© Copyright by John Attupurathu Chandy, 1996

PARALLEL ALGORITHMS FOR STANDARD CELL PLACEMENT
USING SIMULATED ANNEALING

BY
JOHN ATTUPURATHU CHANDY

S.B., Massachusetts Institute of Technology, 1989
M.S., University of Illinois at Urbana-Champaign, 1993

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1996

Urbana, Illinois

PARALLEL ALGORITHMS FOR STANDARD CELL PLACEMENT
USING SIMULATED ANNEALING

John Attupurathu Chandy, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1996
Prithvirg) Banerjee, Advisor

Asmodern VLS| designs have become larger and more complicated, the computational re-
guirements for design automation tools have aso increased. As aresult, the paralelization of
these toolsis of great importance. One of the more computationally intensive parts of the en-
tire VLS design processisthe placement process. Simulated-annealing-based approaches have
been the most popular and effective methods for cell placement. In thisthesis, parallelization
approaches to simulated-annealing-based standard cell placement are presented.

Inthiswork, four parallel agorithms have been investigated, with two that provide scalable
behavior as well as acceptable quality. The first is the parallel moves approach based on work
by Kim [1, 2]. The second algorithm is a multiple Markov chains approach that gives nearly
linear speedups with very little loss of quality. This approach is suitable for small scale mul-
tiprocessors and for circuits that are small enough to fit in the memory of a single node. The
next algorithm is known as specul ative computation and is not as effective. Thefina algorithm
addresses the memory scalability problems by partitioning the circuit across the nodes. This
circuit-partitioned approach provides speedupsto larger numbersof processorswithlittlelossof
quality. All of the agorithms have been implemented using the ProperCAD Il environment [3],
and the circuit-partitioned work has a so been implemented using the M essage Passing I nterface
(MPI) [4].

The placement a gorithms discussed above dealt only with minimization of the wirelength
and indirectly area minimization. For current high density circuits, this approach is no longer
appropriate, and more performance driven techniques are needed. We have, therefore, also de-
veloped a new algorithm for sequentia timing driven cell placement. Because the addition of
timing driven features to standard cell placement adds significant overhead to the computation,

time, we have aso developed an algorithm for its parallelization.

To my family

ACKNOWLEDGMENTS

| am grateful and indebted to my advisor, Professor Prithvirg) Banerjee, for his continuous
encouragement and guidance. His ready support and accessibility have made it easy to work
with him. | would also like to thank the members of my committee, Professors W. Kent Fuchs,
Ibrahim Hajj, and C. L. Liu, for their valuable insights and commentsin guiding thisthesis.

| would liketo thank all of the membersof the ProperCAD and PARADIGM research groups
for their friendship aswell astheir technical help. John Holm, Antonio Lain, Dan Palermo, Am-
ber Roy-Chowdhury, and Shankar Ramaswamy, who have been here for most of my five years
at lllinois, have been invaluable in my survival here. | would especialy like to thank Steven
Parkes for our countless discussions and for his assistance with ProperCAD. | would aso like
to acknowledge Sungho Kim for his guidance in the specific area of placement.

Lastly and most importantly, | would like to thank my family, who have always supported

mein al my endeavors and continue to offer their constant encouragement and understanding.

TABLE OF CONTENTS

CHAPTER PAGE
1 INTRODUCTION e e 1
1.1 Motivation 1

12 ProperCADIl . . . o o 2
121 Actorbasics 4

122 PropeCAD Illinterface 5

1.2.3 Related work in parallel software environments 8

1.3 ThesisOutline 9

2 BACKGROUND AND RELATEDWORK 10
21 SmulatedAnnealing. 10
2.2 TimberWolfSC e 12
2.3 Pardld Anneding Algorithmsfor Placement 13

3 PARALLEL MOVESAPPROACH 15
31 Algorithm 15
32 Resultsand Analysis. 18
33 Summaryo e 21

4 MULTIPLE MARKOV CHAINSAPPROACH 22
4.1 Synchronous MultipleMarkov Chains 23
4.2 AsynchronousMultipleMarkov Chains 24

4.3 Experimental Results 28
44 SUMMAIY o o e e e e e e e e e e e 29

5 SPECULATIVE COMPUTATION APPROACH 32
5.1 Generaized Speculative Computation 32

5.2 Speculative Computationfor Placement 34

5.3 Experimental Resultsand Analysis 35

94 SUMMAY L e e e 38

6 CIRCUIT PARTITIONED APPROACH 39
6.1 An Object-Oriented Cell Placement Algorithm 39

6.2 Paralelism ThroughInheritance 41
6.21 Datadistributiono 45

Vi

6.3 Pardle Algorithm 46

6.4 ErrorControl 46
6.41 Wirelengtherror 47
6.4.2 Ovelappendtyeror 47
6.43 Rowpendtyerror 47
6.44 Dynamicerrorcontrol 50
6.5 DynamicRedistribution oL 51
6.6 AlgorithmAnalysis 53
6.7 Experimental Results 55
6.71 Speedupandquality 55
6.7.2 FErrorcontrol 56
6.73 Comparison 57
6.8 AnMPI Implementation 58
6.9 Summary. 62
TIMING DRIVEN APPROACH 63
7.1 TimingAnalysis L e 64
711 Deaymoddo 64
712 Pathdeayanalysis. 67
7.2 TimingDrivenPlacement 70
7.21 Pathdeaycostcaculation. L. 72
7.3 Experimental Results 74
7.4 Padld TimingDrivenPlacement 76
741 Pathdeayanalysis. 76
742 Padld placement algorithmo 77
743 Experimentalresults. 77
75 Summary e e 8l
CONCLUSIONS e e s 82
REFERENCES e 84
VITA 92

vii

LIST OF TABLES

Table Page
3.1 CircuitInformation 19
3.2 ProperPLACE-PM Results (Sun SparcServer 1000E) 19
3.3 ProperPLACE-PM Results(Intel Paragon) 19
4.1 Circuit Sizelnformation 26
4.2 ProperPLACE-MMC Results (Sun SparcServer 1000E) 29
4.3 ProperPLACE-MMC Results(Intel Paragon) 30
4.4 ProperPLACE-MMC Quality Improvement (Sun SparcServer 1000E) 30
5.1 ProperPLACE-SC Results(Sun4/690MP) 35
52 TaskTimeMeasurements 37
6.1 ProperPLACE-PART Results (Sun SparcServer 1000E) 55
6.2 ProperPLACE-PART Results (Thinking MachinesCM-5) 56
6.3 ProperPLACE-PART Results(Intel Paragon) 56
6.4 Effectof ErrorControl 57
6.5 Comparison with Previous Algorithms (Intel Paragon, 8 processors) 58
6.6 mpiPLACE Wirelengths (Sun SparcServer 1000E) 59
6.7 mpiPLACE Wirelengths(Intel Paragon) 60
6.8 Comparison with Partitioned Placement (Sun SparcServer 1000E) 62
6.9 mpiPLACE Results (Intel Paragon, 128 processors) 62
7.1 CircuitInformation 75
7.2 Technology Parameters 75
7.3 TimingDrivenPlacementResults 75
7.4 mpiPLACE-TIME Results(Sun SparcServer 1000E) 80
7.5 mpiPLACE-TIME Results(Intel Paragon) 81

viii

LIST OF FIGURES

Figure

1.1 Anoverview of theProperCAD project.
1.2 Actor mode with continuationpassing.

21 Standardcell placement.
2.2 TimberWolfSC cost functioncomponents..

3.1 Outlineof theProperPLACE-PM algorithm.
3.2 MovesSinProperPLACE-PM.ottt

4.1 Messageflow in actor based synchronousMMC.
4.2 Outline of the multiple Markov chains synchronous actor interface.
4.3 Outline of the multiple Markov chains asynchronous actor interface.
4.4 Message flow in actor based asynchronousMMC.

5.1 Speculativecomputationtrees.
5.2 Seven-processor speculative computationtimeline. oL L. L.
5.3 Outlineof theProperPLACE-SC algorithm.

6.1 Rdationshipsbetweenobjects..
6.2 Corecodefor seria algorithm.
6.3 Reationshipsbetweendistributedobjects.
6.4 Codefor NetAggr and CellAggr. o ittt
6.5 Codefor CircuitAggr.
6.6 Crossingnets.
6.7 Fixedcdlsinbins.
6.8 Effectof rowpendtyerror.
6.9 Exampleof desired row length adjustment.
6.10 Targetrow lengthpenaty.
6.11 Codefor repartitioning.
6.12 Outline of the ProperPLACE-PART algorithm.
6.13 Effect of U, and U,, (primaryl, SS1000, 8 processors).
6.14 mpiPLACE speedups (Sun SparcServer 1000E).
6.15 mpiPLACE speedups(Intel Paragon).
6.16 Exampleof eight-way circuit partitioning.

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
711
7.12
7.13
7.14

Routing dternativesforanet. 66

Distributed RC modelsfornet., 66
Steiner approximationfornets. Lo 67
Delay analysisalgorithms. 68
Path construction algorithms. 69
Longest pathanalysis. 70
Moore model finitestatemachine.o 71
Sequentia circuit transformation. Lo oL 71
Longest path cost determination. 73
Timing driven placement algorithm. 74
Paradlel delay calculationagorithm. 76
Parallel path construction algorithm. L. 78
Parallel path construction algorithm (cont.). 79
Outline of thempiPLACE-TIME algorithm. 79

CHAPTER 1

INTRODUCTION

1.1 Motivation

With the rapid advances in VLS| process technology, circuit design is becoming increas-
ingly complex and in turn is placing ever higher demands on CAD tools. Designs containing
millionsof transistorsaretypical, and it isexpected that designs may approach 100 milliontran-
sistorsby the end of the decade. The computational resources needed to effectively design these
circuits are enormous. Each of the different phasesinthe VLS| design process can take several
hours to several days using existing CAD agorithms in current processing technology. With
the sizes of these designs growing, the CAD tools become increasingly taxing on the memory
resources of computers. Asaresult, with many modern designs, it is not possibleto effectively
use existing CAD tools on the entire design because of memory shortage.

Parallel processing isfast becoming an attractive solution to reduce the inordinate amount of
timespent in VLS circuit design. Thisfact has been recognized by several researchersin VLS
CAD as evidenced in the recent literature for cell placement, floor planning, circuit extraction,
test generation, fault simulation, logic synthesis, etc [5]. Parallel processing can also address
the memory issue by using the distributed memory resources on a multiprocessor.

In this thesis, we examine one phase of the design process in detail, namely, standard cell
placement. Placement of standard cellsis particularly expensive because of the inherent com-
puteintensivenature of simulated annealing, the most popul ar approach used for cell placement.

There have been severa attemptsto parallelize this algorithm, usually with quality results that

do not compare to the best available sequential algorithm, or with speedups that are not accept-
able.

In this work, four parallel agorithms have been investigated, with two that provide scal-
able behavior as well as acceptable quality. The first is the parallel moves approach based on
work by Kim [1,2]. The second agorithm is a multiple Markov chains approach that gives
nearly linear speedups with very little loss of quality. This approach is suitable for small scale
multiprocessors and for circuits that are small enough to fit in the memory of a single node.
The next algorithm, known as specul ative computation, is not as effective. The fina agorithm
addresses the memory scalability problems by partitioning the circuit across the nodes. This
circuit-partitioned approach provides speedups to larger numbers of processors with little loss
of quality. All the agorithms have been implemented using the ProperCAD Il environment [3],
and the circuit-partitioned work has a so been implemented using the M essage Passing I nterface
(MPI) [4].

The placement algorithms discussed so far have dealt only with minimization of the wire-
length and indirectly area minimization. For current high density circuits, this cost function is
no longer appropriate. The delays associated with the wiring e ements are more critical to the
performance of the circuit; thus, steps must be taken to minimize these delays. Timing driven
placement is the process of simultaneously minimizing the circuit area as well as minimizing
thecritical path delays. Inthisthesiswe also introduce anew a gorithm for timing driven place-
ment as well as methods of parallelization.

Before describing the paralel algorithms, we will provide a brief overview of the Proper-

CAD Il environment.

1.2 ProperCAD I

The use of paralld platforms, in spite of increasing availability, remains largely restricted
to well-structured numeric codes. Irregular applicationsin terms of data access patterns aswell
as control flow are difficult to effectively and efficiently parallelize. The use of object-oriented

design techniques and the actor model of computation can address the use of parallél platforms

Applications
ProperEXT Extraction e .
ProperDRC Layout Verification Existing Serial
ProperTEST ATPG i
ProperGATEST ATPG AIgOfITth

ProperSYN Synthesis Parallel MIS/SIS
ProperMIS Synthesis i~y
ProperPLACE Placement Appliegiien H_lTEC/ PROOFS
ProperROUTE ~ Routing TimberWolfSC
ProperHITEC — ATPG
ProperPROOFS Fault Simulation
ProperSIM Circuit Simulation .
ProperVHDL ~ VHDL Simulation ProperCAD Library
Actor Interface
Abstract Parallel
Architecture
Multicomputers Multiprocessors Hybrids
Intel iPSC SUN MP Workstation clusters
Intel Paragon Encore
IBM SP-1 sGl
TMC CM-5

Figure 1.1: Anoverview of the ProperCAD project.

for unstructured problems. ProperCAD Il is an object-oriented library supporting the design
of actor-based paralel programs|[3,6]. Thelibrary easily allows the design of data structures
with parallel semantics for use in irregular applications. Because the foundation is based on
C+t, inheritance mechanisms alow creation of the distributed data structures from standard
CH++ objects.

The major goal of the ProperCAD project [7] isto develop portable parallel agorithmsfor
VLSI CAD applicationsthat will run on arange of parallel machinesincluding shared memory
multiprocessors such as the Sun SparcServer 1000E and the SGI Challenge, distributed mem-
ory multicomputers such as the Intel Paragon, IBM SP-2, and Thinking Machines CM-5, and
networks of workstations (Figure 1.1).

The domain of VLSI CAD provides arich class of irregular problems. With the rapid ad-
vancesin VLS| processtechnology, increasingly complex circuit designsare placing ever higher
demands on CAD tools. The computational intensity of these tools makes parallel processing
an attractive solution [5]. However, most applications in this area are characterized by com-

plex interrelated data structures as well asirregular access patterns across these objects. These

propertiesmake VLS| CAD applications particularly difficult to efficiently parallelize. Theuse
of the ProperCAD Il library as well as C+H design techniques help to aleviate this problem.
The approach has been used on a wide variety of VLSl CAD problems including test gener-
ation [8], fault smulation [9], logic synthesis[10, 11], state assignment [12, 13], layout veri-
fication [14, 15], and VHDL simulation [16]. In this thesis, we demonstrate the use of these
techniquesin aspecific VLSl CAD problem, standard cell placement.

1.2.1 Actor basics

The ProperCAD Il library expresses parallelism with a statically typed high level C+ ac-
tor based interface. The library is class library-based and alows multiple levels of abstraction
as well as incrementa parallelization. Through the use of a fundamental object called an ac-
tor [17], thelibrary provides mechanisms necessary for achieving concurrency. An actor object
consists of athread of control that communi cates with other actors by sending messages, and all
actor actions are in response to these messages. Specific actor methods are invoked to process
each type of message.

Figure 1.2(a) shows the three basic actions that a method in an actor can take: create new
actors, send messages to actors, and perform computations that change its state. In formal ac-
tor terminology, the changing state is actually a subset of the become operation as defined by
Agha[17]. When amethod creates an actor, a message is sent to the run-time system with all
the information needed to construct an actor. When a method sends a message, a message con-
taining the arguments and the identity of the method to beinvoked is sent to the run-time system
for later execution. Both actor creation and message sends are non-blocking calls. The model
only specifies that the actor be created or the task be run sometime in the future. Once a task
starts, it runs to completion and cannot be preempted.

The actor model lacks explicit sequencing primitives. Synchronizationisimplicit and arises
because of the single-threaded nature of individual actors. The return executed at the comple-
tion of an actor method is an implicit wait; the actor automatically becomes available for any

pending method invocations. Since an actor cannot suspend execution implicitly in the middle

Non-preemptible -
P P Message Actor A Actor B
Task STt N T ,
| i
! I
i |

) ' Method1 | Message which includes
= computation I
! Actor A::Method 2
I
! Send i as a continuation. ! I
T Method 1 !
' Message ! — !
I] |
I ! I I
Create i ! : Send !
~— I ! en |
Actor Sends a message with all the ! Method 2 % Message 1
;
information needed to constuct | ! Message sent back | |
I I

an actor. \ 3 | with result needed
Send Message !) by Actor A::Method 2.
' |
| i
|

to aMethod in =~
an Actor Sends a message which contains
the arguments for the method. —

Return to Task
Director

(a) Actor Behaviors (b) Continuation Passing Style
of execution.

Figure 1.2: Actor model with continuation passing.

of acomputation, continuation-passing style (CPS) [18] is used to express control and data de-
pendencies. Figure 1.2(b) shows an example of continuation passing style. The actor model is
amessage-driven model in which the method nameisin the message and the method isthe code

invoked upon message reception.

1.2.2 ProperCAD Il interface

Applications created with the ProperCAD Il library use five basic classes provided by the

library: Actor, ActorName, ActorMethod, Continuation, and Aggregate.

1.2.2.1 Actor

All actor types are derived from thelibrary supplied class, Actor. AddingtheActor baseto
aclassin asequentia object-oriented program enables the creation of actor methods and con-
tinuations as described below. Thesefeaturesallow the expression of parallelism. For example,

auser class may be created asfollows.

class Foo : public Actor { ... };

1.2.2.2 ActorName

Actor names servetherole of pointersand referencesfor instances of actor classes. Because
normal pointers are not valid across processor boundaries, actor names provide the mechanism
for access of actorsin agloba namespace.

