nets, however, the approximate Steiner tree may not be optimal.

65

Source
Pin

p1

p2

(a) Alternative 1 with Steiner Pin (b) Alternative 2 without Steiner pin

Source
Pin

p1

p2

Figure 7.1: Routing alternatives for a net.

Source
Pin

3

2

1

p1

p2

(a) Alternative 1 with Steiner pin (b) Alternative 2 without Steiner pin

Source
Pin

'
2

'
1 p1

p2

Figure 7.2: Distributed RC models for net.

66

(a) Horizontal trunk

Source
Pin

(b) Vertical trunk

Source
Pin

Figure 7.3: Steiner approximation for nets.

Since optimal Steiner trees can be quickly created for three terminal nets, we treat these nets as

a special case and generate optimal trees. By doing so, we can ensure that 75% to 95% of nets

in a typical design will have optimal delay trees.

7.1.2 Path delay analysis

The previous section showed how to calculate the pin to pin delay on a particular net. In

this section, we describe the analysis methodology to compute path delays. As described in

[82,83], we use a block oriented technique in which all the cells are levelized, and then cell and

net delays are processed in block order. Once all delays have been computed, the maximum

output delay, � � , can be determined by examining delay times at each output pin. The longest

path can easily be arrived at by tracing back from the output pin with the maximum delay. This

algorithm is also O(n) where n is the number of cells.

The algorithms for path delay analysis are summarized in Figure 7.4. LEVELIZE-CIRCUIT

is based on a simple breadth-first topological sort algorithm. Each cell,
�
, is a node in the graph

�
. From the primary inputs, a breadth-first search is initiated such that each edge is traversed

once. As each node is visited, the maximum level is assigned to that node, and then when all

edges incident on that node have been traversed, every fanout from that node is then explored.

COMPUTE-DELAYS processes the cells in levelized order and calculates the delays on each pin,

by first calculating the cell delay and then the net delay.

67

LEVELIZE-CIRCUIT
� � �

1 for each
� � �

2 do
� � � � ��� ����� � �

3 for each
� � � �� �� + � � � # � &) � � �

4 do BREADTH-FIRST-VISIT
� �(� ���

BREADTH FIRST VISIT
� �(� � �

1 if
� � � � � � ��� ���

2 then
� � � � ��� ����� �

3 if all input edges traversed
4 then � �

� � ��	 �
5 if

�
is not a primary output

6 then for
& ��
 + # ��&) � ��

7 do BREADTH-FIRST-VISIT
� & � � � � �

COMPUTE-DELAYS
���

1 for
� � �

to
� +� � � � � �

2 do for each
� � � �

3 do CALCULATE-CELL-DELAY
� ��

4 for each � ��
 + # ��&() � ���
5 do CALCULATE-NET-DELAY

� � �

Figure 7.4: Delay analysis algorithms.

The path construction algorithms are summarized in Figure 7.5. CONSTRUCT-ALL-PATHS

finds the longest paths terminating at all primary outputs including all flip-flops. The list �
keeps track of all accumulated paths. After initially calling CONSTRUCT-PATH on all primary

outputs, the paths can then be constructed by tracing back towards the primary inputs calling

CONSTRUCT-PATH in reverse levelized order. CONSTRUCT-PATH builds a path back from a

cell by determining the critical input net, i.e., the net that has the longest delay. Then we create

a path segment, � , which is simply a 4-tuple identifying the critical net, the source and sink

cells, as well as the path to which the path segment belongs. This path segment is then added

to all paths, � , that the cell
�

is on. The path segment is then added to the source cell as well as

the critical net.

An example of the longest path is shown in Figure 7.6. The cells are processed in block

order, which in this example is 1,2,3,4,5,6,7,8. The nominal cell delay is shown in italic within

68

CONSTRUCT-ALL-PATHS
���

1 � � �

2 for each primary output cell
�

3 do � � new �(+)��
4 � � � 	 �
5 ADD-PATH-TO-CELL

� �(� � �
6 CONSTRUCT-PATH

� ��
7 for

� � � +� � � � � � to
�

8 do for each
� � � �

9 do CONSTRUCT-PATH
� ��

CONSTRUCT-PATH
� ��

1
� +����� � + � � �

2 for each input net � adjacent to
�

3 do � � � ��&(�%$ � � � �
4 if

� +����� � + � � * � � + � � � �
5 then

� +����� � +�� � * � � +�� � � �
6

� +�� � ��&(�%$ � � �
7

� +�� � # � &) � �) � �
8 for each path � that

�
is on

9 do � � � � � � +�� � ��&(�%$ � ��� +� � # � &) � �)'� � �
10 ADD-SEGMENT-TO-PATH

� � � � �
11 ADD-PATH-TO-CELL

� � +� � ��&(�%$ � � � �
12 ADD-PATH-TO-NET

� � +� � # � &() � �)'� � �

Figure 7.5: Path construction algorithms.

69

1 4

2 5

3

6

7

8

2

4 5

2 7

8

14
9

10

7

9

9

3

6

4

10

7

4

4

2

2

1

2 1

2

Path Delay
2 5 6 14
2 4 6 13
3 5 6 13
1 4 6 10
2 5 7 10
3 5 7 9
3 7 9
3 8 9

Figure 7.6: Longest path analysis.

the cell, and the arrival times are shown in italic at the cell boundaries. The actual interconnect

delays are not shown but are readily calculated by subtracting appropriate arrival times. The

longest path is highlighted in bold, and all other viable paths are listed by the side.