Foox actorPtr = ...;

ActorName<Foo> fooName = actorPtr;

1.2.2.3 ActorMethod and Continuation

ActorMethods are member functionswhich may beinvoked asynchronously and remotely.
ActorMethods are executed via Continuations, the concurrent equivaent of member func-

tion pointers. An example of the definition and use of these constructsis shown below.

class Foo : public Actor {
Foo(fooArgs&);
void bar(barArgs&);
class New : public NewActorMethod<fooArgs> {};

class bar : public ActorMethod<barArgs> {};

The Foo actor has a constructor which takes fooArgs as an argument as well as a method
bar () which takes barArgs as an argument. In order to allow creation of this actor remotely,
we need to add to the class a special nested class, New, which is derived from a templated
NewActorMethod. Likewise, we can designate bar () as an actor method by creating a new
nested class bar derived from a templated ActorMethod. The code below shows the use of

these constructs.

fooArgs &fargs

ActorName<Foo> fooName = ActorName<Foo>: :newName() ;
Foo::New::Continuation contl (fooName);

cont1(fargs);

barArgs &bargs;

Foo::bar::Continuation cont2 (fooName);

cont2(bargs);

To create the actor, wefirst optionally assign an ActorName toit. Wethen createaContin-
uation cont1 boundtothat ActorName. Execution of the continuationwill schedul e construc-
tion of theactor. Note, that the actor isnot created at thispoint but it isdeferred until some point
inthefuture. We also have specified where the actor should be created, though this may option-
ally beindicated when the continuationiscreated. Inorder toinvokebar () asynchronously, we
similarly create aContinuation cont2 boundto fooName. We can now treat cont as member
function pointer and execute it directly causing a message send, or pass it to another method.
In this particular example, we execute it and because the actor has not been created but simply

scheduled for creation, the message becomes pending, waiting for construction of the actor.

1.2.2.4 Aggregate

Individual actors express neither internal parallelism nor datadistribution. Collection types,
based on aggregates with explicit distributions, alow both object-internal concurrency as well
as data distribution. An aggregate is simply a collection or group of actors which share a com-
mon name [19]. An example of an aggregate would be a distributed array where different ele-

mentsare stored on different actors. The use of aggregate representations removesthe seriaiza

tion step that would be required because of agateway actor. Theinterfaceissimilar to that of the

Actor class, and the creation and use of names and actor methods are accomplished similarly.

class FooAggr : public Aggregate { ... };

Aggregates provide the necessary mechanisms for distributed data structures. Because of
the standard C++ interface, access to these distributed data structuresis efficient. The benefit of
aggregatesisapparent particularly inthecircuit partitioned algorithmfor parallel cell placement
described in Chapter 6.

1.2.3 Related work in parallel software environments

Severa other researchers have produced work in environments to support irregular appli-
cations in object-oriented environments, such as Charm++ [20], CC++ [21], Concurrent Ag-
gregates/Concert [19, 22, 23], pC++ [24], and SDDG/DAGH [25]. Charm++ provides similar
run-time support for message driven applicationsto ProperCAD II. The primary differencesare
Charm++’slack of support for static messagetyping, asrepresented by first-class continuations,
and composability. Concurrent Aggregatesis apure actor functional language with support for
aggregates. pC++ is a language extension of C++ with support for data parallel semanticsin
much the same manner as HPF [26]. Since it presents a data parallel view of the world, it is
difficult to express irregular problems such as VLS| CAD in this framework. CC++ achieves
concurrency through parallel constructs which allow particular code fragmentsto be performed
on different processing threads. Thistask parallelism approach can mimic many of the features
in an actor model. However, the ProperCAD 1 library does provide extra meta programmabil-
ity features that allow the program designer to change the behavior of the run time system such
as queuing policies, memory usage, and load balancing. SDDG/DAGH provides a collection
of C+ distributed data structures to support parallel adaptive finite difference codes based on
hierarchical adaptive mesh-refinement methods.

Other work to support irregular applications but are not targeted toward object-oriented en-
vironmentsinclude Multipol [27] and PARTI/CHAOS [28]. Multipol provides alibrary of dis-

tributed data structures for use with a message driven run-time system. The basic block of

computation is called an atomic thread, which is essentially the functional equivalent of an ac-
tor method. The PARTI/CHAOS library offersirregular run-time support for iterativeirregular
computation in which the communication pattern is unchanged and predictable, but not resolv-
able at compiletime. Thelibrary is most appropriate for finite el ement computations. Neither

Multipol nor PARTI/CHAQOS allows parallelism via derivation as available in ProperCAD 1I.

1.3 Thesis Outline

Thisthesisisorganized asfollows. Chapter 2 coversthe background and related work in par-
allel standard cell placement. Chapter 3 describes the parallel moves approach based on work
by Kim[1,2]. Chapters 4 and 5 describe the multiple Markov chains and speculative compu-
tation algorithms, respectively. The final parallel area driven placement agorithm, circuit par-
titioned, is discussed in Chapter 6. The agorithms for timing driven placement are introduced

in Chapter 7. The last chapter contains the conclusions and directions for future research.

CHAPTER 2

BACKGROUND AND RELATED WORK

Standard cell based design methodol ogy allows a designer to build his or her design from a
library of predefined modulesor cells. The placement problem involvesplacing thesecellson a
VLS layout, given anetlist that provides the connectivity between each cell and alibrary con-
taining layout information for each type of cell. Thislayout information includes the width and
height of the cell, thelocation of each pin, the presence of equivalent pins, and the possible pres-
ence of feed through paths within the cell. The primary goal of cell placement is to determine
the best location of each cell so asto minimizethetotal area of the layout and the length of the
nets connecting the cells together. With standard cell design, the layout is organized into equal

height rows, and the desired placement should have equal length rows, as shown in Figure 2.1.

2.1 Simulated Annealing

One of the more powerful algorithms for standard cell placement has been simulated an-
nealing. It isa suitable approach to problemslike VLSI cell placement because they lack good
heuristic agorithms. Simulated annealing is anal ogous to the material s science problem of an-
nealing of solids. When annealing solids, the goa is to bring the solid into alow energy state,
for example, to generate crystal lattices in silicon or to soften glass and metals. The physical
process involves heating the material to allow atomic motion. Gradually, the material is cooled
carefully until the material freezes into the desired state. Briefly then, simulated annealing is
an iterative optimization software strategy that starts with a system in a disordered state, and

10

Figure 2.1: Standard cell placement.

through perturbations of the state, brings the system gradually to a low energy, and thus opti-
mal, state [29, 30]. The energy is acost function of the system that is to be minimized. In the
context of cell placement, perturbations are simply moves of the cells to different locations on
the layout, and the energy is an approximated layout cost function.

As moves are made, any move that reduces the cost function is accepted. However, sim-
ulated annealing, unlike greedy algorithms, will aso alow moves that increase the cost. The
effect of this change isto allow the solution to escape from local minima. In cases where the

cost isincreased, the new state is accepted with probability

p=e T (2.1

where AC isthe changein the cost or energy and T isthe temperature of the system. Thetem-
peratureisan analog of the effect of temperaturein crystal annealing. We start with an extremely
hightemperatureto allow nearly all movesto be accepted. Gradually, thetemperatureisreduced
until atermination condition is reached.

Theoretical studies show that simulated annealing is guaranteed to reach an optimal solu-
tion given enough time and proper monitoring of the temperature or annealing schedule. To
achieve this, at each temperature, the system must be at equilibrium before the temperature is

lowered again. However, it isimpossible to guarantee equilibrium in finite time. In computing

11

o
e m
/}.' | |<~\ a T

Wirelength Overlap Penalty Row Penalty
Bounding Box

Figure 2.2: TimberWolfSC cost function components.

applications, it isimpractical to wait for the system to achieve equilibrium before changing the
temperature, so heuristics are used to develop afast and near optimal schedule [31-34].

2.2 TimberWolfSC

One of the more popular uses of simulated annealing for placement has been the Timber-
WolfSC cell placement tool [35-37]. The TimberWolfSC cost function is defined in Eq. (2.2)
where I is the bounding box half perimeter estimate of the wirelength of al nets, Py isthe
penalty for the area overlap between cells in the same row, and Py is the penalty for the dif-
ference between the actual row length and the desired row length. These cost parameters are
shown graphically in Figure 2.2. The coefficient terms 1 and A are adjusted using a feedback

control mechanism to arrive at optimal values.

Moves are generated by choosing arandom cell and then displacing it to arandom location
on the layout. If acell isaready present at the new location, the two cells are exchanged. A
temperature dependent range limiter is used to limit the distance over which a cell can move.
Initialy, the span of the range limiter is set such that a cell can move anywhere on the layout.

Subsequently, the span is decreased logarithmically with temperature. These range limiter up-

12

dates are made at the end of each of the 160 iterationsinto which TimberWolfSC segmentsthe
simulated annealing procedure. As the algorithm progresses, the temperature is gradually de-
creased by forcing the acceptance rate to follow atheoretically derived schedule that attempts
to keep the acceptance rate close to 44% during the middle region of annealing [33]. Timber-
WolfSC 6.0 alsousesrow binsto aid in the computation of overlap and row penalties, and early

rejection methods are used to speed up the decision process [38].

2.3 Parallel Annealing Algorithms for Placement

Because of the inherent computational costs associated with simulated annealing, several
methods have been proposed for the parallelization of the procedure [39]. Using the taxonomy
defined in [40], there are three major classes of parallel simulated annealing algorithms: serial-
like, asynchronous, and altered generation.

Serial-like algorithms preserve the convergence characteristics of the sequential algorithm
through the use of single move acceleration or serializable subsets. Kravitz and Rutenbar have
investigated both approaches and found that these algorithms have limited parallelism and are
more appropriate for shared memory architectures [41].

The second class of paralle simulated annealing techniques, atered generation, is distin-
guished from serial-like algorithmsin that they do not follow the exact search space laid out by
the sequential algorithm. Thisis usually accomplished with a processor or group of processors
either exploring a restricted state space or using a restricted search on the entire state space.
To ensure proper globa convergence, the global state is kept up to date through periodic solu-
tion exchanges or with a shared memory architecture. Parallel placement algorithms using this
strategy for shared memory machines include work by Darema et al. [42] and Natargjan and
Kirkpatrick [43]. Sun and Sechen have recently shown results achieving near linear speedup
on anetwork of workstations[44]. This method shows great promise for afew processors, but
itisunlikely that the convergence properties will hold as more processors are used.

The final class of parallel simulated annealing algorithms is the asynchronous or “parallel

moves’ algorithm where each processor generates and evaluates moves independently. This

13

differsfrom altered generation methods in that the state space is not restricted. In other words,
each processor contains information on the entire circuit regardless of whether the global lay-
out information isaccurate in thelocal processor. Obviously, the cost function cal culations may
be incorrect because of the moves made by the other processors. There are various methodsto
address the effect of error, but al involve some form of periodic updates. The number of up-
dates is directly related to the average acceptance rate of the particular annealing scheduling
chosen. Banerjee, Jones and Sargent [45] implemented a parallel placement algorithm using
the parallel move approach on an Intel hypercube multiprocessor and proposed severa parti-
tioning strategies for the problem specific to the hypercube topology. Speedups of up to 12 on
16 processors were reported. Rose et a. [46] proposed a parallel algorithm on an experimen-
tal distributed memory multiprocessor. In that agorithm, they replaced the high temperature
portion of the parallel simulated annealing placer with a placement program based on a min-
cut algorithm and used a parallel moves strategy for lower temperatures. Speedups of 4 on five
processors were reported.

The only reported instance of large scale parallelism being applied to cell placement is the
use of parallel movesfor SIMD machines. Both Casotto and Sangiovanni-Vincentelli [47] and
Wong and Fiebrich [48] have presented similar parallel ssmulated annealing placement algo-
rithms for the SIMD Connection Machine. These methods fall in between a completely asyn-
chronous approach and the altered generation methods. By completely distributing the circuit
state, the necessity for global updatesisremoved, whilestill allowing for asynchronous parallel

moves.

14

CHAPTER 3

PARALLEL MOVES APPROACH

3.1 Algorithm

In this chapter, we describe ProperPLACE-PM, an implementation of parallel moves based
cell placement derived from work by Kim et al. [1, 2]. In the parallel moves algorithm, each
processor generates and eval uates moves independently. This leads to cost function inaccura
cies that must be adequately addressed to arrive at good solutions. ProperPLACE-PM does so
through the use of periodic updates with specific dynamic error control mechanisms.

The application begins with a random input placement that is replicated on each available
physical processor. Using the aggregate class provided by the ProperCAD Il library, an aggre-
gate named CircuitAggr isconstructed to manage access to the circuit structure and maintain
a coherent state of the current placement. Each processor will have one representative of the
aggregate responsible for its local copy of the circuit. In addition, an AnnealActor actor is
created per physical processor to perform the annealing steps, i.e. move, evaluate, and decide.
The placement is divided up topographically by rows, with the rows and its cells assigned to
separate AnnealActor actors. Each actor isresponsible for one row, and thusis only alowed
to attempt moveson cellsin that row. If acell ismoved to aregion owned by another actor, the
ownership of the cell istransferred to the new actor and the original actor isno longer responsi-
blefor movingthat cell. Because an entirerow, not asub part, isowned by an actor, therewill be
no error in the calculation of cell overlaps and row lengths during the simultaneous evaluation

of multiple moves. Note that this approach assumes that the number of rows s greater than or

15

equal to the number of actors. If not, the rows must be split into anumber of subrows, in which
case, some overlap penalties may be calculated erroneoudly.

After partitioning, each AnnealActor actor proceeds with the annealing algorithm outlined
inFigure 3.1. A valid cell is selected for perturbation, and then a displacement or exchangeis
performed on that cell. Asdetailed below, there are two subclasses of movesfor both displace-
ment and exchange, or four move types in total. The movetype is determined by the intended
location of the selected cell A.

M1. Intra-actor Cell Displacement. Cell A movesto new location owned by the same actor.

M2. Intra-actor Cell Exchange. Two cells A and B owned by the same actor exchange their

locations.
M3. Inter-actor Cell Displacement. Cell A movesto new location owned by adifferent actor.

M4. Inter-actor Cell Exchange. Two cells A and B owned by different actors are exchanged.

An example of each type of moveis shown in Figure 3.2. In the figure, assume that each
row isowned by different AnnealActor actors. Notethat thethreemoves(M1, M2, M3) can be
donealone by actor 0, the owner of cell A. For the move M4, however, actor O needs permission
from actor 1 whichownscell B, asitispossiblethat cell B may have aready been moved to an-
other location or isfrozen because of some pending move. Because theinformation about cell B
may be out of date in the database of actor O, it locks (or freezes) cell A and cell B and sends
an AskPermission message to actor 1. After receiving the AskPermission message, actor 1
examinesthe state of cell B and determineswhether to allow the exchange. Thedecisionis sent
back to actor O by sending the ReturnAnswer message. Upon receipt of the ReturnAnswer
message, actor 0 unlockscells A and B, and the moveis attempted if the returned answer isyes.
Actor 0 does not wait idly until the ReturnAnswer message is received - instead, it continues
annealing by making other moves with unfrozen cells that it owns.

If amove is accepted, the accepting actor must send the move to the CircuitAggr aggre-

gate so that a consistent cell position database can be maintained. To amortize the startup cost

16

ProperPLACE-PM()
1 while termination not reached

QO OWWO~NOOUTE,WN

1

12
13
14
15
16
17
18

do while equilibrium not reached

do select cell A inthisactor'sregion
select new location for cell A
if cell B a new location
then moveisan exchange
determine movetype (M1, M2, M3 or M4)
evaluate move cost
if ACCEPT (A, B, move) == yes
then if move == M4
then FREEZE(A, B)
send Ask Permission msg to Clircuit
else accept the move
update local database
send Update msg to Circuit

lower T

Figure 3.1: Outline of the ProperPLACE-PM agorithm.

c M _ E Anneal 0

M2
A D ——=
B Anneal 1

Figure 3.2 Movesin ProperPLACE-PM.

17

of sending amessage, position update messages are held until anumber of moves have been ac-
cepted. Although thisreducesthetotal number of update messages sent among processors, there
isadrawback inthisapproach. Asthefrequency of update messagesisreduced, thecell position
database on each CircuitAggr representative becomes increasingly inaccurate, thereby caus-
ing the cost function calculation error to increase as well. This error, if too large, may prevent
the algorithm from converging to an optimal solution. Previous researchers [45, 47, 49] have
shown that simulated annealing is tolerant to some error in cost function calculations.

Since actor methods are non-blocking, the actor’s annealing process must give up control
every so often to allow the aggregate to gain computation time to respond to the update and
AskPermission messages. Therefore, alimit is placed on the number of moves that may be
performed in succession without interruption. The CircuitAggr aggregate can then process
any waiting messages. AnnealActor will have rescheduled itself by sending itself a message
that will enable control to come back and the next set of moves can then be proposed and eval-
uated.

ProperPLACE-PM includes adynamic error control mechanism that adaptively controlsthe
frequency of the update messagesin order to keep the error in the cost function relatively small.
ProperPLACE-PM also takes full advantage of the prioritized messages provided by the Prop-
erCAD Il library to guide the run-time system to select critical messages. Load balancing is
achieved through inter-actor move suppression. These features are discussed in more detail
in[1,2].