Special care must be taken for sequential circuits. We assume that the circuit can be repre-

sented as a Moore model finite state machine as shown in Figure 7.7. To transform such circuits

when constructing delay paths, each latch element output must be treated as a normal primary

input and, likewise, each latch element input is treated as a primary output as shown in Fig-

ure 7.8. There are now four types of delays that appear, PI to PO, PI to latch, latch to PO, and

latch to latch. Each of these delays must be accounted for separately, as the minimization ob-

jective may only be one or more of these specific delays.

7.2 Timing Driven Placement

Our timing driven placement algorithm is based on the algorithm used in TimberWolfSC 6.0

as described in Section 2.2. The cost function has been modified as shown in Eq. (7.4) where

� is the estimate of wirelength of all nets as the half perimeter of the bounding box, � � is the

penalty for area overlap between cells in the same row, and � � is the penalty for the difference

between the actual row length and the desired row length. The coefficient terms, � and � , are

70

Primary Inputs Primary Outputs

Combinational Logic

Clock

SiSi+1

Figure 7.7: Moore model finite state machine.

PI0 PO0

PI1

PI2

PO1

PO2

f0

f1

PI0

PI2

PI1

PO0

PO2

PO1

f0

f1

f1

f0

Figure 7.8: Sequential circuit transformation.

71

adjusted using a feedback control mechanism to arrive at optimal values [38]. Note that these

terms are similar to the cost function used in TimberWolf (Eq. (2.2)).

 � � � � �%�"� � �!� � � � � (7.4)

More importantly, we have added a cost term that is used to minimize the longest path delay,

� � . The � weight controls the tradeoff between delay and area minimization. Through experi-

mentation, in order to achieve the minimal path delay with the least area expense, we have set

� � �

� � � (7.5)

�
 and � � � are the initial wirelength and path delay.

7.2.1 Path delay cost calculation

In this section, we describe how to efficiently keep track of longest path delays during place-

ment. In the context of simulated annealing, every time a move is made, it can possibly affect

the longest path delay. Using the algorithm in Section 7.1.2, we can determine the longest path,

and then whenever a move is attempted, if a net on the critical path is perturbed by the move, the

� � � is easy to calculate. Keeping track of only one critical path can lead to problems because

moves that may not affect the pre-determined critical path may create new critical paths. It is

not practical to recalculate the longest path for each move attempt so it is necessary to monitor

several possible paths.

One solution is, as in previous work [37, 76], to have the designer provide a set of paths or

critical nets that the placement algorithm would use in path delay minimization. However, in

large designs, it is very difficult for a user to identify these critical paths beforehand. Especially

in light of complicated interconnect delays, this task is more difficult than ever.

Instead, as was done by Swartz and Sechen [74, 84], our algorithm identifies these critical

paths for the user. However, as the number of elements in a design increases, the number of pos-

sible paths increases exponentially. For very large circuits, keeping track of all paths becomes

very intractable. Therefore, we identify only longest paths between all pairs of inputs and out-

72

1 4

2 5

3

6

7

8

2

4 5

2 7

8

14
9

10

7

9

9

3

6

4

10

7

3

+0

+1

4

4

2

2

1

2 1

2

2

Path Delay
2 5 6 14
2 4 6 13
3 5 6 13
1 4 6 10
2 5 7 10
3 5 7 9 +0
3 7 9 +2
3 8 9 +1+2

Figure 7.9: Longest path cost determination.

puts. For sequential circuits, this includes all latch inputs and outputs as well. This reduces the

number of paths considerably. In addition, only paths that have delays within 10% of the longest

path delay are kept. With these restrictions, only paths (2,5,6) and (3,5,6) from Figure 7.6 will

be kept. As more moves become accepted and our list of longest paths is no longer applicable,

it is necessary to periodically recalculate the longest paths. We have found that is sufficient to

perform this calculation every accepted moves where is the number of cells in the circuit.

Note that when a move is proposed the entire path need not be traced from source to sink

to determine the change. Instead, each net keeps a list of paths that it is part of and applies its

� to all these paths. In Figure 7.9, cell 3 has been moved causing three nets to change. This

move affects three paths (3,5,7), (3,7), (3,8). Instead of tracing the effect of the move all the

way to the outputs on all paths, since each affected net has a link to the path, we can apply the

� directly to the path. We then process the list of paths, to determine the new longest path. In

this case, the longest path will not change because of this move. The intermediate arrival times

will be inaccurate of course, but that is acceptable, since our only concern during annealing is

the change of the longest path delay.

73

PATH BASED TIMING DRIVEN PLACEMENT
���

1 LEVELIZE-CIRCUIT
���

2 COMPUTE-DELAYS
���

3 CONSTRUCT-ALL-PATHS
���

4 while termination not reached
5 do while iteration not complete
6 do attempt move
7 if any of the affected nets on a critical path
8 then calculate � of longest path delay
9 accept or reject move

10 update temperature
11 if time to recompute path delays
12 then COMPUTE-DELAYS

���
13 CONSTRUCT-ALL-PATHS

���

Figure 7.10: Timing driven placement algorithm.

7.3 Experimental Results

We have implemented the new placement algorithm in C++ on a Sun SparcServer 1000E and

compared the results with TimberWolfSC 6.0 (Figure 7.3). Our results use four of the MCNC

benchmarks which include timing information (Table 7.1. We use technology parameters from

the MOSIS 2.0 design rules as shown in Table 7.2. The area and delay numbers are taken after

the circuit has been globally routed, but the wirelength and execution times are only for the

placement procedure. Note that since the global router is not timing driven, the delay does vary

somewhat from that predicted by the placement process. The results show an average of 12%

improvement in the longest path delay at the cost of about 5% increase in area. The execution

time is roughly four times worse, which is comparable to the results presented in [74], in spite

of a more accurate delay model. By using a more accurate delay model, we are able to select

critical paths that may not be apparent in a less detailed model. Also, the accurate delay model

allows us to be more confident in the final longest path timing characteristics.