3.2 Results and Analysis

Results are presented for a set of benchmark circuits (Table 3.1) in Tables 3.2 and 3.3 for a
Sun SparcServer 1000 and Intel Paragon, respectively. W indicates the normalized wirelength
cost of the resultant placement, and S is the speedup compared to that for a single processor.
The agorithm provides moderate speedup with some loss of quality. The parallel placement

algorithms based on parallel moves are hindered because they must limit the cumulative error

18

Table 3.1: Circuit Information
ISCAS, Physical Design Workshop 91, and Other Industry Benchmarks

Number | Number Initial
Circuit of cells | of nets | wirelength
fract 125 163 12839
s298 133 138 126984
420 212 233 274056
primaryl 760 1172 1202241
struct 1888 1920 388707

industryl 2271 2583 5301571
primary2 3014 3817 7292946
biomed 6417 5742 | 18844676
circuit 5812 7574 | 83198647
industry2 12142 13419 | 90099851
avg.large 25114 25384 | 129120230

Table 3.2: ProperPLACE-PM Results (Sun SparcServer 1000E)

1PE 4 PE 8 PE
Circuit W S|| W S W S
primaryl | 1.00 | 1.00 || 1.03 | 2.35 || 1.07 | 3.06
industryl | 1.00 | 1.00 || 1.05 | 1.88 || 1.04 | 1.99
primary2 | 1.00 | 1.00 || 1.02 | 2.22 || 1.09 | 3.05
biomed 1.00 | 1.00 || 1.01 | 249 || 1.18 | 3.22
industry2 | 1.00 | 1.00 || 1.18 | 2.22 || 1.33 | 2.33
avg.large | 1.00 | 1.00 | 1.44 | 1.84 || 1.14 | 2.90

Table 3.3: ProperPLACE-PM Results (Intel Paragon)

1PE 4 PE 8 PE \
Circuit W S| W S wW S
primaryl | 1.00 | 1.00 || 1.04 | 275 || 1.04 | 3.95
industryl | 1.00 | 1.00 || 0.98 | 2.70 || 0.99 | 3.95
primary2 | 1.00 | 1.00 || 1.09 | 2.68 || 1.10 | 3.85
biomed | 1.00| 1.00 || 1.12 | 2.62 || 1.21 | 3.86
industry2 | 1.00 | 1.00 || 1.07 | 249 || 1.05 | 3.44

19

effects on the global cell database. This can cause a significant degradation in quality as the
number of processors increases.

Also, because of the necessary global updates, the speedups will likely not scale linearly
with the number of processors. Since every processor must perform these updates, this be-
comesessentially aseria bottleneck. Infact, because updatesare doneonly for accepted moves,
speedups areintimately related to the acceptancerate. Consider if ¢,,,. isthetimeto propose and
evaluate amove, and ¢, and ¢,, are thetimesto decide and update amove, respectively, the total

run time of aseria executionis
tser = I(tme +tq+ tu) (31)

where I is the total number of moves attempted. In a parallel moves implementation the run
timeisasfollows:

I
tpar = N(tme +tg+ty + (N — Dtpy) (3.2

where N is the number of processors, « is the acceptance rate, and ¢,,,,, iS the time required
to perform another processor’s accepted move. Note because of the way TimberWolfSC does
incremental wirelength cost estimates, ¢,,,,, is not equivalent to ¢,,. The speedup can be charac-
terized asfollows:

I(tme +tg + ty)

tser
g = s 33
tpar = (tme +ta+ ty + (N — 1)ty) (33)

M easurements have shown that ¢,,,,, is closeto t,,, + t,, and t,,. + t, > t4.! Using these
assumptions, S simplifiesto $ Essentially, this limits the speedup to 1 regardless of
the number of processors.

Recent work by Sun and Sechen [44] used a parallel moves approach that addresses this
problem with less frequent updates. The updates are made at specific intervals instead of for
every accepted move. In spiteof thefewer updates, thereisno reductionin quality, duepossibly,

in part, to using a different serial algorithm at the core of their parallel implementation. Tim-

I Measurement details are shown in Table 5.2 in Chapter 5.

20

berWolfSC 7.0 [50] uses clustering of cells and has removed cell overlap, which appears to
make the update frequency less critical.

3.3 Summary

In this chapter, the parallel moves approach to parallel cell placement approach was de-
scribed. Parallel moves offers limited speedup potential with severe quality degradation prob-
lems. The main problem isthat update frequency limitsthe speedup regardless of the number of
processors available. In addition, this agorithm is not memory scalable, since the circuit must
be replicated on al processors. These problems are addressed with other paralel agorithms
described in Chapters 4 and 6.

21

CHAPTER 4

MULTIPLE MARKOV CHAINS APPROACH

In this chapter we introduce the concept of multiple Markov chains, first presented as par-
ald clustered statistical cooling by Aarts et al. [51-53]. It was further refined by Lee and Leg,
who introduced an asynchronous approach to this methodology and, in particular, applied the
algorithm to the graph partitioning problem for shared memory multiprocessors [54, 55]. The
algorithm can be understood if the sequential simulated annealing procedure is considered as
a search path where moves are proposed and either accepted or rejected depending on particu-
lar cost evaluations and also a starting random seed. Each search path is essentially a Markov
chain, and paralldlization is accomplished by initiating different chains (using different seeds)
on each processor. Each chain then explores the entire search space by independently perform-
ing the annealing perturbation, evaluation and decision steps. After each processor has com-
pleted the annealing schedule, the solutions are compared and the best is selected. Rose et al.
used a similar approach with the min-cut algorithm in the high-temperature region of the sm-
ulated annealing schedule [46]. Note that unlike the parallel moves approaches, each chainis
allowed to perform moves on the entire set of cells and not just a subset.

Of course, thereisno speedup in thisapproach since each processor isindividually perform-
ing the same amount of work asthe sequential algorithm. Thereis, however, the opportunity for
better quality solutions. To achieve speedup, we must reduce the number of movesevaluated in
each chain by afactor of + where V is the number of processors. Since the number of moves
determines the run time of the program, a reduction by a factor of % will cause a speedup of

N. Of course, such areduction aloneis not appropriate since the quality will decrease accord-

22

ingly. To take advantage of the use of multiple processors, some means of interaction between

the various chains are necessary.

4.1 Synchronous Multiple Markov Chains

One possible interaction scheme, called synchronous MMC with periodic exchange by Lee
and L ee, isto stop annealing and compare solutions at fixed intervals. This method allows each
Markov chain to update its local database with the best solution, and then continue. This ex-
change point serves as the end of a segment of computation and behaves as a barrier synchro-
nization point. According to the algorithm proposed by Aarts et al., the exchange point occurs
after every move. At the barrier, various application specific metrics can then be used to deter-
mine the best solution.

In an actor framework, each chain or search path is represented by aseparate actor or thread
of control. Sincetheactor model can not assume ashared memory architecture, solution updates
must be done with message sends. The barrier at the end of each segment isimplicitly achieved
through the use of these messages, as shown in Figure 4.1. When an actor has reached the end
of its segment, it propagates a solution metric up to a master actor through a reduction tree.
This metric is only a cost measurement of the solution and is not the entire global state. The
master thread will determine the best solution, and then directs the actor with the best solution
to broadcast its state to al other actors. In the example in Figure 4.1, actor 3 is determined
to have the best solution. The barrier could be implemented in a single phase manner if each
actor propagates its entire state to the master rather than just the cost metric. The master could
then broadcast the state itself rather than request the winning actor to broadcast it. However,
because of the size of the state in cell placement, the two-phase method is more efficient. The
implementation proposed by Lee and L ee can use asingle phase by transferring the entire state
through shared memory.

When applied to the TimberWol£SC placement tool, anatural point for solution exchanges
isthe end of each TimberWolfSC iteration. Figure 4.2 shows a summary of the algorithm for

synchronous multiple Markov chains. Asmentioned above, theentirecell database stateisquite

23

Actor Actor Actor Actor Actor Actor Actor Actor
1 2 3 6 7

)]0

|

Process
(— cost metric
Broadcast
cell state
2___:_# 1 —
Computation EL — — _

— > Cost Metric
Message

—> Cell State
Message

Figure 4.1: Message flow in actor based synchronous MMC.

large. Table4.1 showsfor asampling of circuitsthe cell database size needed for messagetrans-

fer.

4.2 Asynchronous Multiple Markov Chains

From examining Figure 4.1, it is obvious that barriers can be costly operations; an asyn-
chronous approach is preferred. Figure 4.3 shows a pseudocode for such an implementation.
Note that very few modifications have to be made to support the asynchronous method. In this
approach, the master actor does not perform any computation. Instead, it serves as alocation
for the best available solution at any particular time. When an actor has completed an itera-
tion, it sends its solution metric to the master actor, and requests the best solution available.
The master thread on receipt of thisrequest will determineif the received solution is better than
the local “best” solution. If it is better, the master will ask the requestor to send its state back,
by calling the SendCellState() method. Remember that the requestor had only sent the metric
initially. The requestor will then send its local state back to the master and continue with the

24

MMCSync: :DoIteration(cell_state)
{
local_state = cell_state;
I=1+1; // update TimberWolfSC iteration number
while (N <= Nmax) { // number of moves attempted per iteration
N=N+1;
update temperature if necessary
propose a move and evaluate new cost
if move is accepted, update local_state
}
// send my solution metric and my actor name to master
master->SendSolutionMetric (local_state.metric, myName);

MMCSync: :SendCellState ()

{
// the master actor is asking us to broadcast our
// state, since we have the current best state
broadcast—->DoIteration (local_state);

MMCSyncMaster: :SendSolutionMetric (metric, name)
{
// if the incoming metric is better than the
// the current best state, update our best values
// when all metrics have been received and thus
// synchronized, ask the winner to broadcast its
// cell state.
if (metric better than current best_metric) {
best_metric = metric;
best_actor = name;

if (all metrics received)
best_actor->SendCellState ();

Figure 4.2: Outline of the multiple Markov chains synchronous actor interface.

25

Table 4.1: Circuit Size Information
ISCAS and Physical Design Workshop 91 Benchmarks

Cdll state
Circuit size (bytes)
fract 9636
s298 8884
420 13844
primaryl 65484
struct 119636
industryl 219220
primary?2 1901814

next iteration with itsown local state. If the master has determined that the received solutionis
worse than the best solution, the master will ssmply send the current best state to the requestor.
At the cost of dedicating an extraprocessor for “master” usage, thisasynchronous approach can
eliminate much of theidle time that was present earlier.

Graphically, this algorithm is illustrated in Figure 4.4. For example, Actor 2 has finished
its segment and sends its solution metric to the master that determines that its solution is the
best and sends a message back requesting Actor 2's local state. While waiting for Actor 2's
state, the master has in the meantime received a solution metric from Actor 1. Since it hasn't
yet received Actor 2's state, the master must compare Actor 1's metric with the previous state.
It then determinesthat Actor 1 hasan inferior solution, and thus sends the previous state back to
Actor 1. Note, because of the asynchronous behavior, Actor 1 was not able to receive the best
solution at that current point. Thistype of erroneous update is acceptable, since the actors can
correct themselves at future iterations, and it aso provides an opportunity to escape from local
minima.

From Eq. (3.1), we can see that the paralléel run time in an asynchronous MM C implemen-
tation becomes

I
tpa'r = N(tme + td + tu) + tc (41)

where ¢, is the communication time. Since the time to send the solution metric issmall, ¢, is

essentially the time to send the state, which is related to the size of the state. If ¢, issmall, it is

26

MMCAsync: :DoIteration(cell_state)
{
local_state = cell_state;
I=1+1; // update TimberWolfSC iteration number
while (N <= Nmax) { // number of moves attempted per iteration
N=N+1;
update temperature if necessary
propose a move and evaluate new cost
if move is accepted, update local_state
}
// send my solution metric and my actor name to the master actor
master->SendSolutionMetric (local_state.metric, myName);

MMCAsync: :SendCellState ()

{
// the master actor is asking us for our state
// since we have the current best state
master->ReceiveCellState (local_state);
DoIteration (local_state);

MMCAsyncMaster: :SendSolutionMetric (metric, name)
{
// if the incoming metric is better than the current
// best state, get the state from that actor,
// otherwise, just start the next iteration
// with the current best state on the actor.
if (metric better than local_state.metric)
name—>SendCellState ();
else
name->DoIteration (local_state);

}
MMCAsyncMaster: :ReceiveCellState (cell_state)
{
local_state = cell_sate; // update local best state
}

Figure 4.3: Outline of the multiple Markov chains asynchronous actor interface.

27

Actor Actor Master Actor Actor

0 1 Actor 2 3
:lf

——= Send/receive

cost metric

Send ~ —

cell state

L — s-— —

Computation — ‘j-
7 Update]
master state @[

Figure 4.4: Message flow in actor based asynchronous MMC.

obviousthat the speedup for asynchronousMMC isperfectly linear, i.e., S = N. However, ¢, is
not necessarily small, and we must determineits effect. Comparing Tables4.1 and 3.1yields80
asan approximateratio of state sizeto number of cells. Sincethe stateis communicated at every
one of TimberWolfSC’s 160 iterations, 7, = 12800C't,, where C' isthe number of cellsand ¢,
is the per byte communication cost. Also, for TimberWolfSC, 7, the number of total moves, is

set to 4000C (%) 5. Thusthe speedup can be expressed as

5(55)5 (tme + ta + t)
(£5)3 (tme + ta + to) + 16t

S = (4.2)

0
500 (

2|

On an Intel Paragon, t,,,. + tq4 + t,, ison the order of 50 to 100 us, whilet, isonly 0.018 us.
Thusit can be seen that .. is negligible, and the expected speedup should approach N.

4.3 Experimental Results

We examined the effectiveness of the asynchronousM M C algorithm on the Sun SparcServer
1000E as well asfor the Intel Paragon as shown in Tables 4.2 and 4.3. The implementation of
theagorithmiscalled ProperPLACE-MMC. We start at two processors because of the need for a

28

Table 4.2: ProperPLACE-MMC Results (Sun SparcServer 1000E)

2 procs 4 procs 8 procs
Circuit w S W S w S
s298 100|100 | 104|274 | 107 | 651
420 100 |100|1.00| 257|106 722

primaryl | 1.00 | 1.00 | 1.00 | 2.78 | 1.06 | 4.80
industryl | 1.00 | 1.00 | 1.02 | 2.79 | 1.04 | 7.06
primary2 | 1.00 | 1.00 | 1.07 | 2.64 | 1.05 | 6.44
circuit 1.00| 100|101 292|110 | 6.88
industry2 | 1.00 | 1.00 | 1.02 | 3.17 | 1.04 | 7.15

master processor. Thequality of the solutions shows no degradation asthe number of processors
increases - in fact, they sometimes show improvements because of the periodic exchange of
solutions. The algorithm scales much better than the parallel moves approach. As expected,
communication time is not significant since the number of messages sent isfew. Note that the
speedup and quality are much better than can be achieved with a pure parallel moves strategy
as presented in the previous chapter.

Sun and Sechen have used a modified parallel moves approach to achieve similar speedup
results[44]. Thoughthey use parallel movesand partitioned circuits, at each iteration, asin mul-
tiple Markov chains, solutions are exchanged among processors. They do not have to process
frequent update messages.

If improving the run time is not the goal, ProperPLACE-MMC can be used in another mode
to provide better solutions for the same run time. Table 4.4 compares TimberWolfSC on one
processor with ProperPLACE-MMC on four processors. The solution quality isimproved by an
average of 9% at a cost of only 3% in run time. To achieve that type of quality improvementin

TimberWolfSC would require significantly more computation time.

4.4 Summary

In this chapter, we discussed using multiple Markov chains for parallelizing simulated an-

nealing based cell placement. Conceptually avery simplealgorithm, MMC, isavery promising

29

Table 4.3: ProperPLACE-MMC Results (Intel Paragon)

2 procs 4 procs 8 procs
Circuit w S W S w S
s298 100|100 | 102|228 | 103|280
420 100|100|1.01|284|109 591

primaryl | 1.00 | 1.00 | 1.01 | 2.78 | 1.06 | 5.67
industryl | 1.00 | 1.00 | 1.01 | 299 | 1.03 | 6.76
primary2 | 1.00 | 1.00 | 1.02 | 293 | 1.09 | 6.75
circuit 1.00 | 1.00 | 1.07 | 2.97 | 1.08 | 6.90
industry2 | 1.00 | 1.00 | 0.95 | 3.13 | 1.09 | 6.79

Table 4.4: ProperPLACE-MMC Quality Improvement (Sun SparcServer 1000E)

TimberWolfSC | ProperPLACE-MMC
1 procs 4 procs
Circuit W S wW S
biomed | 1.00| 1.00 | 0.82 0.95
circuit 100| 100 |oO0.91 0.98
industry2 | 1.00 | 1.00 | 0.97 0.94
avg.large | 1.00 1.00 | 094 1.02

30

approach to paralelizing the cell placement problem. It offers excellent speedups with modest
degradationsin quality. Multiple Markov chains can aso be used to improve the quality of the
resultant placement at very little extra computation cost. The main disadvantage of this algo-
rithm is that it is not memory scalable, since the circuit must be replicated on al processors.
In addition, as the number of processors increases, the placement quality degrades, but not as
severely as with parallel moves.

31

CHAPTER 5

SPECULATIVE COMPUTATION APPROACH

Another approach recently suggested for generalized parallel ssmulated annealing is specu-
lative computation [56]. Witte et a. applied this approach to the task assignment problem and
found speedups approaching logs P, where P isthe number of processors. In this chapter, we
apply the concept of speculative computation to cell placement and determine the applicability
of such an approach. We first give a brief description of the algorithm.

5.1 Generalized Speculative Computation

A sequential simulated annealing schedule is simply a series of move proposals intended
to reduce some cost function as related to the particular problem. Each move consists of three
parts - the proposal or perturbation, evaluation, and decision. Only after these three parts are
completed is the next move started. Since the decision made by the next move is dependent on
the current state as determined by prior moves, simulated annealing isalmost inherently seria in
nature. However, note that if none of the moves are accepted, the state does not change and the
opportunity existsfor parallelizing moves. Thisisthe approach taken by [41] and was recently
suggested again by [57]. Parall€lization through specul ative computation is similar except that
it also attempts to accel erate accepted moves as well.

Consider the decision tree of moves in Figure 5.1(a). The top node represents a move at-
tempted in a simulated annealing process. There are two possible decisions as a result of this

move - acceptance or rejection. Speculative computation will assign two different processors

32

ccept

(a) Speculative Computation Tree (b) Biased Reject Tree (c) Biased Accept Tre

Figure5.1: Speculative computation trees.

to speculatively work on the two possibilities before the parent move has completed. The re-
jection child can start at the same time as the parent, since it will assume that the state has not
changed. After the parent has completed the move proposal, it can then relay the new state to
the accept processor. The communication behavior isillustrated on the timelinein Figure 5.2.
In thefigure, ¢,,, isthe timeto propose and perform amove, ¢, isthe evaluationtime, and ¢4 is
thedecisiontime. Inthisexample, the decision tree has gone from node O (accept) to node 4 (re-
ject) to node 5. Comparing the parallel time with the sequential time on the same graph shows
the potential speedups of specul ative computation.

As the acceptance characteristics of the procedure vary, the shape and bias of the tree can
also change. For example, if the acceptancerateishigh, it would make senseto generate alinear
tree of only acceptance nodes, and on the other hand, a very low acceptance rate would imply
the creation of only rejection nodes (Figures 5.1(b) and (c)). Thislatter modeis essentially the
mode in which the algorithms proposed by [41] and [57] operate. Witte et a. constructed an
analytical model that placed the speedup approximately at M{’_‘f% In the extreme, it is
also limited by the inverse of the annealing acceptance rate in the low temperature region and
the inverse of the rejection rate in the high temperature region. This latter limit is essentially
the serial subset length called |E | by Kravitz [41]. It was ignored by Witte et a. but it is
necessary since it accounts for the maximum expected length of each linear tree used at the

extreme temperature regions.

33

Processor

0 /m] fe [tq]

/[tm

2

3 tm | fe [1o |
4 [m | fe [fa |
S [fm \] fe [t | Path taken is 0-4-5 (accept-reject)
6 Lim | fe [fa]
Sequential | tmy | fo [tg [tm | Te [ta [tm | fe [tq]

Time

Figure5.2: Seven-processor speculative computation timeline.

5.2 Speculative Computation for Placement

Since speculative computation seems to be a promising avenue to achieve at least some
speedup in the high temperature region, we decided to investigate the applicability of such an
approach to the cell placement problem. The problem fits naturally into an actor-based frame-
work, in that each speculated move can be represented by an actor. One of the mgor changes
we made to the algorithm was to add some asynchronous behavior by removing the need for a
centralized root processor that was required to start off each tree. Eliminating this synchroniza-
tion point allows multiple specul ative trees to be active at once. Indexing was used to properly
order the execution of trees.

Another major modification made to Witte's algorithm was to transfer only the move pro-
posal to the accept child rather than the entire state after themove. That is, if the root node were
to propose moving acell to anew location, it would convey the cell number and new location to
the accept child, and the child would be responsible for duplicating the move. Aswith multiple
Markov chains, this decision was made because of the potentially large size of the cell state.

Once a speculative move has been determined to be false, the actor responsible for the move

Table5.1; ProperPLACE-SC Results (Sun 4/690MP)

1 procs 2 procs 4 procs
Circuit W S W S wW S
fract 1.00 | 1.00 | 1.00 | 0.30 | 1.00 | 0.22

s298 1.00 | 1.00 | 1.00 | 0.25 | 1.00 | 0.18
primaryl | 1.00 | 1.00 | 1.00 | 0.23 | 1.00 | 0.20

must then abort its move as well as al its parent’s moves. It must then update its cell database
with the moves from the correct path.

An outline of the algorithm is given in the code fragment in Figure 5.3. For simplicity, the
details of the asynchronous algorithm are not shown. The MoveActor constructor creates the
child actors. If the actor is the root of the tree, it continues and evaluates the move. If it is
accepted, the accept child istold to continue while the rgject child is aborted, and vice-versaif

the moveisregected. Once the state has been updated, a new tree can be started.

5.3 Experimental Results and Analysis

After the modifications were made, the implementation, called ProperPLACE-SC, was run
on a variety of circuits and machines as shown in Table 5.1. As can be seen from the table,
thewirelengths are identical, as expected. The speedups, however, are disappointingly poor, as
indicated by the drastic sslowdowns. The primary reason for this behavior is the faultiness of
Witte's model when applied to cell placement - particularly TimberWolfSC. Witte makes two
main assumptions- the timeto perform and propose amoveissmall compared to the evaluation
of the move, and second, the outcome of that move or the resultant stateiseasily communicable.

Consider the following analysis. The serial timefor TimberWolfSC as stated beforeis

tser = I(tme +ta+ty) (5.0

35

main()

{
// ... initialize .. and then start off the tree
MoveActor: :New: :Continuation () (0);
}
MoveActor: :MoveActor(MovelList &moves)
{
doParentMoves (moves)
rejectChild = ActorName<MoveActor>: :newName () ;
New: :Continuation (rejectName) (moves);
// propose new move and add to moves list ...
acceptChild = ActorName<MoveActor>: :newName();
New: :Continuation (acceptName) (moves);
if (isRoot()) Continue();
}

void MoveActor: :Continue()
{
if (accept(newmove)) {
Continue::Continuation (acceptChild) ();
Abort::Continuation (rejectChild) Q;
update_state();
updateAll0therThreads () ;
if (isRoot() && annealing termination not reached)
MoveActor: :New: :Continuation () (0); // start off new tree
} else {
Continue::Continuation (rejectChild) ();
Abort::Continuation (acceptChild) QO;

}
}
void MoveActor: :Abort ()
{
undoParentMoves () ;
Abort: :Continuation (acceptChild) Q;
Abort::Continuation (rejectChild) Q;
}

Figure 5.3: Outline of the ProperPLACE-SC agorithm.

36

Table5.2: Task Time Measurements

Task time (us)
Proposal and evaluation

cell exchange 87.8

cell move 43.2
Accept 54
Update after accept

cell exchange 30.6

cell move 14.8
Speculative move

cell exchange 116.2

cell move 48.3

In terms of Witte’'s modd, ¢,,,. = t,, + t., and t,, is not incorporated into Witte's model. In

aparalel implementation, the execution timeis

]~

tpar = (L = 1) (e + Ot + tom)) +ta +) (52)

where L isthe expected length of thetree, ¢, isthetimerequired for communicating aproposal,

and ¢, isthetime required to perform a parent’s move. The speedup is

L(tme +1a+ tu)

S =
(L - 1)(tc + a(tm + tsm)) + tme + td + tu

(5.3)

Theterm (L — 1)(t. + a(t;, + tsm)) iSthe cost due to performing the parent’s updates. If this
termissmall, then the speedup issimply L, which in the extreme temperature regionsis IV, and
at worst islogN. However, our measurements have shown that thisisnot the case. In Timber-
WolfSC, the move and evaluation steps are combined into one for efficiency, since the process
of changing data structures to reflect the move aso easily allows the incremental calculation
of the cost. The time to decide whether to accept is therefore minimal. After the move has
been accepted, the appropriate data structures must then be updated. We were able to measure
the times of various moves to gauge their impact on the algorithm (Table 5.2). Note that the

proposal and evaluation timeisthe largest portion of afull move.

37

Since our implementation requires the child node to redo the parent’s moves, we a so mea-
sured the speculative move time(t,,,), that is, the time that a child node requires to perform
its parent’s move. Thistimeis essentially the proposal and evaluation time plus some time to
update associated data structures. Note that even though the accept stage is not performed, the
times are comparabl e with anon-specul ative move. With such times dominating the movetime,
itisclear why cell placement parallelism through speculative computation is inefficient. For a
two-processor system, wefound that 48.9% of an actor’ stimewas spent waiting for the other ac-
tor tofinish. The primary reason for thisidletime, which drastically hinders parallelism, isthat,
because of the expense of performing speculative moves, parent nodes must wait for the child
to perform its moves as well asits parent’s moves. For atwo-level tree, the child is performing
essentially twice asmuch work. Theamount of idletimewill increase with the number of levels
in the tree, though our asynchronous implementation attempts to address that by starting future
trees ahead of time.

Another problem that affects parallelization of TimberWolfSC isitsrelatively high accep-
tance rate. The steady region attempts to maintain an acceptance rate of 44%. Naturally, this
leads to poor speculative computation behavior, since a lot of work must be duplicated. On a
two-processor system, we found that 23.4% of the actor time was spent either performing par-
ent’s moves, aborting moves, or updating the other actor’'s moves. In light of these problems
and those mentioned above, it is clear that speculative computation is not a feasible approach

to paralldization of cell placement.

5.4 Summary

In this chapter, we have described the speculative computation approach to parallel simu-
lated annealing and applied it to the cell placement problem. The characteristics of cell place-
ment make specul ative computation an inadequate means of paralelization. Though it is ex-
cellent in terms of retaining solution quality, there is no opportunity for parallelism using this
method.

38

CHAPTER 6

CIRCUIT PARTITIONED APPROACH

Ascircuit sizesincrease, it becomes more and more infeasible to adequately address VLS|
CAD problems on a single processor as a result of inordinate memory requirements. Thisis
especidly true in the area of cell placement where design sizes are approaching 100,000 cells
and more. In the past, designers have partitioned the circuit into more manageabl e subcircuits
and then suffered aloss of quality on the placement of the subdivided circuit. In this chapter,
amethod is presented that takes advantage of the large memory resources spread across multi-
ple processorsin a parallel processing machine and still achieves faster placement times with-
out loss of quality. The implementation of thiscircuit partitioned parallel agorithm devel oped
using ProperCAD Il is called ProperPLACE-PART. We also present an implementation of the
algorithm using MPI.

6.1 An Object-Oriented Cell Placement Algorithm

As with the work described in earlier chapters, ProperPLACE-PART is based on Timber-
WolfSC 6.0. Thecurrent version of TimberWol£SC, 7.0 could not be used because the code was
not available. The concepts of parallelization, though, will hold for the newer version as well.
To understand the parall€li zation procedure, somefurther explanation of the data structuresused
in TimberWolfSC 6.0 is necessary. The circuit information is described primarily with the use
of three arrays- thelist of cells, thelist of nets, and finally an array describing row information.

Each cell data structure contains positional information aswell alinked list of pinsthat belong

39

EEEa

Figure 6.1: Relationships between objects.

to the cell. Likewise, each net data structure has bounding box information as well as a linked
list of pins that belong to the net. The pin data structures are shared by both the cell and net
linked lists.

In an object-oriented framework such as ProperCAD |1, these data structures must be con-
verted to C+ objects. The cell and net structures are converted into Ce11 and Net C++ classes,
respectively. Of particular interest are the cell and net arrays, which now become the C1List
and NtList CH+ objects. A BkList object is used to keep track of row information as well as
the bins used for overlap penalty calculation. All the objects are integrated together in an object
caled Circuit which manages the core annealing algorithm. In addition, the Circuit object
also contains many of the global parameters and flags that are relevant during annealing. Inthis
new formulation, the Circuit object makes requests to the C1List object to pick aCell to
move. A new location and possible cell to exchange with are chosen by making arequest to the
BkList datastructure. The Circuit object then asksthe chosen Cell to evaluate the net cost
of the move. Thisis done by making requests of the NtList on the appropriate Nets. Simi-
lar mechanisms are taken to cal culate the row and overlap penalties. The relationships between
these objects are shown graphically in Figure 6.1.

The coreagorithmisshownintheCircuit: :anneal () codefragmentinFigure6.2. The

Circuit object asksthe C1List object through the pickACell () method to pick a Cell to

40

move. A new location for the cell is chosen by making arequest to the BkList data structure.
The Circuit object then asks the C1List to evaluate the delta cost of the move of the cho-
sen Cell. If the moveis accepted, then the data structures are updated through updateCel1 ()
which updates each net attached to Cel1, through the updatePin () method.

6.2 Paradllelism Through Inheritance

To remain compatiblewith the arraysin the sequential code, we need arrays with distributed
semantics. Thisis accomplished easily with the use of aggregates [19]. An aggregate in its
simplest formisacollection of actors distributed across the avail able processors in the system.
Inthe case of an array, an aggregate actsasasinglenamefor the array that has been decomposed
across many processors.

For example, we can simply create a new distributed class, Ce11Aggr, that is derived from

the C1List class aswell asthe aggregate class, as below.

class CellAggr : public ClList, public Aggregate {
Cell &pickACell();

};

By doing so, the Ce11Aggr class has representative actors on each processor that are respon-
siblefor the cells allocated to that particular processor. Thus, arequest made to access a partic-
ular cell can be made to the local representative actor which will then forward it on to the actor
on thethread wherethe cell isactually present. A similar transformationisdonefor NtList. In
total, there are aggregates for the cells (Ce11Aggr), nets (NetAggr), and rows (BlockAggr), as
well astheCircuitAggr that isderived from Circuit. Thedashed linein Figure 6.3 indicates
the separation between two threads. Note that the individual cells and nets are not replicated.

How does this data distribution affect the transformation of the serial program to a parallel
version? The main operationsinthe Circuit: :anneal () method are picking a cell to move,

eval uating the move, deciding whether to accept, and updating the cell structure. The evauation

41

class Circuit {
ClList &carray;
NtList &netarray;
BkList &barray;

};

Circuit: :anneal()

{

while (terminationNotReached())
tryCellMove() ;

finishUp();

}

Circuit: :tryCellMove()
{
Cell &cell = carray.pickACell();
newLocation = barray.newLocation();
deltaCost = carray.evaluateMove(cell, newLocation);
if (acceptMove(deltaCost))
carray.updateCell(cell, newLocation);

ClList::updateCell(Cell &cell, Position &newLocation)
{
pinIterator next(cell);
Pin x*ptr;
while (ptr = next()) {
ptr->updatelLocation(newLocation);
netarray.updatePin(*ptr);

Figure 6.2: Core code for serial agorithm.

42

| |] 1 |
] I]I] [] BlockAggr
| |] 1 |

11
I

7 I N
/) \
- ' N
’I CircuitAggr
| !
! \

— \
\l:l | \ |:| |“ |:| Dﬁ:l CellAggr

A N AN
i = —I_‘\I\:I:}Z \77 m NetAggr

J

(A)

_

I

Thread 0 Thread 1

Figure 6.3: Relationships between distributed objects.

and decision phases are independent of location of the cell. Picking acell should be made only
from the local pool of cells. To accomplish this, we make C1List: :pickACell() avirtua
base function and rewrite the implementation as shown in Figure 6.4.

Likewise, athough updating cellsis aloca operation, the updating of nets may not be lo-
cal because the adjacent nets are distributed. Therefore, NtList: :updatePin() isnow made
virtual and rewritten asin Figure 6.4. We use the continuation invocation mechanism to invoke
aremote NetAggr: :updatePin(). Theinvocation of the remote method is asynchronous, so
the update isin effect a“lazy” update.

The presence of the updates causes an interesting problem. Since actor methods are run to
completion without preemption, if Circuit: :anneal () isleft asitis, the whileloop will run
to compl etion before any update messages can be serviced by the run-time system. In order to
give these messages an opportunity to arrive, the whileloop must be transformed into message-
driven code. As seen in Figure 6.5, through the use of virtual functions again, the anneal ()
method ismodified to try only one move, and then re-enableitself by executing an asynchronous

continuation to itself. Similar transformations have been discussed in [58].

43

Cell &CellAggr: :pickACell()
{
Cell cell;
do {
cell = ClList::pickACell();
} while (!isLocalCell(cell));
}

class NetAggr : public NtList, public Aggregate {
void updatePin(Pin&);
class updatePin : public ActorMethod<Pin> {};
+;

void NetAggr::updatePin(Pin &p, Position &location)
{
if (isLocalNet(p) {
NtList::updatePin(p, location);
} else {
updatePin::Continuation cont (locationOf(p));
cont(p, location);

Wy

Figure 6.4: Code for NetAggr and CellAggr.

class CircuitAggr : public Circuit, public Aggregate {
void anneal();
class anneal : public ActorMethodVoid {};

};

void CircuitAggr::anneal()

{

tryCellMove () ;

if (terminationNotReached()) {
CircuitAggr::anneal::Continuation cont(*this);

cont();
} else {
finishUp();
}
}

Figure 6.5: Codefor CircuitAggr.

6.2.1 Data distribution

The circuit isread in on a single thread, and as each cell and net are read in, the associ-
ated data structures are distributed to the other threads. The process of determining those cells
which are assigned to a processor is done using a prepartitioning phase. There are two primary
concerns in our partitioning. First, the load balance must be maintained, i.e., each partition
should have roughly the same number of cells. Second, the number of nets cut should be min-
imized to decrease the interaction between partitions. The necessity of these requirements will
become clear in the following section on parallelization. Ratio cut methods havelong been used
in the CAD community because of their effectiveness at reducing the cut size. However, these
methods are inappropriate for our use because they do not provide well-balanced partitions. We
have instead used a partitioning algorithm based on the Sanchis modification of the Fiduccia-
Mattheyses algorithm [59,60]. Graph partitioning methods such as recursive spectral bisection
or METIS may alternatively be used [61, 62].

45

local T

nets 7\
crossi|ng
nets !

Figure 6.6: Crossing nets.

6.3 Parallel Algorithm

Once the circuit has been read in and distributed, the annealing procedure can begin. The
CircuitAggr representative actor on each thread will then perform simulated annealing on its
partition of the entire circuit, by making the same requests as the serial Circuit object. Now,
these requests are handled by the Cel1Aggr class, so that when a request is made to move a
cell, thelocal CellAggr representative picks one from the pool of cells available on its thread.
It does not supply cellsfrom other threads. When arequest is made to eval uate the cost of acell
move, the connected Net objects may be located on another thread. One option would be for
theNetAggr to send a message to the appropriate representative to request a calculation of the
cost. The overhead involved in the communication makes this prohibitive. Therefore, copies
of these nets that span multiple threads are replicated locally. An example of these “crossing”

netsis shownin Figure 6.6.