74

Table 7.1: Circuit Information
MCNC Benchmarks

Number Number Number Number Number
Circuit of cells of PIs of POs of flip flops of nets
fract 125 22 2 16 147
struct 1888 32 32 0 1920
biomed 6417 25 72 655 5742
avq.small 21854 30 34 4041 22114

Table 7.2: Technology Parameters
MOSIS 2.0 Design Rules and MCNC Benchmark Parameters

metal width 3 � m
sheet resistance (metal1) .108

� ���
substrate capacitance (metal1) .027 fF/ � m
sheet resistance (metal2) .045

� ���
substrate capacitance (metal2) .021 fF/ � m
sink capacitance from 9.47 to 165 fF
source resistance from 1.18 to 5.44 k

�

Table 7.3: Timing Driven Placement Results

TimberWolfSC 6.0 Timing Driven
Circuit Longest Area Wire- Run Longest Area Wire- Run

Delay(ns) (�����) length Time(s) Delay(ns) (�����) length Time(s)
fract 20.3 0.53 39636 74.1 20.0 0.54 42863 118.2
struct 102.3 11.9 956328 916.6 96.8 12.3 997781 1220
biomed 56.7 120.5 5599231 8571 52.4 111.2 5231329 123835
avq.small 866.3 1220 41194758 16631 561.3 1500 44035597 81667
Pct. change -12.4% +5.1% +3.2% +457%

75

PARALLEL-COMPUTE-DELAYS
���

1 for all processors
2 do for

� � �
to
� +�� � � � � �

3 do for each
� � � �

4 do if this processor owns cell
�

5 then CALCULATE-CELL-DELAY
� � �

6 for each � ��
 + # ��&) � ���
7 do CALCULATE-NET-DELAY

� � �
8 mark changed pins
9 send new pin delays of marked pins

10 receive new pin delays

Figure 7.11: Parallel delay calculation algorithm.

7.4 Parallel Timing Driven Placement

As can be seen in the results from the previous section, providing timing driven placement

adds significant overhead to the normal run time of cell placement. In this section we describe

an algorithm for parallelization of timing driven placement. The algorithm is based on the ap-

proach described in Chapter 6.

7.4.1 Path delay analysis

As with the serial algorithm, there are two phases to the delay analysis: delay calculation

and path construction. Calculating delays is done as before, by processing the cells in levelized

order. However, since the cells are distributed, we must now send all the updated delays to the

appropriate location. This causes a synchronization point at each level. The algorithm is sum-

marized in Figure 7.11.

Likewise, path construction must be done with synchronization points at each level. The

algorithm is summarized in Figures 7.12 and 7.13. As we proceed back from the primary out-

puts, each processor identifies path segments using the CONSTRUCT-PATH algorithm described

in Figure 7.5. At the first level, each path, � , contains only one path segment, � . If the critical

net, � , on � is owned by another processor, � is added to
� �

, a list of backward updates. Oth-

erwise, � is added to
���

. After the CONSTRUCT-PATH has been called on all primary outputs,

76

the path segments in
� �

are sent to the owners of the relevant nets. This allows the owners of

the nets to accumulate all the path segments that belong to a particular net.

At this point, as in the serial case, we trace backwards in the circuit by going through the

cells in reverse levelized order. There is an implicit synchronization at each level because of the

updates. When a processor receives a set of backward updates, the updates are then transferred

to
� �

, the set of forward updates.
���

updates are sent so that all copies of a net have all the path

segments belonging to that net.

7.4.2 Parallel placement algorithm

The algorithm for parallel timing driven placement is summarized in Figure 7.14. In struc-

ture, it is very similar to the algorithm for
�
������������
���	�����
�

shown in Figure 6.12. The only

major modification is to insert the call to perform delay analysis as described above. One mi-

nor change is also applied to the repartitioning algorithm. In the non-timing driven placement

algorithm, the nets are assigned to the partition containing the most cells attached to the net.

Because of the parallel delay analysis approach, this heuristic is no longer appropriate. Instead,

we assign nets to the partition containing the source pin. This approach limits us to circuits

with only a single source pin per net. This is not a severe limitation, as it is easy to transform a

multisource net into a single source net through insertion of intermediary buffers.

7.4.3 Experimental results

The parallel timing driven placement algorithm, called
��� �������
���	 ��� ���

, has been imple-

mented using the Message Passing Interface (MPI). We present experimental results on a Sun

SparcServer 1000E as well as the Intel Paragon in Tables 7.4 and 7.5. As was evident with the

original
�
������������
���	�����
�

, we get reasonable speedups with moderate wirelength degrada-

tion. There is little degradation of the delay as well.

77

PARALLEL-CONSTRUCT-ALL-PATHS
���

1 for all processors
2 do � � �

3
� � � �

4
� � � �

5 for each
� � � �� �� + � � � &) � &) � � �

6 do if this processor owns cell
�

7 then � � new �(+)��
8 � � � 	 �
9 ADD-PATH-TO-CELL

� �(� � �
10 CONSTRUCT-PATH

� ��
11 � �

path segment � �
12 � � � � � ��� critical net component of �
13 if � owned by another processor
14 then

� � � � � 	 �
15 else

� � � � � 	 �
16 send

� �

17 for
� � � +� � � � � � to

�
18 do RECEIVE-BACKWARD-UPDATES

���
19 send

� �

20 RECEIVE-FORWARD-UPDATES
���

21 for each
� � � �

22 do CONSTRUCT-PATH
� � �

23 for each new path segment � � � � �
24 do if � � � � owned by another processor
25 then

� � � � � 	 �
26 else

� � � � � 	 �
27 send

� �

28 RECEIVE-BACKWARD-UPDATES
���

29 send
� �

30 RECEIVE-FORWARD-UPDATES
���

Figure 7.12: Parallel path construction algorithm.