6.4 Error Control

As described above, each actor independently places its partition of cells without concern

for the remainder of cells. Obvioudly, this can cause inaccuracy in the calculation of cost. As

46

there are three components to the TimberWolfSC cost function, there are likewise three main

cost errors - wirelength cost, overlap penalty cost, and row penalty cost.

6.4.1 Wirelength error

Though the effect of the wirelength error is decreased because of the partitioning to min-
imize net cut, at high temperatures with frequent movement of cells, it is clear that the error
will be significant at the partition borders. The “border” in this context is the cutline and may
bear no resemblance to the actual geographical placement border. In order to keep the threads
up to date with respect to wirelength cost, at fixed intervals, updates of this border information
are made in atwo-stage process. In thefirst stage, each thread sendsits pinsthat are on “ cross-
ing” netsto the owner of the net. Once al the foreign pinsfor a net have been received, the net

information is distributed to all the threads that have a copy of that net.

6.4.2 Overlap penalty error

In addition to the wirelength error, even with a proper partitioning, overlap penalty error
is still a serious problem. Without knowing the overlap penalties due to cells on other proces-
sors, each partition will tend to collapse to the center of the layout. Therefore, each thread must
keep the penalties associated with the other cells but will assume that these “foreign” cells are
fixed. The bin structureis shown in Figure 6.7. The positions of the fixed cells are obtained by
performing cell position updates. Because of the cost of these updates, these are done very in-
frequently, at each TimberWol£SC iteration. To further reduce the overlap penalty error, when
the cells from all the other threads have been received, each thread individually removes the

overlaps by shifting cells appropriately.

6.4.3 Row penalty error

The pin and cell updates address the wirelength and overlap errors, but they do not ade-
quately address the row penalty error. This error is particularly severe, because of a peculiar

“ping-pong” effect. The row penalty is used to force the fina placement to have equal length

a7

Bins

Overlap —J | /
N v Y
Row
N o
§e|| 1 k\Fixeol Cell /
(Local) (Remote)
Figure6.7: Fixed cellsin bins.
Desired Desired
row length row Ilength
1 | Nl N7 ZH N
- I
> AL Ainzimizif
s AT Y1 s AV
|
+ [T 7l - i
| |
(a) Iteration 1 (b) Iteration 2

Figure 6.8: Effect of row penalty error.

rows, and in aparallel environment this can cause problems. Take for example, the situationin
Figure 6.8(a). Row 1 istoo short and row 4 istoo long; thus, al the threads will try to move
cellsfrom row 4 to row 1. By the next iteration, row 1 has become too long and row 4 is now
too short (Figure 6.8(b)). It isclear that this type of row shifting will continue without making
any real progressinimproving the placement.

We address this problem with three methods. Thefirst isbased on the observation that each
thread is trying to satisfy a short row without realizing that other threads are doing the same
thing. Therefore, we decrease the desired row length to take account of this. Depending on the
range limiter, each thread is expected to contribute only part of the cells required to equalize a
short row. For example, the placement from Figure 6.8(a) isredrawn in Figure 6.9 with ashorter
desired row length.

The second method of addressing the row penalty error is to update the actual row sizes at

distinctintervals. Sincetheamount of datasent isminimal, these updates can be donefrequently

48

Adjusted Actual

Desired Desired

row length row length
I |

S/l 1 T 1]
2 (AT > AT

I
s @Al A | sEAL A1 |

4mm 4@“

(a) Iteration 1 (b) Iteration 2

Figure 6.9: Example of desired row length adjustment.

without a loss of performance. These row updates are done using a lazy propagation update
method.

The final heuristic to reduce the row penalty error takes advantage of the penalty feedback
mechanism built into TimberWolfSC. Recall from Eq. (2.2) that the weight of the row penalty
in the cost function is adjusted with a sophisticated feedback mechanism. Using experimental
observations, the authors of TimberWolfSC have determined the optimal row penalty for each
iteration, and then they adjusted the feedback coefficient so that the annealing schedule was
close to thistarget penalty. Equation (6.1) showsthe target penalty calculation. Ly isthetotal

row length.

51
. { 008Lg (6— 2) <125 61

.008Lp I>125
In aparalel setting, our experiments have shown that this target penalty is not sufficient.
For example, Figure 6.10(a) showsthe row penalty for the primary2 circuit for four processors
plotted against the iteration number. For comparison, the TimberWolfSC target penalty is plot-
ted. Ascan beseen, thetarget penalty isoff considerably intheearlier iterations. Thisdeviation
affects the A coefficient considerably and thus the cost function in Eq. (2.2) is biased towards
reducing the row penalty. For this reason, we use a modified target row penalty schedule as

shown in EqQ. (6.2). P isthe number of processors being used, and B is the break point. We

49

40000 40000

roperPLACE 2.0 actual row penalty — ProperPLACE 2.0 actual row penalty ——
35000 r TimberWolfSC target row penalty - b 35000 r ProperPLACE 2.0 target row penalty ---- b
30000 r 30000 r
2 25000 - 2 25000 -
5] IS
c c
g 20000 t 8 20000 t
g g
x 15000 @ 15000
10000 f 10000 r
5000 5000 -
0 . . i [y (: 0 .) ? rfa— e S|
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Iteration number Iteration number
(@) TimberWolfSC (b) adjusted for ProperPLACE-PART

Figure 6.10: Target row length penalty.

have found that this adjustment makes a tremendous positive effect on the quality of the circuit
placement. Note from Figure 6.10(b) that with this modification, the row penalty error is much

better controlled.

008LgP (3P — 32281) 1 <80

Py = { 008Lg (6 — 51) 80 < I <125 (6.2)

125
.008Lp I>125

6.4.4 Dynamic error control

The error control mechanisms described above rely heavily on the use of updates. The cell
updates are performed at fixed intervals, however, the absolute frequency of the row and pin
updates was not specified. We use a mechanism called dynamic error control, where the fre-
quency of the updatesis adjusted according to the amount of error present. Several researchers
have determined that bounding the accumulated error to a constant factor of the temperature

will still guarantee convergence [34,45].

50

6.5 Dynamic Redistribution

The final element of our parallel algorithm is the dynamic redistribution. Asthe annealing
schedule proceeds, the initial partition becomes more irrelevant since it corresponds very little
to the geographic partitioning of therows. Whiletheinitial partitioning does reduce the amount
of communication in terms of pin updates, the partition being spread across many rows can af-
fect the row penalty calculations as well as cell mobility. For this reason, it is a good idea to
repartition the cells so that the partition actually reflects the geographical row-based partition.
The nets are assigned to the partition that contains the most cells from the particular net. The
repartitioning isstarted only after the cells have settled within some proximity to their final des-
tinations. Thisis done so that the net cut set will be reduced. Through empirical evidence, we
have determined that repartitioning should begin at the 40th TimberWol£SC iteration, and every
four iterations thereafter until iteration 120. After this point, the range limiter is so small that
cells no longer move out of arow, so repartitioning is no longer necessary. Casotto et a. use
a repartitioning scheme as well, but they are forced to repartition much more often and use a
secondary simulated annealing procedure to perform the repartitioning [63]. Our method does
not require frequent repartitioning because of the use of other error control methods, and the
use of geographical row-based partitioning simplifies the partitioning procedure.

Redistribution is a synchronizing operation that has to be supported in an asynchronous
message-driven environment. Enforcing synchronization in such an environment can be done
by ensuring in the program flow that al threads arrive at the same point and processthe synchro-
nization step. In the sample codein Figure 6.11, CircuitAggr: :anneal () hasbeen modified
to start up repartitioning when necessary as explained above. All the processors will find new
locations for their cells and send them to the appropriate place using the moveCells continu-
ation. Once a processor has received al the MoveCellMsgs from all other processors, it can
re-enable the anneal () continuation once again. The waiting for MoveCellMsg becomes the
synchronization point, but once the anneal () method has been re-enabled, the asynchronous

behavior can start again.

51

void CircuitAggr::anneal()

{

tryCellMove () ;

if (timeToRepartition() {

// add cells to outgoing message
MoveCellMsg mcmsg[numthreads] ;
for (i=0;i<numcells_i_own;i++) {
newloc = find_new_location(carrayl[i]) ;
mcmsg [newloc] .add(carrayl[i]);
}
for (i=0;i<numthreads;i++) {
CellAggr: :moveCells: :Continuation cont(nameOfRepresentative(i));
cont (memsgl[i]) ;
}

} else if (terminationNotReached()) {
CircuitAggr::anneal::Continuation cont(*this);
cont();

} else {
finishUp() ;

W]

void CellAggr::moveCells(MoveCellMsg &mcmsg)
{

count++;

// add mcmsg cells to local list

if (count == numthreads) {
// re-enable anneal()
CircuitAggr::anneal::Continuation cont(cktName);
cont();
count = 0;

Figure 6.11: Code for repartitioning.

52

ProperPLACE-PART()
1 if actor onthread O
2 then read circuit and distribute cells and nets to different threads
3 for each thread
4 do while termination not reached
5 do while TimberWolfSC iteration not complete
6 do ATTEMPT-MOVE()
7 attemptsCount + +
8 if attemptsCount%U, == 0
9 then UPDATE-PINS()

10 if attemptsCount%U, == 0
11 then UPDATE-ROWS()

12 Fix-Row-DESIRES()
13 adjust U, and U,

14 UPDATE-FIXED-CELLS()

15 REMOVE-OVERLAPS()

16 if timeto repartition

17 then REPARTITION()

Figure 6.12: Outline of the ProperPLACE-PART agorithm.
6.6 Algorithm Analysis

The ProperPLACE-PART algorithm is summarized in Figure 6.12, where U, is the number
of movesattempted between pin updates and U, isthe number of moves attempted between row
updates. These values are adjusted dynamically.

The major overhead contributionsin ProperPLACE-PART are due to the communicationin-
volved in the updates of the pins, rows, and cells. Assuming a balanced distribution of cells,
each thread will attempt % moves, where I is the number of moves attempted by Timber-
WolfSC, and NV isthe number of threads. Therefore, there are ﬁ pin updates and 57~ row
updates. TimberWolfSC typically completes 160 iterations, which means that there are 160

cell updates. If we define speedup, S, as :Ta then we arrive at the following:

lser = Itp, (63)

53

T T
m o fur + 1601 6.4
M A 64

It
S = m (6.5)
% (tm + 52 +) + 1608,

t

1
tpar N

wheret,,, t,,, t,,, and t,. are the move attempt, pin update, row update, and cell update times,
respectively. Sincerepartitioning isdoneinfrequently we canignorethiscomponent. Assuming
acommunication cost model of ¢, = ¢, + bt, wheret, isthe overhead cost and ¢, isthe per-byte

cost, an analysis of the communication pattern and typical circuit characteristics shows

c

te A 2N (to+16Ntb> (6.6)

tw A N (f,+4Rt) 6.7)
C

te ~ 2N <t0+20mtb> 6.8)

where C isthe number of cellsand R isthe number of rows. TimberWolfSC statically setsthe
number of moves, I, to 40000(%)%. Substituting for I in Eq. (6.5) along with Eqg. (6.8), we
can seethat thet,,. term canbeignoredin S. Likewise, if we simplify the communication model

and ignoret,, we arrive at

B Nt,,
tm + 32%—? + il

(6.9)

Itis clear that U, and U, are the keys to determining the expected speedup. From experi-
ments, we have determined that setting U, to 30 and U, to 2C' yield the best tradeoff between
quality and speedup.

Table 6.1: ProperPLACE-PART Results (Sun SparcServer 1000E)

TimberWolfSC ProperPLACE-PART

version 6.0 1 proc 4 procs 8 procs
Circuit Run time(s) W S W S W S
primaryl 340.4 102 | 116|101 | 279 |1.03|5.83
industryl 1996.3 101|123 |1.06 320|108 | 436
primary2 3230.2 101|111 102|320 | 1.03 | 6.05
biomed 9356.7 092|116 |1.08 | 220 | 1.10 | 5.04
industry2 | 21556 095|097 113|220 | 1.11 | 498
avg.large | 52221 100|122 105|243 | 109 477
Average 098|114 |1.06 | 267 | 1.07 | 5.17

6.7 Experimental Results

6.7.1 Speedup and quality

We ran ProperPLACE-PART on a Sun SparcServer 1000E, a shared memory multiproces-
sor, as well as two distributed memory machines, the Thinking Machines CM-5 and the Intel
Paragon. Results are presented for a set of benchmark circuitsin Tables 6.1, 6.2, and 6.3. The
first column indicates the run timein secondsfor the serial TimberWolfSC 6.0 code running on
one processor. Thefollowing columnsare theresultsfor our parallel implementation. W repre-
sents the normalized wirelength cost of the resultant placement, and Sisthe speedup relativeto
the serial TimberWolfSC. The dashed lines indicated that the circuit could not be run because
of excessive memory requirements. For theselarger circuits (biomed, industry2, avq.large), the
reported TimberWolfSC timesare extrapolated from a Sun 4/690M P, a machine with compara-
ble uniprocessor performance.

These circuits show the advantage of using acircuit-partitioned approach to exploit thelarge
memory resources on distributed processors. Ascircuitsget larger and larger, such an approach
Isessential to place these circuits on memory starved machines. In addition, the algorithm pro-

vides speedups of 10 to 12 on 32 processors.

55

Table 6.2: ProperPLACE-PART Results (Thinking Machines CM-5)

TimberWolfSC ProperPLACE-PART

version 6.0 1 proc 8 procs 16 procs 32 procs
Circuit Run time(s) W S W S W S wW S
primaryl 1266.0 101|071 106|534 |108|630| % 1
industry1 5664.7 1.00 | 0.88 |1.03|6.93|1.01|9.78| 1.09 | 10.57
primary2 8931.1 1.03 | 1.00 | 1.06 | 407 | 1.09 | 743 | 1.13 | 9.89
biomed | 22621.f - | - |105|454|113|620|1.10| 9.89
industry2 56058.1 - - 1104|504|108| 744|110 1014
Average 101|086 | 105|518 |1.08| 743 | 1.10 | 10.12

Table 6.3: ProperPLACE-PART Results (Intel Paragon)

TimberWolfSC ProperPLACE-PART

version 6.0 1 proc 8 procs 16 procs 32 procs
Circuit Run time(s) W S W S W S wW S
primaryl 786.68 1.01 093|100 441|108 |642| % 1
industry1 3004.8 095|090 |1.03|385|113|6.37|112|11.19
primary2 5108.7 1.00 | 094 | 1.04 | 508 | 1.13 | 7.13 | 1.09 | 12,53
biomed 16136.F - - 1103|273 |106|6.62|1.07 | 1206
industry?2 317§ - - 1106|264 |108|429|113| 912
avglage | 624771 - | - | - | - |105|623|108]|1106
Average 099092 |1.02|374|109 618|110 | 11.19

6.7.2 Error control

We a so compared the effect of U, on thefinal quality and speedups. Figure 6.13 showsthe
resultsfor primaryl on an eight-processor SparcServer 1000. It can be seen that both U, and U,
have significant effects on the quality and speedups. We have selected a U, of 30 as an optimal
value. U, is more circuit dependent because the size of the pin update messages grows as the

circuit grows. Setting U, to 2C' provides the best tradeoff between performance and quality.

TEstimated times extrapolated from Sun4 690/MP.
1Circuit was not large enough to be effectively partitioned over 32 processors.

56

400000

375000

350000

Wirelength

325000

300000

275000

—0— U=15
Ur=30

Ur=60

T T T T T
500 1000 1500 2000 2500 3000 3500

Up

(a) Effect on wirelength

el
o

Runtime (s)
~ @ ©
() o (&)
1 1 1

~
o
1

65

60

T T T T T
500 1000 1500 2000 2500 3000 3500

Up

(b) Effect on run time

Figure 6.13: Effect of U, and U,, (primaryl, SS1000, 8 processors).

Table 6.4: Effect of Error Control

TimberWolfSC ProperPLACE-PART (8 procs)
1 proc No error control With error control
Circuit Wirelength | Time(s) | Wirelength | Time(s) | Wirelength | Time(s)
primaryl 294304 | 340.40 540142 | 50.35 302239 58.36
industry1 661644 | 1353.28 1052296 | 181.23 713913 | 312.65
primary2 1766174 | 3230.18 2499589 | 352.90 1864454 | 534.43

Asameasure of the effectiveness of al theerror control mechanisms, weturned off all these
mechanisms and compared the results. These are shown in Table 6.4. It can be seen that the

error control methods that we used contributed greatly to reducing the error, at a cost of some

Speedup.

6.7.3 Comparison

We now compare this partitioned algorithm for parallel cell placement with the algorithms
detailed in earlier chapters, parallel moves (ProperPLACE-PM), multiple Markov chains (Prop—
erPLACE-MMC), and speculative computation (ProperPLACE-SC). Table 6.5 shows the relative
wirelengths (W) and speedups (S) for a few circuits on an eight-processor Intel Paragon. The
partitioned algorithm does not offer speedups that are as good as ProperPLACE-MMC. However,

the key advantage is that the circuit has been partitioned allowing avery large circuit. Remem-

57

Table 6.5: Comparison with Previous Algorithms (Intel Paragon, 8 processors)

ProperPLACE | ProperPLACE | ProperPLACE | ProperPLACE
PART MMC PM SC
Circuit w S w S w S w S
primaryl | 1.06 | 499 |106| 567 |1.04| 395 |100| 0.20
primary2 | 1.09| 479 |109| 675 |110| 385 |100| 0.20
avqg.large | 1.08 | 3.50 - - - - - -

ber that all previous parallel placement algorithms require the circuit to be duplicated, thereby
preventing very large circuits from being run. Thisis clear for the avg.large circuit which can
not be run with any of the algorithmsbecause of inadequate memory. Moreover, thewirelengths

in ProperPLACE-PART are comparable with those in ProperPLACE-MMC.

6.8 An MPI Implementation

Because of the wide variety of parallel architectures and thus programming models, there
has been a significant amount of work in creating a standard interface for writing message pass-
ing software. Among these are the Message Passing Interface [4], Parallel Virtual Machine
(PVM) [64], and p4 [65]. MPI seemsto be gaining support as the de facto standard for an ac-
cepted message passing interface. It isan inclusive standard that supportsvirtually al styles of
send-recelve communication, group protocols, reductions, and noncontiguous data structures.

In light of the popularity of the MPI standard, a version of the circuit partitioned algorithm
wasimplemented using the MPI protocol. Thisimplementationwill be compared with the Prop-
erCAD Il version as a measurement of the efficiency of the ProperCAD Il platform. Using an
actor model such as ProperCAD I offers certain programming conveniences and portability
across architectures, but it is not clear at what cost. Thisinvestigation should help answer that.

We implemented the algorithm using the Message Passing Interface (MPI) [66]. Using the
MPICH [67] library implementation of MPI, we were able to build an implementation of the
circuit partitioned algorithm called mpiPLACE. We ran mpiPLACE on a Sun SparcServer 1000E
as well asthe Intel Paragon. The speedups and wirelengths for a set of benchmark circuits are

58

Serial
Circuit Runtime(s)

—I3F— primaryl 340.4
Orreenne industry1 1996.3
O---- primary2 3230.2

----&---- biomed 9356.7
H--- industry2 21556.0
®---- avg.large 52221.0

Speedup

Number of Processors

Figure 6.14: mpiPLACE speedups (Sun SparcServer 1000E).

shown in Figures 6.14 and 6.15, and Tables 6.6 and 6.7. The speedup graphs show an average
speedup of over 5 on 8 processors on the SparcServer and an average speedup of over 11 on
32 processors of the Paragon. The tables give the normalized wirelength cost of the resultant
placement, and the dashed lines indicate that the circuit could not be run because of excessive
memory requirements.

These results of mpiPLACE are very similar to those for the ProperPLACE-PART version.

It isclear that the ProperCAD Il environment does not present any significant overheads com-

Table 6.6: mpiPLACE Wirelengths (Sun SparcServer 1000E)

Circuit 1 proc | 4 procs | 8 procs
primaryl | 1.02 1.02 1.02
industryl | 1.01 1.05 1.09
primary2 | 1.01 1.01 1.05
biomed 0.92 1.05 1.08
industry2 | 0.95 1.10 1.09
avg.large | 1.00 1.07 1.07
Average 0.98 1.05 1.07

59

Serial
Circuit Runtime(s)

8 4
o °7
>
o}
o
o 44
w
2 -
0

—{— primary]l 786.7

........ o industry 1 3004.8
O---- primary2 5108.7

----&---- biomed 16136.0
B
L4

--- industry2 31777.0
---- avqg.large 62477.0

Number of Processors

Figure 6.15: mpiPLACE speedups (Intel Paragon).

Table 6.7: mpiPLACE Wirelengths (Intel Paragon)

Circuit 1proc | 4 procs | 8 procs | 16 procs
primaryl | 1.00 1.02 1.06 1.09
industryl | 0.98 1.03 1.06 1.13
primary2 | 1.00 1.05 1.09 114
biomed - 1.04 1.04 1.08
industry2 - 1.07 1.06 1.09
avg.large - - 1.08 1.07
Average | 0.99 1.04 1.07 1.10

60

b

Figure 6.16: Example of eight-way circuit partitioning.

pared to a normal message passing library such as MPI. The circuit partitioned algorithm ex-
hibits characteristics of an SPMD style of programming for which MPI isthe natural interface.
Yet, theProperPLACE-PART implementationisjust asefficient, showing that ProperCAD Il can
be used to write efficient SPMD code in spite of the message driven underlying model.

Using mpiPLACE we performed two more experimentsto further show the usefulness of the
algorithmin situations where the circuit is too large to be placed in the memory of asingle ma-
chine. Thetraditional approach has been to take these circuits, partition them, place each par-
tition separately and then merge the separate placements. As an example, Figure 6.16 shows
a large circuit that has been divided into eight smaller circuits. Each of these individua cir-
cuits can be placed independently and then finally combined into the larger placement. Using
asimilar procedure, wetook the largest circuit available to us, avg.large, and partitioned it into
eight subcircuits using the Fiduccia-Mattheyses method. Each partition is placed individually
using TimberWolfSC and then merged back together. The results are shown in Table 6.8 along
with comparisonswith TimberWolfSC and mpiPLACE. Theruntimereported for the partitioned
TimberWolfSC approach is the maximum of the run times for the eight partitions. Note that
mpiPLACE has much better quality for roughly equivalent run times. Bear in mind, also, that
thetimereported for the partitioned TimberWol£SC approach includes only the placement time
and not the time for merging or partitioning the circuit.

In addition, we wanted to find how effective mpiPLACE is when run on alarge number of

processors. Again using the avg.large circuit, we ran mpiPLACE on an Intel Paragon with 128

61

Table 6.8: Comparison with Partitioned Placement (Sun SparcServer 1000E)

avg.large
Wirelength | Run Time (s)
TimberWolfSC (1 processor) 11545887 79941
TimberWolfSC 8-way partitioned (1 processor) | 16642589 9699
mpiPLACE(8 processors) 12406356 14975

Table 6.9: mpiPLACE Results (Intel Paragon, 128 processors)

avq.large
Wirelength | Speedup
1 processor 11545887 -
16 processors | 12406356 6.23
128 processors | 28969401 55.1

processors. The results are shown in Table 6.9. Note that the quality suffers severely, soit is
clear that such an approach is not appropriate for alarge number of processors unlessthe circuit
issufficiently large. Current circuit sizes are not large enough to take advantage of such alarge

number of processors, but in the future it is anticipated that circuits will be large enough.

6.9 Summary

In this chapter, we describe ProperPLACE-PART, acircuit partitioned approach to parallel
cell placement. Using sophisticated error control mechanisms to improve solution quality, the
algorithmis able to achieve reasonabl e speedups with moderate degradation in quality. Though
it does not provide the speedups seenin MMC, the primary advantage of partitioning the circuit
isthat it helps memory scalability. We are ableto run circuitsthat are too large to fit on one pro-
cessor by distributing it across the nodes of a multiprocessor. In addition, we also describe an
MPI implementation of thisa gorithm. The results show that the overheadsin ProperCAD Il to
support a message driven style of programming are no worse than for any other portable mes-

sage passing library.

62

CHAPTER 7

TIMING DRIVEN APPROACH

The placement algorithms discussed so far have dealt only with minimization of the wire-
length and indirectly area minimization. For current high density circuits, this cost function is
no longer appropriate. As VLS designs grow and feature sizes shrink, overal circuit perfor-
mance becomes more closely related to the interconnect timing characteristics. Timing driven
placement is the process of simultaneously minimizing the circuit area as well as minimizing
the critical path delays. During the physical design process, acommon heuristic used isto min-
imize total net wirelength as an approximation of the area. Minimizing the wirelength of a net
would seem to minimize the effect of interconnect delays. However, timing is not determined
solely by the delays of individual nets, but instead by a sequence of netsor asignal path. More-
over, only nets on the longest or critical pathsin the circuit are of concern.

There have been two general approachesto timing driven placement - net based [68—70] and
path based [71-75]. Net based agorithms identify critical paths a priori and assign criticality
weights or upper bounds for each net in the path, and then guide the placement process based
on these bounds. The pre-timing analysis may not be able to effectively select measures for
each net; thus, the placement quality may suffer. Path based approaches address this problem
by doing complete path delay analysis during placement. Thisis, of course, at the cost of an
increase in computational complexity.

The other critical component of timing driven placement is the choice of the delay model
to approximate interconnect behavior. To simplify calculation, most previous approaches have

used abasic delay model. The simplest modelsare based on the assumptionthat pinto pin delay

63

is proportional to the net wirelength [69, 76]. Other more detailed models use a simplified RC
model where wire capacitance can be computed either as a function of fanout or proportional
to wire length [71-74]. These models do not take into consideration wire resistance, which is
becoming more and more important as designs scale down to submicron features. Additionally,
these models do not account for driver pin location or the delay characteristics of a distributed
RC tree.

In this chapter, we describe a new placement algorithm that incorporates a detailed inter-
connect model based on the Elmore delay model. It uses complete path delay information to
derive a placement that minimizes the longest path delay without sacrificing area quality. The
chapter is organized as follows. Section 7.1 describes the timing analysis methodology used in
this chapter. Section 7.2 detailsthe algorithm used for placement, and the results are shown for
afew MCNC benchmark circuits in Section 7.3. Section 7.4 describes the parallel algorithm
and the results of the speedups on a Sun SparcServer 1000E and Intel Paragon.

7.1 Timing Analysis

7.1.1 Delay model

The best method available for accurate timing analysis of circuitsisthe SPICE circuit sim-
ulation tool. Because the computation requirements of SPICE are prohibitive, it is impracti-
cal to use it during placement. Linear delays proportional to net length are more tractable but
also more inaccurate. An intermediate model such asthe ElImore delay [77] is of more interest
because of its accuracy and reasonable computation times. The Elmore delay model has been
shown to have very good correlation to SPICE computed timing analysis[78].

The Elmore delay model is useful for approximating delays of distributed RC trees. Given

anet tree rooted at a source pin py, the delay from p, to asink p,; can be expressed as follows:

d; =1oCo + Z Te; (Ce; /2 + C;) (7.0

€;€path(po,p;)

wheree; is the edge from pin p; to its parent and ¢, and r., are the capacitance and resistance,
respectively, along that edge. C; isthe tree capacitance at pin p;, in other words, the sum of al
edge and sink capacitancesonthetreerooted at pin p;. Thed,’sfor al sink pinscan becal culated
in atwo-phase process. In thefirst step, the delays for each edge are calculated in a depth first
search of the treg; likewise, in the second traversal of the tree, the edge delays can be summed
up for each pin. Each step isan O(n) process where n isthe number of pins on the net.
Itisclear that the routing structure of the net significantly affects the computation of delays.
For example, the net in Figure 7.1(a) can be routed aternatively as in Figure 7.1(b), and the
equivalent RC models are shown in Figure 7.2. At node 3, thereisan implicit Steiner pin that

has no sink capacitance. The delays from source to sink p, for the two routes are shown below.

Te Ce
dy, = (ro+7e)(Co +c1+Cey +C2) +Cey <r0 - 7‘°’> +7e, (72 - 02> (7.2)

c/
doy, = 7o (CLI +e+c,+ 02) + 7, (? + 02> (7.3)

The example makes it clear that it is important that the routing be known before an accu-
rate delay can be computed. Severa strategies exist to construct near-optimal Steiner trees for
improved performance during the routing process [79-81]. However, during placement, it is
impractical to use any of these algorithmsto optimally route each net because of the computa-
tion time required to do so.

Instead, we quickly approximate the Steiner tree, by building a trunk based tree rooted on
the source node. The bounding box of each net is partitioned into a 4x1 grid as shown in Fig-
ure 7.3(a). If the source nodeisin the shaded region, ahorizontal trunk is created and segments
are built off the trunk to connect sink pins to the trunk. Implicit Steiner pin points are created
where the segments meet the trunk. Likewise, if the source node isin the hatched region, seg-
ments are built off a vertical trunk. This Steiner tree construction methodology is very quick
and can be used effectively during the placement. The majority of netsin most designs have
two or threeterminals. For two terminal nets, the trees generated by this heuristic are obviously

optimal. For three terminal nets, however, the approximate Steiner tree may not be optimal.

65

WP M P1

Source Source
pin W | pin W
L—HP2 P2
(a) Alternative 1 with Steiner Pin (b) Alternative 2 without Steiner pin

Figure 7.1: Routing alternatives for a net.

Source
PinIll~/VWA—
r
0

sz
= ;CZ

(a) Alternative 1 with Steiner pin (b) Alternative 2 without Steiner pin

Figure 7.2: Distributed RC modelsfor net.

66

* 7 77
/1 —
/ %, ¥

Source
Pin
(a) Horizontal trunk (b) Vertical trunk

Figure 7.3: Steiner approximation for nets.

Since optimal Steiner trees can be quickly created for three terminal nets, we treat these nets as
aspecial case and generate optimal trees. By doing so, we can ensure that 75% to 95% of nets

inatypical design will have optimal delay trees.

7.1.2 Path delay analysis

The previous section showed how to calculate the pin to pin delay on a particular net. In
this section, we describe the analysis methodology to compute path delays. As described in
[82,83], we use ablock oriented techniquein which all the cells are levelized, and then cell and
net delays are processed in block order. Once all delays have been computed, the maximum
output delay, T, can be determined by examining delay times at each output pin. The longest
path can easily be arrived at by tracing back from the output pin with the maximum delay. This
algorithmis also O(n) where n isthe number of cells.

The agorithmsfor path delay analysis are summarized in Figure 7.4. LEVELIZE-CIRCUIT
is based on asimple breadth-first topological sort algorithm. Each cell, v, isanodein the graph
G. From the primary inputs, a breadth-first search is initiated such that each edge is traversed
once. As each node is visited, the maximum level is assigned to that node, and then when all
edges incident on that node have been traversed, every fanout from that node is then explored.
CoMPUTE-DELAY s processesthecellsin levelized order and cal culates the delays on each pin,

by first calculating the cell delay and then the net delay.

67

LEVELIZE-CIRCUIT(G)
1 foreachveG

2 dolevel[v] + —1
3 for each v € PrimaryInput|G]
4 do BREADTH-FIRST-VISIT(v, 1)

BREADTH FIRST VISIT(v,1)
1 ifl > level|v]

2 thenlevel[v] « 1

3 if al input edges traversed

4 then Al — Al Uwv

5 if v isnot aprimary output

6 then for u € fanout(v)

7 do BREADTH-FIRST-VISIT (u,l + 1)

CoMPUTE-DELAYS()
1 for ! < 1tomaxLevel
dofor eachv € A
do CALCULATE-CELL-DELAY (v)
for each n € fanout[v]
do CALCULATE-NET-DELAY (n)

apbrwnN

Figure 7.4: Delay anaysis algorithms.

The path construction algorithms are summarized in Figure 7.5. CONSTRUCT-ALL-PATHS
finds the longest paths terminating at all primary outputs including all flip-flops. The list II
keeps track of all accumulated paths. After initialy calling CONSTRUCT-PATH on al primary
outputs, the paths can then be constructed by tracing back towards the primary inputs calling
CONSTRUCT-PATH in reverse levelized order. CONSTRUCT-PATH builds a path back from a
cell by determining the critical input net, i.e., the net that hasthe longest delay. Then we create
a path segment, ¢, which is smply a 4-tuple identifying the critical net, the source and sink
cells, as well as the path to which the path segment belongs. This path segment is then added
to dl paths, 7, that the cell v ison. The path segment is then added to the source cell aswell as
the critical net.

An example of the longest path is shown in Figure 7.6. The cells are processed in block
order, which in thisexampleis 1,2,3,4,5,6,7,8. The nominal cell delay isshowninitalic within

68

CONSTRUCT-ALL-PATHS()

1 T« 0

2 for each primary output cell v

3 do 7w < new path

4 M+ TIlun

5 ADD-PATH-TO-CELL (v, 7)
6 CONSTRUCT-PATH (v)

7 for | + maxLevel to2

8 dofor eachv € A

9 do CONSTRUCT-PATH (v)

CONSTRUCT-PATH (v)
1 maxDelay < 0
2 for each input net n adjacent to v
3 do s « source(n)
4 if maxDelay < delay]s]
5 then max Delay < delay|s]
6 maxSource < s
7 mazxInputNet < n
8 for each path 7 that v ison

9 do ¢ « (v, maxSource, maxInputNet,)
10 ADD-SEGMENT-TO-PATH (7, %)
11 ADD-PATH-TO-CELL (maxzSource,)
12 ADD-PATH-TO-NET (mazInputNet, 1)

Figure 7.5: Path construction algorithms.

69

Delay
14
13
13
10
10

N ENNo Yo X X i

N
SN
N
o9
|_\
WWWNRFRWNNT
co~Noabhabho®

Figure 7.6: Longest path analysis.

thecell, and the arrival timesare shown initalic at the cell boundaries. The actual interconnect
delays are not shown but are readily calculated by subtracting appropriate arrival times. The
longest path is highlighted in bold, and all other viable paths are listed by the side.

Specia care must be taken for sequential circuits. We assume that the circuit can be repre-
sented asaMoore model finite state machine as shownin Figure 7.7. To transform such circuits
when constructing delay paths, each latch element output must be treated as a normal primary
input and, likewise, each latch element input is treated as a primary output as shown in Fig-
ure 7.8. There are now four types of delays that appear, Pl to PO, PI to latch, latch to PO, and
latch to latch. Each of these delays must be accounted for separately, as the minimization ob-

jective may only be one or more of these specific delays.

7.2 Timing Driven Placement

Our timing driven placement algorithmisbased on the al gorithm used in TimberWolfSC 6.0
as described in Section 2.2. The cost function has been modified as shown in Eq. (7.4) where
W isthe estimate of wirelength of al nets as the half perimeter of the bounding box, Py isthe
penalty for area overlap between cellsin the same row, and Py, isthe penalty for the difference

between the actual row length and the desired row length. The coefficient terms, i and), are

70

Primary Inputs

Combinational Logic

Si+1

Sj

Figure 7.7: Moore model finite state machine.

Figure 7.8: Sequential circuit transformation.

Plo I-’OO
Pll fo Pol
’;li
P|2 fl |J02
LA

— Clock

Primary Outputs

_fAlJ

adjusted using a feedback control mechanism to arrive at optimal values [38]. Note that these
terms are similar to the cost function used in TimberWolf (Eq. (2.2)).