78

RECEIVE-FORWARD-UPDATES
���

1
� � � �

2 receive
� �

3 for each � � � �
4 do ADD-PATH-TO-NET

� � � � �'� � �
5

� � � �

RECEIVE-BACKWARD-UPDATES
���

1
� � � �

2 receive
� �

3 for each � � � �
4 do ADD-PATH-TO-NET

� � � � �'� � �
5

� � � � � 	 �
6

� � � �

Figure 7.13: Parallel path construction algorithm (cont.).

PARALLEL TIMING DRIVEN PLACEMENT -
��� �������
���	 ��� ��� ���

1 if actor on processor 0
2 then read circuit and distribute cells and nets to different processors
3 for each processor
4 do while termination not reached
5 do while

� ���
	 �������� �����
iteration not complete

6 do ATTEMPT-MOVE
���

7 +)) � � �) � ��& #) � �
8 if +)) � � �) � ��&(#)��
� � � �

9 then UPDATE-PINS
���

10 if +)) � � �) � ��& #)��
�� � � �

11 then UPDATE-ROWS
���

12 FIX-ROW-DESIRES
���

13 adjust
 and
��
14 UPDATE-FIXED-CELLS

���
15 REMOVE-OVERLAPS

���
16 if time to repartition
17 then REPARTITION

���
18 PARALLEL-COMPUTE-DELAYS

���
19 PARALLEL-CONSTRUCT-ALL-PATHS

���

Figure 7.14: Outline of the
�����������
���
	 ��� ���

algorithm.

79

Table 7.4:
�����������
����	���� ���

Results (Sun SparcServer 1000E)

�����
	��������������� �����������
����	���� ���

1 processor 8 processors
fract

Wirelength 39636 42863 46038
Area 0.53 0.54 0.55
Delay (ns) 20.3 20.0 20.0
Run time(s) 74.1 118.2 26.3

struct
Wirelength 956328 997781 1078901
Area 11.9 12.3 12.4
Delay (ns) 102.3 96.8 100.0
Run time(s) 916.6 1220 249.0

biomed
Wirelength 5599231 5231329 5666327
Area 120.5 111.2 120.9
Delay (ns) 56.7 52.4 52.7
Run time(s) 8571 123835 20938

avq.small
Wirelength 41194758 44035597 46312331
Area 1220 1500 1452
Delay (ns) 866.3 561.3 580.2
Run time(s) 16631 81667 14868

80

Table 7.5:
�����������
����	 � � ���

Results (Intel Paragon)

�����
	��������������� �����������
����	���� ���

1 processor 16 processors
struct

Wirelength 956328 997781 1071662
Area 11.9 12.3 12.4
Delay (ns) 102.3 96.8 101.0
Run time(s) 2557 5589 628.0

biomed
Wirelength - - 5781491
Area - - 121.0
Delay (ns) - - 52.9
Run time(s) - - 64620

avq.small
Wirelength - - 46943623
Area - - 1527
Delay (ns) - - 600.2
Run time(s) - - 33822

7.5 Summary

In this chapter, we described a new timing driven algorithm for placement as well as a par-

allel implementation based on
�
������������
���	�����
�

. A new timing driven algorithm has been

presented that is able to achieve significant reductions in longest path delays, while at the same

time causing little area degradation. Previous approaches have used fairly inaccurate models of

interconnect delay, but this work is the first to present a timing driven approach to use an Elmore

delay model. The use of a more accurate model ensures that the algorithm is correctly identify-

ing longest paths and critical nets. The parallel algorithm uses the same procedures described

in Chapter 6 to achieve good speedups with moderate loss in quality.

81

CHAPTER 8

CONCLUSIONS

In this thesis, we have investigated algorithms for parallelizing simulated annealing based

standard cell placement. The main contributions are in identifying efficient algorithms for par-

allelization of area driven and timing driven placement algorithms.

In the domain of area driven placement, four different parallel simulated annealing strate-

gies were studied. The first strategy, parallel moves, delivers consistent speedups for few pro-

cessors with some degradation in wire length. Multiple Markov chains appears to be promis-

ing as a means to achieve moderate speedup without losing quality and, in fact, in some cases

improve quality. Speculative computation, however, is shown to be inadequate as a means of

parallelization of cell placement. A combination of the parallel moves approach with interme-

diate exchanges as in multiple Markov chains may offer benefits in terms of reducing the error

present in the parallel moves approach alone. These first three approaches are only suitable in

situations where the circuit is small enough that it can be replicated on all nodes of the mul-

tiprocessor. The final approach to parallel cell placement presented in this thesis is the circuit

partitioned algorithm. Through the use of various error control mechanisms, we are able to pro-

vide reasonable speedups with moderate loss of quality.

The most useful algorithms are the multiple Markov chains and circuit partitioned algo-

rithms. Both are useful in different circumstances. For smaller circuits or in systems where

memory usage is not a concern, the multiple Markov chains approach is clearly the best alterna-

tive. It provides excellent speedups with very little degradation. However, in distributed mem-

ory environments where the circuit may not fit on a single node, the circuit partitioned approach

82

is preferred. While it does not offer the speedups seen with multiple Markov chains, it does give

consistent speedups with very little degradation in quality.

The other area of research of this thesis is the investigation of timing driven placement strate-

gies and their parallel algorithms. We have presented a sequential algorithm that uses a very

detailed timing model to drive the placement process and it is able to achieve very good results.

The parallel algorithm is based on the circuit partitioned algorithm for standard cell placement

and achieves consistent speedups with little quality degradation.

The results of this thesis are limited to simulated annealing based placement algorithms.

Recently, researchers have proposed alternate forms of placement algorithms such as simulated

evolution [85, 86], force directed placement [87, 88], linear optimization based [89–91]. and

min-cut based placement [92–94]. Very little work has been done in developing parallel algo-

rithms for these alternate approaches [95–97]. New and more efficient parallel algorithms for

these approaches must be investigated.

The algorithms in this thesis have been targeted for portable parallel environments such as

ProperCAD II and MPI. However, algorithms targeted specifically to shared memory multipro-

cessors have not been addressed fully. Other possible future extensions to this thesis include

parallel algorithms for the other phases of the layout process, namely, global and detailed rout-

ing.

83

REFERENCES

[1] S. Kim, J. A. Chandy, S. Parkes, B. Ramkumar, and P. Banerjee, “ProperPLACE: A
portable parallel algorithm for cell placement,” in Proceedings of the International Par-
allel Processing Symposium, Cancun, Mexico, Apr. 1994, pp. 932–941.

[2] S. Kim, “Improved algorithms for cell placement and their parallel implementations,”
Ph.D. dissertation, Department of Electrical and Computer Engineering, University of Illi-
nois at Urbana-Champaign, Urbana, IL, July 1993, Tech. Rep. CRHC-93-18/UILU-ENG-
93-2231.

[3] S. Parkes, J. A. Chandy, and P. Banerjee, “A library-based approach to portable, parallel,
object-oriented programming: Interface, implementation, and application,” in Proceed-
ings of Supercomputing ’94, Washington, DC, Nov. 1994, pp. 69–78.

[4] Message-Passing Interface Forum, “Document for a standard message-passing interface,”
University of Tennessee, Knoxville, TN, Tech. Rep. CS-93-214, 1993.

[5] P. Banerjee, Parallel Algorithms for VLSI Computer Aided Design Applications. Engle-
woods Cliffs, NJ: Prentice Hall, 1994.

[6] S. M. Parkes, “A class library approach to concurrent object-oriented programming
with applications to VLSI CAD,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, Sept. 1994, Tech. Rep. CRHC-94-20/UILU-ENG-94-2235.

[7] B. Ramkumar and P. Banerjee, “ProperCAD: A portable object-oriented parallel environ-
ment for VLSI CAD,” IEEE Transactions on Computer-Aided Design, vol. 13, no. 7, pp.
829–842, July 1994.

[8] S. Parkes, P. Banerjee, and J. H. Patel, “ProperHITEC: A portable, parallel, object–
oriented approach to sequential test generation,” in Proceedings of the Design Automation
Conference, San Diego, CA, June 1994, pp. 717–721.

[9] S. Parkes, P. Banerjee, and J. Patel, “A parallel algorithm for fault simulation based on
PROOFS,” in Proceedings of the International Conference on Computer Design, Austin,
TX, Oct. 1995.

[10] K. De, J. A. Chandy, S. Roy, S. Parkes, and P. Banerjee, “Portable parallel algorithms
for logic synthesis using the MIS approach,” in Proceedings of the International Parallel
Processing Symposium, Santa Barbara, CA, Apr. 1995, pp. 579–585.

84

[11] S. Roy, “Parallel algorithms for algebraic factorization in logic synthesis,” M.S. thesis,
University of Illinois at Urbana-Champaign, May 1996, Tech. Rep. CRHC–96–07/UILU–
ENG–96–2212.

[12] G. Hasteer, “Parallel algorithms for state assignment of finite state machines,” M.S. thesis,
University of Illinois at Urbana-Champaign, Jan. 1996, Tech. Rep. CRHC-96-02/UILU–
ENG–96–2202.

[13] G. Hasteer and P. Banerjee, “A parallel algorithm for state assignment in finite state ma-
chines,” in Proceedings of the International Conference on Parallel Processing, Bloom-
ingdale, IL, Aug. 1996, To appear.

[14] K. MacPherson, “Parallel algorithms for layout verification,” M.S. thesis, University of
Illinois at Urbana-Champaign, Aug. 1995, Tech. Rep. CRHC–95–18/UILU–ENG–95–
2229.

[15] K. MacPherson and P. Banerjee, “Integrating task and data parallelism in an irregular
application: A case study,” in Proceedings of the IEEE Symposium on Parallel and Dis-
tributed Processing, New Orleans, LA, Oct. 1996, To appear.

[16] V. Krishnaswamy and P. Banerjee, “Actor based parallel VHDL simulation using Time
Warp,” in Proceedings of the 1996 Workshop on Parallel and Distributed Simulation,
Philadelphia, PA, May 1996.

[17] G. A. Agha, Actors: A Model of Concurrent Computation in Distributed Systems. Cam-
bridge, MA: The MIT Press, 1986.

[18] A. W. Appel, Compiling with Continuations. Cambridge, England: Cambridge University
Press, 1992.

[19] A. A. Chien, Concurrent Aggregates: Supporting Modularity in Massively Parallel Pro-
grams. Cambridge, MA: The MIT Press, 1993.

[20] L. V. Kalé and S. Krishnan, “CHARM++: A portable concurrent object oriented system
based on C++,” in Proceedings of the Conference on Object Oriented Programming Sys-
tems, Languages and Applications, Sept. 1993, pp. 91–108.

[21] K. M. Chandy and C. Kesselman, “Compositional C++: Compositional parallel program-
ming,” in Proceedings of Workshop on Compilers and Languages for Parallel Computing,
1992, pp. 79–93.