Moreimportantly, we have added a cost term that is used to minimizethelongest path delay,
T,. The v weight controls the tradeoff between delay and area minimization. Through experi-

mentation, in order to achieve the minimal path delay with the least area expense, we have set

_ 0 75
y T (7.5)

W, and Ty, aretheinitial wirelength and path delay.

7.2.1 Path delay cost calculation

In this section, we describe how to efficiently keep track of longest path delays during place-
ment. In the context of simulated annealing, every time amoveis made, it can possibly affect
thelongest path delay. Using the algorithm in Section 7.1.2, we can determine the longest path,
and then whenever amoveisattempted, if anet onthecritical path is perturbed by the move, the
AT, iseasy to calculate. Keeping track of only one critical path can lead to problems because
moves that may not affect the pre-determined critical path may create new critical paths. It is
not practical to recalculate the longest path for each move attempt so it is necessary to monitor
severa possible paths.

One solution is, asin previous work [37, 76], to have the designer provide a set of paths or
critical nets that the placement algorithm would use in path delay minimization. However, in
large designs, itisvery difficult for auser to identify these critical paths beforehand. Especially
in light of complicated interconnect delays, thistask is more difficult than ever.

Instead, as was done by Swartz and Sechen [74, 84], our algorithm identifies these critical
pathsfor theuser. However, asthe number of elementsin adesign increases, the number of pos-
sible paths increases exponentially. For very large circuits, keeping track of all paths becomes

very intractable. Therefore, we identify only longest paths between al pairs of inputs and out-

72

b 3 y 9
1, 14, —16, {—u Path Delay
256 14
246 13
) 5 y 9
2 | — 7 |10 356 13
4 7 52 5] 1 146 10
: ; 257 10
2 ; ; , 357 9 40
3, : H8,— 37 9 42
\ +0 2| 38 9 +1
32 - blnaad

Figure 7.9: Longest path cost determination.

puts. For sequential circuits, thisincludes all latch inputs and outputs aswell. This reducesthe
number of paths considerably. Inaddition, only pathsthat have delayswithin 10% of thelongest
path delay are kept. With these restrictions, only paths (2,5,6) and (3,5,6) from Figure 7.6 will
be kept. Asmore moves become accepted and our list of longest pathsis no longer applicable,
it is necessary to periodically recalculate the longest paths. We have found that is sufficient to
perform this calculation every C' accepted moves where C' isthe number of cellsin the circuit.

Note that when a move is proposed the entire path need not be traced from source to sink
to determine the change. Instead, each net keeps alist of pathsthat it is part of and appliesits
A to al these paths. In Figure 7.9, cell 3 has been moved causing three nets to change. This
move affects three paths (3,5,7), (3,7), (3,8). Instead of tracing the effect of the move all the
way to the outputs on all paths, since each affected net has alink to the path, we can apply the
A directly to the path. We then process the list of paths, to determine the new longest path. In
this case, the longest path will not change because of thismove. The intermediate arrival times
will be inaccurate of course, but that is acceptable, since our only concern during annealing is

the change of the longest path delay.

73

PATH BASED TIMING DRIVEN PLACEMENT ()
1 LEVELIZE-CIRCUIT()
2 COMPUTE-DELAYS()
3 CONSTRUCT-ALL-PATHS()
4 while termination not reached
5 do while iteration not complete
6 do attempt move
7 if any of the affected nets on acritical path
8 then calculate A of longest path delay
9 accept or regject move

10 update temperature

11 if timeto recompute path delays
12 then COMPUTE-DELAYS()

13 CONSTRUCT-ALL-PATHS()

Figure 7.10: Timing driven placement algorithm.

7.3 Experimental Results

We haveimplemented the new placement algorithmin C++ onaSun SparcServer 1000E and
compared the results with TimberWolfSC 6.0 (Figure 7.3). Our results use four of the MCNC
benchmarks which include timing information (Table 7.1. We use technology parameters from
the MOSIS 2.0 design rules as shown in Table 7.2. The area and delay numbers are taken after
the circuit has been globally routed, but the wirelength and execution times are only for the
placement procedure. Note that since the global router is not timing driven, the delay doesvary
somewhat from that predicted by the placement process. The results show an average of 12%
improvement in the longest path delay at the cost of about 5% increase in area. The execution
timeisroughly four times worse, which is comparable to the results presented in [74], in spite
of amore accurate delay model. By using a more accurate delay model, we are able to select
critical paths that may not be apparent in aless detailed model. Also, the accurate delay model

allows us to be more confident in the final longest path timing characteristics.

74

Table 7.1: Circuit Information

MCNC Benchmarks
Number | Number | Number Number Number
Circuit of cells | of PIs | of POs | of flipflops | of nets
fract 125 22 2 16 147
struct 1888 32 32 0 1920
biomed 6417 25 72 655 5742
avg.small 21854 30 34 4041 | 22114

Table 7.2: Technology Parameters
MOSIS 2.0 Design Rules and MCNC Benchmark Parameters

metal width 3 um

sheet resistance (metal1) 108 ©2/0
substrate capacitance (metal 1) .027 fFH/ pm
sheet resistance (metal 2) .045Q/0
substrate capacitance (metal 2) 021 fFH/ pm

sink capacitance from 9.47 to 165 fF
source resistance from 1.18 to 5.44 kS2

Table 7.3: Timing Driven Placement Results

TimberWolfSC 6.0 Timing Driven

Circuit Longest Area Wire- Run Longest Area Wire- Run

Delay(ns) | (mm?) length | Time(s) | Delay(ns) | (mm?) length | Time(s)
fract 20.3 0.53 39636 74.1 20.0 0.54 42863 118.2
struct 102.3 11.9 956328 916.6 96.8 12.3 997781 1220
biomed 56.7 120.5 | 5599231 8571 524 111.2 | 5231329 | 123835
avg.small 866.3 1220 | 41194758 | 16631 561.3 1500 | 44035597 | 81667
Pct. change -12.4% | +5.1% +3.2% +457%

75

PARALLEL-COMPUTE-DELAYS()
1 for all processors
dofor [< 1tomaxLevel
dofor each v € A,
doif thisprocessor ownscell v
then CALCULATE-CELL-DELAY (v)
for each n € fanout[v]
do CALCULATE-NET-DELAY (n)
mark changed pins
send new pin delays of marked pins
receive new pin delays

OCQOWOO~NOOUITPAWN

=

Figure 7.11: Parallel delay calculation algorithm.
7.4 Parallel Timing Driven Placement

As can be seen in the results from the previous section, providing timing driven placement
adds significant overhead to the normal run time of cell placement. In this section we describe
an algorithm for parallélization of timing driven placement. The algorithm is based on the ap-
proach described in Chapter 6.

7.4.1 Path delay analysis

As with the serial algorithm, there are two phases to the delay analysis. delay calculation
and path construction. Calculating delaysis done as before, by processing the cellsin levelized
order. However, since the cells are distributed, we must now send all the updated delaysto the
appropriate location. This causes a synchronization point at each level. The agorithmis sum-
marized in Figure 7.11.

Likewise, path construction must be done with synchronization points at each level. The
algorithmis summarized in Figures 7.12 and 7.13. Aswe proceed back from the primary out-
puts, each processor identifies path ssgments using the CONSTRUCT-PATH algorithm described
in Figure 7.5. At thefirst level, each path, 7, contains only one path segment, . If the critical
net, n, on v is owned by another processor, 1 is added to ¥, alist of backward updates. Oth-

erwise, ¢ isadded to ¥ ;. After the CONSTRUCT-PATH has been called on all primary outputs,

76

the path segmentsin ¥, are sent to the owners of the relevant nets. This alows the owners of
the nets to accumulate al the path segmentsthat belong to a particular net.

At this point, asin the seria case, we trace backwards in the circuit by going through the
cellsinreverselevelized order. Thereisanimplicit synchronization at each level because of the
updates. When a processor receives a set of backward updates, the updates are then transferred
to ¥, the set of forward updates. W ; updates are sent so that all copies of anet haveall the path
segments belonging to that net.

7.4.2 Parallel placement algorithm

The agorithm for parallel timing driven placement is summarized in Figure 7.14. In struc-
ture, itisvery similar to the algorithm for ProperPLACE-PART shown in Figure 6.12. The only
major modification isto insert the call to perform delay analysis as described above. One mi-
nor change is aso applied to the repartitioning algorithm. In the non-timing driven placement
algorithm, the nets are assigned to the partition containing the most cells attached to the net.
Because of the parallel delay analysis approach, this heuristic isno longer appropriate. Instead,
we assign nets to the partition containing the source pin. This approach limits us to circuits
with only asingle source pin per net. Thisisnot asevere limitation, asit is easy to transform a

multisource net into a single source net through insertion of intermediary buffers.

7.4.3 Experimental results

The paralld timing driven placement algorithm, called mpiPLACE-TIME, has been imple-
mented using the Message Passing Interface (MPI). We present experimental results on a Sun
SparcServer 1000E as well asthe Intel Paragon in Tables 7.4 and 7.5. Aswas evident with the
origina ProperPLACE-PART, we get reasonable speedups with moderate wirelength degrada-
tion. Thereislittle degradation of the delay as well.

77

PARALLEL-CONSTRUCT-ALL-PATHS()
1 for all processors

QWO ~NOOUITPr,WN

1

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

doIl «

\Ifb “— @
\Iff — Q)
for each v € PrimaryOutput|G|
doif thisprocessor owns cell v
then © < new path
N« IIunr
ADD-PATH-TO-CELL (v,)
CONSTRUCT-PATH (v)
1 < path segment € =
n < n(v) < critical net component of 1
if » owned by another processor
then Uy« U, U ’I,b
ese ‘I’f — \IJf Uvy
send U,
for | + maxLevel t0 2
do RECEIVE-BACKWARD-UPDATES()
send \IIf
RECEIVE-FORWARD-UPDATES()
for eachv € A;
do CONSTRUCT-PATH (v)
for each new path segmenty € 7 € 11
doif n() owned by another processor
then U, +— Y, U w
else \I’f — \Iff Uy
send v,
RECEIVE-BACKWARD-UPDATES()
send \I/f
RECEIVE-FORWARD-UPDATES()

Figure 7.12: Paralel path construction agorithm.

78

RECEIVE-FORWARD-UPDATES()

apbh wnN Bk

\Iff — @
receive U,
for each) € Uy
do ADD-PATH-TO-NET (n(%), v)
‘Ilf “— @

RECEIVE-BACKWARD-UPDATES()

O Ul WN PR

\I/b — Q)
receive U,
for each ¢ € ¥,
do ADD-PATH-TO-NET(n(%), ¥)
\Iff — \Iif U 1,/)
U, +— 0

Figure 7.13: Paralel path construction algorithm (cont.).

PARALLEL TIMING DRIVEN PLACEMENT - mpiPLACE-TIME()

1
2
3
4
5
6
7
8
9
0

1
11
12
13
14
15
16
17
18
19

if actor on processor O
then read circuit and distribute cells and nets to different processors
for each processor
do while termination not reached
do while TimberWol£fSC iteration not complete
do ATTEMPT-MOVE()
attemptsCount + +
if attemptsCount%U, == 0
then UPDATE-PINS()
if attemptsCount%U, == 0
then UPDATE-RoOwS()
Fix-Row-DESIRES()
adjust U, and U,
UPDATE-FIXED-CELLS()
REMOVE-OVERLAPS()
if timeto repartition
then REPARTITION()
PARALLEL-COMPUTE-DELAYS()
PARALLEL-CONSTRUCT-ALL-PATHS()

Figure 7.14: Outline of the mpiPLACE-TIME algorithm.

79

Table 7.4: mpiPLACE-TIME Results (Sun SparcServer 1000E)

TimberWolfSC mpiPLACE-TIME
1 processor | 8 processors
fract
Wirelength 39636 42863 46038
Area 0.53 0.54 0.55
Delay (ns) 20.3 20.0 20.0
Run time(s) 74.1 118.2 26.3
struct
Wirelength 956328 997781 1078901
Area 11.9 12.3 12.4
Delay (ns) 102.3 96.8 100.0
Run time(s) 916.6 1220 249.0
biomed
Wirelength 5599231 5231329 5666327
Area 120.5 111.2 120.9
Delay (ns) 56.7 52.4 52.7
Run time(s) 8571 123835 20938
avg.small
Wirelength 41194758 44035597 46312331
Area 1220 1500 1452
Delay (ns) 866.3 561.3 580.2
Run time(s) 16631 81667 14868

80

Table 7.5: mpiPLACE-TIME Results (Intel Paragon)

TimberWolfSC mpiPLACE-TIME
1 processor \ 16 processors
struct
Wirelength 956328 997781 1071662
Area 119 12.3 124
Delay (ns) 102.3 96.8 101.0
Run time(s) 2557 5589 628.0
biomed
Wirelength - - 5781491
Area - - 121.0
Delay (ns) - - 52.9
Run time(s) - - 64620
avg.small
Wirelength - - 46943623
Area - - 1527
Delay (ns) - - 600.2
Run time(s) - - 33822

7.5 Summary

In this chapter, we described a new timing driven algorithm for placement as well as a par-
allel implementation based on ProperPLACE-PART. A new timing driven algorithm has been
presented that is able to achieve significant reductionsin longest path delays, while at the same
time causing little area degradation. Previous approaches have used fairly inaccurate model s of
interconnect delay, but thiswork isthefirst to present atiming driven approach to use an ElImore
delay model. The use of amore accurate model ensuresthat the algorithmis correctly identify-
ing longest paths and critical nets. The parallel algorithm uses the same procedures described
in Chapter 6 to achieve good speedups with moderate loss in quality.

81

CHAPTER 8

CONCLUSIONS

In this thesis, we have investigated algorithms for parallelizing ssmulated annealing based
standard cell placement. The main contributions are in identifying efficient algorithms for par-
allelization of area driven and timing driven placement algorithms.

In the domain of area driven placement, four different parallel simulated annealing strate-
gieswere studied. The first strategy, parallel moves, delivers consistent speedups for few pro-
cessors with some degradation in wire length. Multiple Markov chains appears to be promis-
ing as a means to achieve moderate speedup without losing quality and, in fact, in some cases
improve quality. Speculative computation, however, is shown to be inadequate as a means of
parallelization of cell placement. A combination of the parallel moves approach with interme-
diate exchanges as in multiple Markov chains may offer benefits in terms of reducing the error
present in the parallel moves approach alone. These first three approaches are only suitablein
situations where the circuit is small enough that it can be replicated on all nodes of the mul-
tiprocessor. The final approach to paralel cell placement presented in this thesisis the circuit
partitioned algorithm. Through the use of various error control mechanisms, we are ableto pro-
vide reasonabl e speedups with moderate |oss of quality.

The most useful algorithms are the multiple Markov chains and circuit partitioned algo-
rithms. Both are useful in different circumstances. For smaller circuits or in systems where
memory usage isnot aconcern, the multiple Markov chains approach isclearly the best alterna-
tive. It provides excellent speedups with very little degradation. However, in distributed mem-

ory environmentswherethe circuit may not fit on asingle node, the circuit partitioned approach

82

ispreferred. Whileit does not offer the speedups seen with multiple Markov chains, it doesgive
consistent speedups with very little degradation in quality.

Theother areaof research of thisthesisistheinvestigation of timing driven placement strate-
gies and their paralel agorithms. We have presented a sequential algorithm that uses a very
detailed timing model to drive the placement process and it is able to achieve very good results.
The parallel agorithmis based on the circuit partitioned algorithm for standard cell placement
and achieves consistent speedups with little quality degradation.

The results of this thesis are limited to simulated annealing based placement algorithms.
Recently, researchers have proposed alternate forms of placement algorithms such as simulated
evolution [85, 86], force directed placement [87, 88], linear optimization based [89-91]. and
min-cut based placement [92-94]. Very little work has been done in developing parallel algo-
rithms for these alternate approaches [95-97]. New and more efficient parallel algorithms for
these approaches must be investigated.

The algorithms in this thesis have been targeted for portable parallel environments such as
ProperCAD Il and MPI. However, algorithmstargeted specifically to shared memory multipro-
cessors have not been addressed fully. Other possible future extensions to this thesis include

parallel agorithmsfor the other phases of the layout process, namely, global and detailed rout-
ing.

83

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

S. Kim, J. A. Chandy, S. Parkes, B. Ramkumar, and P. Banerjee, “ProperPLACE: A
portable paralel algorithm for cell placement,” in Proceedings of the International Par-
allel Processing Symposium, Cancun, Mexico, Apr. 1994, pp. 932-941.

S. Kim, “Improved agorithms for cell placement and their paralel implementations,”
Ph.D. dissertation, Department of Electrical and Computer Engineering, University of I11i-
noisat Urbana-Champaign, Urbana, IL, July 1993, Tech. Rep. CRHC-93-18/UILU-ENG-
93-2231.

S. Parkes, J. A. Chandy, and P. Banerjee, “A library-based approach to portable, paralld,
object-oriented programming: Interface, implementation, and application,” in Proceed-
ings of Supercomputing ' 94, Washington, DC, Nov. 1994, pp. 69-78.

M essage-Passing Interface Forum, “ Document for a standard message-passing interface,”
University of Tennessee, Knoxville, TN, Tech. Rep. CS-93-214, 1993.

P. Banerjee, Parallel Algorithmsfor VLS Computer Aided Design Applications. Engle-
woods Cliffs, NJ. Prentice Hall, 1994.

S. M. Parkes, *“A class library approach to concurrent object-oriented programming
with applications to VLSl CAD,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, Sept. 1994, Tech. Rep. CRHC-94-20/UILU-ENG-94-2235.

B. Ramkumar and P. Banerjee, “ProperCAD: A portable object-oriented parallel environ-
ment for VLS| CAD,” IEEE Transactions on Computer-Aided Design, vol. 13, no. 7, pp.
829-842, July 1994.