[22] V. Karamcheti and A. Chien, “Concert - Efficient runtime support for concurrent object-
oriented programming languages on stock hardware,” in Proceedings of Supercomput-
ing ’93, Portland, OR, Nov. 1993, pp. 598–607.

85

[23] A. Chien, V. Karamcheti, and J. Plevyak, “The Concert System: Compiler and runtime
support for fine-grained concurrent object-oriented languages,” University of Illinois, De-
partment of Computer Science, Urbana, Illinois, Tech. Rep. UIUC DCS TR R-93-1815,
1993.

[24] D. Gannon and J. K. Lee, “Object-oriented parallelism: pC++ ideas and experiments,”
Proceedings of the Japan Society for Parallel Processing, pp. 315–339, 1993.

[25] M. Parashar and J. C. Browne, “Distributed dynamic data-structures for parallel adap-
tive mesh-refinement,” in Proceedings of International Conference on High Performance
Computing, New Delhi, India, Dec. 1995, pp. 22–23.

[26] High Performance Fortran Forum, High Performance Fortran Language Specification,
version 1.1, 1994.

[27] C.-P. Wen, S. Chakrabarti, E. Deprit, A. Krishnamurthy, and K. Yelick, “Runtime sup-
port for portable distributed data structures,” in Workshop on Languages, Compilers and
Runtime Systems for Scalable Computers, May 1995.

[28] R. Ponnusamy, J. Saltz, and A. Choudhary, “Runtime-compilation techniques for data
partitioning and communication schedule reuse,” in Proceedings of Supercomputing ’93,
Portland, OR, Nov. 1993, pp. 361–370.

[29] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, pp. 671–680, May 1983.

[30] R. A. Rutenbar, “Simulated annealing algorithms: An overview,” IEEE Circuits & De-
vices, vol. 5, no. 1, pp. 19–26, Jan. 1989.

[31] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative study,” Journal of
Statistical Physics, vol. 34, pp. 975–986, 1984.

[32] E. H. L. Aarts and P. J. M. van Laarhoven, “Statistical cooling: A general approach to
combinatorial optimization problems,” Philips Journal of Research, vol. 40, no. 4, pp.
193–226, 1985.

[33] J. Lam and J.-M. Delosme, “Performance of a new annealing schedule,” in Proceedings
of the Design Automation Conference, 1988, pp. 306–311.

[34] D. R. Greening, “Simulated annealing with errors,” Ph.D. dissertation, University of Cal-
ifornia at Los Angeles, 1995.

[35] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf placement and routing pack-
age,” IEEE Journal for Solid State Circuits, vol. SC-20, no. 2, pp. 510–522, Apr. 1985.

[36] C. Sechen, VLSI Placement and Global Routing Using Simulated Annealing. VLSI, Com-
puter Architecture and Digital Signal Processing. Boston, MA: Kluwer Academic Pub-
lishers, 1988.

86

[37] Yale University, TimberWolf: Mixed Macro / Standard Cell Floorplanning Placement and
Routing Package, New Haven, CT, Sept. 1991.

[38] C. Sechen and K.-W. Lee, “An improved simulated annealing algorithm for row-based
placement,” in Digest of Papers, International Conference on Computer-Aided Design,
Santa Clara, CA, Nov. 1987, pp. 478–481.

[39] M. D. Durand, “Accuracy vs. speed in placement,” IEEE Design & Test of Computers,
pp. 8–34, June 1989.

[40] D. R. Greening, “Parallel simulated annealing techniques,” Physica, vol. D42, pp. 293–
306, 1990.

[41] S. A. Kravitz and R. A. Rutenbar, “Placement by simulated annealing on a multiproces-
sor,” IEEE Transactions on Computer-Aided Design, vol. CAD-6, no. 4, pp. 534–549,
July 1987.

[42] F. Darema, S. Kirkpatrick, and V. A. Norton, “Parallel algorithms for chip placement by
simulated annealing,” IBM Journal of Research and Development, vol. 31, no. 3, pp. 391–
402, May 1987.

[43] K. Natarajan and S. Kirkpatrick, “Evaluation of parallel placement by simulated anneal-
ing: Part I - The decomposition approach,” IBM, Tech. Rep. RC 15246, Nov. 1989.

[44] W.-J. Sun and C. Sechen, “A loosely coupled parallel algorithm for standard cell place-
ment,” in Digest of Papers, International Conference on Computer-Aided Design, San
Jose, CA, Nov. 1994, pp. 137–144.

[45] P. Banerjee, M. H. Jones, and J. S. Sargent, “Parallel simulated annealing algorithms for
standard cell placement on hypercube multiprocessors,” IEEE Transactions on Parallel
and Distributed Systems, vol. 1, pp. 91–106, Jan. 1990.

[46] J. S. Rose, W. M. Snelgrove, and Z. G. Vranesic, “Parallel cell placement algorithms with
quality equivalent to simulated annealing,” IEEE Transactions on Computer-Aided De-
sign, vol. 7, no. 3, pp. 387–396, Mar. 1988.

[47] A. Casotto and A. Sangiovanni-Vincentelli, “Placement of standard cells using simulated
annealing on the Connection Machine,” in Digest of Papers, International Conference on
Computer-Aided Design, Santa Clara, CA, Nov. 1987, pp. 350–353.

[48] C.-P. Wong and R.-D. Fiebrich, “Simulated annealing-based circuit placement algorithm
on the Connection Machine system,” in Proceedings of the International Conference on
Computer Design, Rye Brook, NY, Oct. 1987, pp. 78–82.

[49] R. Jayaraman and R. A. Rutenbar, “Floorplanning by annealing on a hypercube multipro-
cessor,” in Digest of Papers, International Conference on Computer-Aided Design, Santa
Clara, CA, Nov. 1987, pp. 346–349.

87

[50] W.-J. Sun and C. Sechen, “Efficient and effective placement for very large circuits,” IEEE
Transactions on Computer-Aided Design, vol. 14, no. 3, pp. 349–359, Mar. 1995.

[51] E. H. L. Aarts, F. M. J. de Bont, E. H. A. Habers, and P. J. M. van Laarhoven, “Parallel
implementations of the statistical cooling algorithm,” Integration, the VLSI Journal, vol.
4, pp. 209–238, Sept. 1986.

[52] E. H. L. Aarts and P. J. M. van Laarhoven, Simulated Annealing: Theory and Applications.
Mathematics and Its Applications. Boston, MA: Kluwer Academic Publishers, 1987.

[53] E. H. L. Aarts and J. H. M. Korst, “Boltzmann machines as a model for parallel annealing,”
Algorithmica, vol. 6, pp. 437–465, 1991.

[54] S.-Y. Lee and K.-G. Lee, “Asynchronous communication of multiple Markov chains in
parallel simulated annealing,” in Proceedings of the International Conference on Parallel
Processing, St. Charles, IL, Aug. 1992, pp. III:169–176.

[55] K.-G. Lee and S.-Y. Lee, “Efficient parallelization of simulated annealing using multiple
Markov chains: An application to graph partitioning,” in Proceedings of the International
Conference on Parallel Processing, St. Charles, IL, Aug. 1992, pp. III:177–180.

[56] E. E. Witte, R. D. Chamberlain, and M. A. Franklin, “Parallel simulated annealing using
speculative computation,” IEEE Transactions on Parallel and Distributed Systems, vol. 2,
no. 4, pp. 483–494, Oct. 1991.

[57] A. Sohn, “Parallel speculative computation of simulated annealing,” in Proceedings of the
International Conference on Parallel Processing, St. Charles, IL, Aug. 1994, pp. III:8–11.

[58] J. G. Holm, A. Lain, and P. Banerjee, “Compilation of scientific programs into multi-
threaded and message driven computation,” in Proceedings of the Scalable High Perfor-
mance Computing Conference, Knoxville, TN, May 1994, pp. 518–525.

[59] L. A. Sanchis, “Multiple-way network partitioning,” IEEE Transactions on Computers,
vol. 38, pp. 62–81, 1989.

[60] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network
partitiongs,” in Proceedings of the Design Automation Conference, June 1982, pp. 175–
181.

[61] S. T. Barnard and H. D. Simon, “Fast multilevel implementation of recursive spectral bi-
section for partitioning unstructured problems,” Concurrency: Practice and Experience,
vol. 6, no. 2, pp. 101–117, Apr. 1994.

[62] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning ir-
regular graphs,” Department of Computer Science, University of Minnesota, Minneapolis,
MN, Tech. Rep. 95-035, June 1995.

88

[63] A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, “A parallel simulated annealing
algorithm for the placement of macro-cells,” IEEE Transactions on Computer-Aided De-
sign, vol. CAD-6, no. 5, pp. 838–847, Sept. 1987.

[64] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM 3.0
User’s Guide and Reference Manual, Feb. 1993.

[65] R. Butler and E. Lusk, User’s Guide to the p4 Parallel Programming System, Argonne,
IL, June 1992.

[66] Message-Passing Interface Forum, Message-Passing Interface Standard 1.1, June 1995.

[67] P. Bridges, N. Doss, W. Gropp, E. Karrels, E. Lusk, and A. Skjellum, Users’ Guide to
mpich, a Portable Implementation of MPI, Sept. 1995.

[68] H. Youssef, R.-B. Lin, and E. Shragowitz, “Bounds on net delays for VLSI circuits,” IEEE
Transactions on Circuits and Systems - II, vol. 39, no. 11, pp. 815–824, Nov. 1992.

[69] T. Gao, P. M. Vaidya, and C. L. Liu, “A new performance driven placement algorithm,” in
Digest of Papers, International Conference on Computer-Aided Design, Santa Clara, CA,
Nov. 1991, pp. 44–47.

[70] M. Marek-Sadowska and S. P. Lin, “Timing driven placement,” in Digest of Papers, Inter-
national Conference on Computer-Aided Design, Santa Clara, CA, Nov. 1989, pp. 94–97.

[71] W. E. Donath, R. J. Norman, B. K. Agrawal, S. E. Bello, S. Y. Han, J. M. Kurtzberg,
P. Lowy, and R. I. McMillan, “Timing driven placement using complete path delays,” in
Proceedings of the Design Automation Conference, Orlando, FL, June 1990, pp. 84–89.

[72] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh, “A fast algorithm for performance-driven
placement,” in Digest of Papers, International Conference on Computer-Aided Design,
Santa Clara, CA, Nov. 1990, pp. 328–331.

[73] T. Hasegawa, “A new placement algorithm minimizing path delays,” in Digest of Papers,
International Conference on Computer-Aided Design, Santa Clara, CA, Nov. 1991, pp.
2052–2055.

[74] W. Swartz and C. Sechen, “Timing driven placement for large standard cell circuits,” in
Proceedings of the Design Automation Conference, San Francisco, CA, June 1995, pp.
211–215.

[75] A. Srinivasan, K. Chaudhary, and E. S. Kuh, “RITUAL: A performance-driven placement
algorithm,” IEEE Transactions on Circuits and Systems - II: Analog and Digital Signal
Processing, vol. 39, no. 11, pp. 825–840, Nov. 1992.

[76] W. Swartz and C. Sechen, “New algorithms for the placement and routing of macro cells,”
in Digest of Papers, International Conference on Computer-Aided Design, Santa Clara,
CA, Nov. 1990, pp. 336–339.

89

[77] W. C. Elmore, “The transient response of damped linear network with particular regard
to wideband amplifiers,” Journal of Applied Physics, vol. 19, pp. 55–63, 1948.

[78] K. D. Boese, A. B. Kahng, B. A. McCoy, and G. Robins, “Fidelity and near-optimality of
Elmore-based routing constructions,” in Proceedings of the International Conference on
Computer Design, Cambridge, MA, Oct. 1993, pp. 81–84.

[79] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger, “Prim-Dijkstra tradeoffs
for improved performance-driven routing tree design,” IEEE Transactions on Computer-
Aided Design, vol. 14, no. 7, pp. 890–896, July 1995.

[80] K. D. Boese, A. B. Kahng, B. A. McCoy, and G. Robins, “Near-optimal critical sink rout-
ing tree constructions,” IEEE Transactions on Computer-Aided Design, vol. 14, no. 12,
pp. 1417–1436, Dec. 1995.

[81] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao, “Bounded-skew clock and Steiner
routing under Elmore delay,” in Digest of Papers, International Conference on Computer-
Aided Design, Santa Clara, CA, Nov. 1995.

[82] R. B. Hitchcock, Sr., “Timing verification and the timing analysis program,” in Proceed-
ings of the Design Automation Conference, 1982, pp. 594–604.

[83] T. I. Kirkpatrick and N. R. Clark, “PERT as an aid to logic design,” IBM Journal of
Research and Development, vol. 10, no. 2, pp. 135–141, Mar. 1966.

[84] W. P. Swartz, Jr., “Automatic layout of analog and digital mixed macro/standard cell in-
tegrated circuits,” Ph.D. dissertation, Yale University, May 1993.

[85] R. M. Kling, “Optimization by simulated evolution and its application to cell placement,”
Ph.D. dissertation, University of Illinois at Urbana-Champaign, Aug. 1990, Tech. Rep.
CRHC–90–07/UILU–ENG–90–2237.

[86] R. M. Kling and P. Banerjee, “Empirical and theoretical studies of the simulated evolu-
tion method applied to standard cell placement,” IEEE Transactions on Computer-Aided
Design, vol. 10, no. 10, pp. 1303–1315, Oct. 1991.

[87] N. R. Quinn and M. A. Breuer, “A force directed component placement procedure for
printed circuit boards,” IEEE Transactions on Circuits and Systems, pp. 377–388, June
1979.

[88] K. J. Antreich, F. M. Johannes, and F. H. Kirsch, “A new approach for solving the place-
ment problem using force models,” in Proceedings of the International Symposium on
Circuits and Systems, 1982, pp. 481–486.

[89] J. Frankle and R. M. Karp, “Circuit placements and cost bounds by eigenvector decompo-
sition,” in Digest of Papers, International Conference on Computer-Aided Design, Santa
Clara, CA, Nov. 1986, pp. 414–417.

90

[90] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “GORDIAN: VLSI place-
ment by quadratic programming and slicing optimization,” IEEE Transactions on Com-
puter-Aided Design, vol. 10, no. 3, pp. 356–365, Mar. 1991.

[91] R.-S. Tsay, E. S. Kuh, and C.-P. Hsu, “Proud: A sea-of-gates placement algorithm,” IEEE
Design & Test of Computers, vol. 5, no. 6, pp. 44–56, Dec. 1988.

[92] M. A. Breuer, “Min-cut placement,” Design Automation and Fault-Tolerant Computing,
vol. I, no. 4, pp. 343–362, Oct. 1977.

[93] U. Lauther, “A min-cut placement algorithm for general cell assemblies based on a graph
representation,” in Proceedings of the Design Automation Conference, San Diego, CA,
June 1979, pp. 1–10.

[94] A. E. Dunlop and B. W. Kernighan, “A procedure for placement of standard-cell VLSI
circuits,” IEEE Transactions on Computer-Aided Design, vol. CAD-4, no. 1, pp. 92–98,
Jan. 1985.

[95] R. M. Kling and P. Banerjee, “Concurrent ESP: A placement algorithm for execution on
distributed processors,” in Digest of Papers, International Conference on Computer-Aided
Design, Santa Clara, CA, Nov. 1987, pp. 354–357.

[96] E. I. Horvath, “A parallel force direct based VLSI standard cell placement algorithm,” in
Proceedings of the International Symposium on Circuits and Systems, Chicago, IL, May
1993, pp. III:2071–2074.

[97] Z. Xing and P. Banerjee, “A parallel hierarchical algorithm for module placement based
on sparse linear equations,” in Proceedings of the International Symposium on Circuits
and Systems, Atlanta, GA, May 1996, pp. IV:691–694.

91

VITA

John Attupurathu Chandy received the S.B. in Electrical Engineering from the Massachu-

setts Institute of Technology in 1989. He then joined the Data General Corporation in Westbor-

ough, MA, as a hardware engineer where he was responsible for firmware design for open sys-

tems workstations and multiprocessor servers. In 1991, he enrolled at the University of Illinois

at Urbana-Champaign, where he was supported by the Semiconductor Research Corporation as

a research assistant in the Center for Reliable and High-Performance Computing. He received

the M.S. degree in 1993 and will receive the Ph.D. degree in Electrical Engineering in 1996

from the University of Illinois at Urbana-Champaign. He will be joining Cadence Design Sys-

tems in Chelmsford, MA. His research interests are in parallel software and high performance

I/O systems.

92