S. Parkes, P. Banerjee, and J. H. Patel, “ProperHITEC: A portable, paralel, object—
oriented approach to sequential test generation,” in Proceedings of the Design Automation
Conference, San Diego, CA, June 1994, pp. 717-721.

S. Parkes, P. Banerjee, and J. Patel, “A parallel algorithm for fault simulation based on
PROOFS,” in Proceedings of the International Conference on Computer Design, Austin,
TX, Oct. 1995.

K. De, J. A. Chandy, S. Roy, S. Parkes, and P. Banerjee, “Portable parale agorithms
for logic synthesis using the MIS approach,” in Proceedings of the International Parallel
Processing Symposium, Santa Barbara, CA, Apr. 1995, pp. 579-585.

84

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. Roy, “Parallel agorithms for algebraic factorization in logic synthesis,” M.S. thesis,
University of lllinoisat Urbana-Champaign, May 1996, Tech. Rep. CRHC-96-07/UILU-
ENG-96-2212.

G. Hasteer, “Parallel agorithmsfor state assignment of finite state machines,” M.S. thesis,
University of Illinois at Urbana-Champaign, Jan. 1996, Tech. Rep. CRHC-96-02/UILU-
ENG-96-2202.

G. Hasteer and P. Banerjee, “A paralel algorithm for state assignment in finite state ma-
chines,” in Proceedings of the International Conference on Parallel Processing, Bloom-
ingdale, IL, Aug. 1996, To appear.

K. MacPherson, “Parallel agorithms for layout verification,” M.S. thesis, University of
[llinois at Urbana-Champaign, Aug. 1995, Tech. Rep. CRHC-95-18/UILU-ENG-95—
2229.

K. MacPherson and P. Banerjee, “Integrating task and data parallelism in an irregular
application: A case study,” in Proceedings of the IEEE Symposium on Parallel and Dis-
tributed Processing, New Orleans, LA, Oct. 1996, To appear.

V. Krishnaswamy and P. Banerjee, “Actor based parallel VHDL simulation using Time
Warp,” in Proceedings of the 1996 Workshop on Parallel and Distributed Smulation,
Philadelphia, PA, May 1996.

G. A. Agha, Actors: A Model of Concurrent Computation in Distributed Systems. Cam-
bridge, MA: The MIT Press, 1986.

A.W. Appel, Compiling with Continuations. Cambridge, England: Cambridge University
Press, 1992.

A. A. Chien, Concurrent Aggregates. Supporting Modularity in Massively Parallel Pro-
grams. Cambridge, MA: The MIT Press, 1993.

L. V. Kadéand S. Krishnan, “CHARM++: A portable concurrent object oriented system
based on C++,” in Proceedings of the Conference on Object Oriented Programming Sys-
tems, Languages and Applications, Sept. 1993, pp. 91-108.

K. M. Chandy and C. Kesselman, “Compositional C++: Compositional parallel program-
ming,” in Proceedings of Wor kshop on Compilersand Languagesfor Parallel Computing,
1992, pp. 79-93.

V. Karamcheti and A. Chien, “Concert - Efficient runtime support for concurrent object-
oriented programming languages on stock hardware,” in Proceedings of Supercomput-
ing ' 93, Portland, OR, Nov. 1993, pp. 598-607.

85

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

A. Chien, V. Karamcheti, and J. Plevyak, “The Concert System: Compiler and runtime
support for fine-grained concurrent object-oriented languages,” University of Illinois, De-
partment of Computer Science, Urbana, Illinois, Tech. Rep. UIUC DCS TR R-93-1815,
1993.

D. Gannon and J. K. Lee, “Object-oriented parallelism: pC++ ideas and experiments,”
Proceedings of the Japan Society for Parallel Processing, pp. 315-339, 1993.

M. Parashar and J. C. Browne, “Distributed dynamic data-structures for parallel adap-
tive mesh-refinement,” in Proceedings of International Conference on High Performance
Computing, New Delhi, India, Dec. 1995, pp. 22-23.

High Performance Fortran Forum, High Performance Fortran Language Soecification,
version 1.1, 1994,

C.-P. Wen, S. Chakrabarti, E. Deprit, A. Krishnamurthy, and K. Yelick, “Runtime sup-
port for portable distributed data structures,” in Workshop on Languages, Compilers and
Runtime Systems for Scalable Computers, May 1995.

R. Ponnusamy, J. Saltz, and A. Choudhary, “Runtime-compilation techniques for data
partitioning and communication schedule reuse,” in Proceedings of Supercomputing ’ 93,
Portland, OR, Nov. 1993, pp. 361-370.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by ssmulated annealing,”
Science, vol. 220, no. 4598, pp. 671-680, May 1983.

R. A. Rutenbar, “Simulated annealing algorithms: An overview,” |EEE Circuits & De-
vices, vol. 5, no. 1, pp. 19-26, Jan. 1989.

S. Kirkpatrick, “Optimization by simulated annealing: Quantitative study,” Journal of
Satistical Physics, vol. 34, pp. 975-986, 1984.

E. H. L. Aartsand P. J. M. van Laarhoven, “Statistical cooling: A general approach to
combinatoria optimization problems,” Philips Journal of Research, vol. 40, no. 4, pp.
193-226, 1985.

J. Lam and J.-M. Delosme, “Performance of a new annealing schedule,” in Proceedings
of the Design Automation Conference, 1988, pp. 306-311.

D. R. Greening, “Simulated annealing with errors,” Ph.D. dissertation, University of Cal-
iforniaat Los Angeles, 1995.

C. Sechenand A. Sangiovanni-Vincentelli, “The TimberWolf placement and routing pack-
age,” |EEE Journal for Solid State Circuits, vol. SC-20, no. 2, pp. 510-522, Apr. 1985.

C. Sechen, VLS Placement and Global Routing Using Smulated Annealing. VLSI, Com-
puter Architecture and Digital Signal Processing. Boston, MA: Kluwer Academic Pub-
lishers, 1988.

86

[37] YaeUniversity, TimberWolf: Mixed Macro/ Standard Cell Floor planning Placement and
Routing Package, New Haven, CT, Sept. 1991.

[38] C. Sechen and K.-W. Lee, “An improved simulated annealing algorithm for row-based
placement,” in Digest of Papers, International Conference on Computer-Aided Design,
Santa Clara, CA, Nov. 1987, pp. 478-48L1.

[39] M. D. Durand, “Accuracy vs. speed in placement,” IEEE Design & Test of Computers,
pp. 8-34, June 1989.

[40] D. R. Greening, “Paralel simulated annealing techniques,” Physica, vol. D42, pp. 293—
306, 1990.

[41] S. A.Kravitzand R. A. Rutenbar, “Placement by simulated annealing on a multiproces-
sor,” |EEE Transactions on Computer-Aided Design, vol. CAD-6, no. 4, pp. 534-549,
July 1987.

[42] F. Darema, S. Kirkpatrick, and V. A. Norton, “Parallel agorithmsfor chip placement by
simulated annealing,” 1BM Journal of Research and Development, vol. 31, no. 3, pp. 391—
402, May 1987.

[43] K. Natargjan and S. Kirkpatrick, “Evaluation of paralel placement by simulated anneal -
ing: Part | - The decomposition approach,” IBM, Tech. Rep. RC 15246, Nov. 1989.

[44] W.-J. Sun and C. Sechen, “A loosely coupled parallel agorithm for standard cell place-
ment,” in Digest of Papers, International Conference on Computer-Aided Design, San
Jose, CA, Nov. 1994, pp. 137-144.

[45] P. Banerjee, M. H. Jones, and J. S. Sargent, “Paralel simulated annealing a gorithms for
standard cell placement on hypercube multiprocessors,” |EEE Transactions on Parallel
and Distributed Systems, vol. 1, pp. 91-106, Jan. 1990.

[46] J.S. Rose, W. M. Snelgrove, and Z. G. Vranesic, “Paralld cell placement algorithmswith
quality equivalent to ssmulated annealing,” |EEE Transactions on Computer-Aided De-
sign, vol. 7, no. 3, pp. 387-396, Mar. 1988.

[47] A. Casotto and A. Sangiovanni-Vincentelli, “Placement of standard cells using simulated
annealing on the Connection Machine,” in Digest of Papers, International Conference on
Computer-Aided Design, Santa Clara, CA, Nov. 1987, pp. 350-353.

[48] C.-P. Wong and R.-D. Fiebrich, “Simulated annealing-based circuit placement algorithm
on the Connection Machine system,” in Proceedings of the International Conference on
Computer Design, Rye Brook, NY, Oct. 1987, pp. 78-82.

[49] R.Jayaraman and R. A. Rutenbar, “Floorplanning by annealing on ahypercube multipro-
cessor,” in Digest of Papers, International Conference on Computer-Aided Design, Santa
Clara, CA, Nov. 1987, pp. 346—-349.

87

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

W.-J. Sun and C. Sechen, “Efficient and effective placement for very large circuits,” |IEEE
Transactions on Computer-Aided Design, vol. 14, no. 3, pp. 349-359, Mar. 1995.

E. H. L. Aarts, F. M. J. de Bont, E. H. A. Habers, and P. J. M. van Laarhoven, “Paralléel
implementations of the statistical cooling algorithm,” Integration, the VLS Journal, vol.
4, pp. 209-238, Sept. 1986.

E.H.L.AartsandP. J. M. van Laarhoven, Smulated Annealing: Theory and Applications.
Mathematics and Its Applications. Boston, MA: Kluwer Academic Publishers, 1987.

E.H.L. Aartsand J. H. M. Korst, “ Boltzmann machinesasamodel for parallel annealing,”
Algorithmica, vol. 6, pp. 437465, 1991.

S.-Y. Leeand K.-G. Lee, “Asynchronous communication of multiple Markov chainsin
parallel ssmulated annealing,” in Proceedings of the Inter national Conference on Paralléel
Processing, St. Charles, IL, Aug. 1992, pp. 111:169-176.

K.-G. Leeand S.-Y. Lee, “Efficient parallelization of simulated annealing using multiple
Markov chains: An application to graph partitioning,” in Proceedings of the International
Conference on Parallel Processing, St. Charles, IL, Aug. 1992, pp. [11:177-180.

E. E. Witte, R. D. Chamberlain, and M. A. Franklin, “Parallel simulated annealing using
speculative computation,” |EEE Transactionson Parallel and Distributed Systems, vol. 2,
no. 4, pp. 483494, Oct. 1991.

A. Sohn, “Parallel speculative computation of simulated annealing,” in Proceedings of the
Inter national Conference on Parallel Processing, St. Charles, IL, Aug. 1994, pp. 111:8-11.

J. G. Holm, A. Lain, and P. Banerjee, “Compilation of scientific programs into multi-
threaded and message driven computation,” in Proceedings of the Scalable High Perfor-
mance Computing Conference, Knoxville, TN, May 1994, pp. 518-525.

L. A. Sanchis, “Multiple-way network partitioning,” 1EEE Transactions on Computers,
vol. 38, pp. 6281, 1989.

C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network
partitiongs,” in Proceedings of the Design Automation Conference, June 1982, pp. 175—
181.

S. T. Barnard and H. D. Simon, “Fast multilevel implementation of recursive spectral bi-
section for partitioning unstructured problems,” Concurrency: Practice and Experience,
vol. 6, no. 2, pp. 101-117, Apr. 1994.

G. Karypisand V. Kumar, “A fast and high quality multilevel scheme for partitioning ir-
regular graphs,” Department of Computer Science, University of Minnesota, Minneapolis,
MN, Tech. Rep. 95-035, June 1995.

88

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, “A parallel simulated annealing
algorithm for the placement of macro-cells,” |EEE Transactions on Computer-Aided De-
sign, vol. CAD-6, no. 5, pp. 838-847, Sept. 1987.

A. Gedt, A. Begudin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM 3.0
User’s Guide and Reference Manual, Feb. 1993.

R. Butler and E. Lusk, User’s Guide to the p4 Parallel Programming System, Argonne,
IL, June 1992.

Message-Passing Interface Forum, Message-Passing Interface Sandard 1.1, June 1995.

P. Bridges, N. Doss, W. Gropp, E. Karrels, E. Lusk, and A. Skjellum, Users Guide to
mpich, a Portable Implementation of MPI, Sept. 1995.

H. Youssef, R.-B. Lin, and E. Shragowitz, “Boundson net delaysfor VLSI circuits,” |IEEE
Transactions on Circuits and Systems - 11, vol. 39, no. 11, pp. 815-824, Nov. 1992.

T. Gao, P. M. Vaidya, and C. L. Liu, “A new performance driven placement algorithm,” in
Digest of Papers, International Conference on Computer-Aided Design, Santa Clara, CA,
Nov. 1991, pp. 44-47.

M. Marek-Sadowskaand S. P. Lin, “Timing driven placement,” in Digest of Papers, Inter-
national Conference on Computer-Aided Design, Santa Clara, CA, Nov. 1989, pp. 94-97.

W. E. Donath, R. J. Norman, B. K. Agrawal, S. E. Bello, S. Y. Han, J. M. Kurtzberg,
P. Lowy, and R. I. McMillan, “Timing driven placement using compl ete path delays,” in
Proceedings of the Design Automation Conference, Orlando, FL, June 1990, pp. 84-89.

M. A. B. Jackson, A. Srinivasan, and E. S. Kuh, “A fast algorithm for performance-driven
placement,” in Digest of Papers, International Conference on Computer-Aided Design,
Santa Clara, CA, Nov. 1990, pp. 328-331.

T. Hasegawa, “A new placement algorithm minimizing path delays,” in Digest of Papers,
International Conference on Computer-Aided Design, Santa Clara, CA, Nov. 1991, pp.
2052—2055.

W. Swartz and C. Sechen, “Timing driven placement for large standard cell circuits,” in
Proceedings of the Design Automation Conference, San Francisco, CA, June 1995, pp.
211-215.

[75] A. Srinivasan, K. Chaudhary, and E. S. Kuh, “RITUAL: A performance-driven placement

algorithm,” 1EEE Transactions on Circuits and Systems - I1: Analog and Digital Sgnal
Processing, vol. 39, no. 11, pp. 825-840, Nov. 1992.

[76] W. Swartz and C. Sechen, “New agorithmsfor the placement and routing of macro cells,”

in Digest of Papers, International Conference on Computer-Aided Design, Santa Clara,
CA, Nov. 1990, pp. 336-339.

89

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

W. C. ElImore, “The transient response of damped linear network with particular regard
to wideband amplifiers,” Journal of Applied Physics, vol. 19, pp. 5563, 1948.

K. D. Boesg, A. B. Kahng, B. A. McCoy, and G. Robins, “Fidelity and near-optimality of
Elmore-based routing constructions,” in Proceedings of the International Conference on
Computer Design, Cambridge, MA, Oct. 1993, pp. 81-84.

C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger, “Prim-Dijkstratradeoffs
for improved performance-driven routing tree design,” |EEE Transactions on Computer-
Aided Design, vol. 14, no. 7, pp. 890-896, July 1995.

K.D. Boesg, A. B. Kahng, B. A. McCoy, and G. Robins, “Near-optimal critical sink rout-
ing tree constructions,” |EEE Transactions on Computer-Aided Design, vol. 14, no. 12,
pp. 14171436, Dec. 1995.

J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao, “Bounded-skew clock and Steiner
routing under ElImoredelay,” in Digest of Papers, Inter national Conference on Computer-
Aided Design, Santa Clara, CA, Nov. 1995.

R. B. Hitchcock, Sr., “Timing verification and the timing analysis program,” in Proceed-
ings of the Design Automation Conference, 1982, pp. 594—604.

T. I. Kirkpatrick and N. R. Clark, “PERT as an aid to logic design,” IBM Journal of
Research and Development, vol. 10, no. 2, pp. 135141, Mar. 1966.

W. P. Swartz, Jr., “Automatic layout of analog and digital mixed macro/standard cell in-
tegrated circuits,” Ph.D. dissertation, Yale University, May 1993.

R. M. Kling, “Optimization by simulated evolution and its application to cell placement,”
Ph.D. dissertation, University of Illinois a Urbana-Champaign, Aug. 1990, Tech. Rep.
CRHC—-90-07/UILU-ENG-90-2237.

R. M. Kling and P. Banerjee, “Empirical and theoretical studies of the simulated evolu-
tion method applied to standard cell placement,” |EEE Transactions on Computer-Aided
Design, vol. 10, no. 10, pp. 1303-1315, Oct. 1991.

N. R. Quinn and M. A. Breuer, “A force directed component placement procedure for
printed circuit boards,” IEEE Transactions on Circuits and Systems, pp. 377-388, June
1979.

K. J. Antreich, F. M. Johannes, and F. H. Kirsch, “A new approach for solving the place-
ment problem using force models,” in Proceedings of the International Symposium on
Circuits and Systems, 1982, pp. 481-486.

J. Frankleand R. M. Karp, “Circuit placements and cost bounds by eigenvector decompo-
sition,” in Digest of Papers, International Conference on Computer-Aided Design, Santa
Clara, CA, Nov. 1986, pp. 414-417.

90

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “GORDIAN: VLS place-
ment by quadratic programming and slicing optimization,” |EEE Transactions on Com-
puter-Aided Design, vol. 10, no. 3, pp. 356-365, Mar. 1991.

R.-S. Tsay, E. S. Kuh, and C.-P. Hsu, “Proud: A sea-of-gates placement algorithm,” |EEE
Design & Test of Computers, val. 5, no. 6, pp. 44-56, Dec. 1988.

M. A. Breuer, “Min-cut placement,” Design Automation and Fault-Tolerant Computing,
vol. I, no. 4, pp. 343-362, Oct. 1977.

U. Lauther, “A min-cut placement algorithm for general cell assemblies based on agraph
representation,” in Proceedings of the Design Automation Conference, San Diego, CA,
June 1979, pp. 1-10.

A. E. Dunlop and B. W. Kernighan, “A procedure for placement of standard-cell VLSI
circuits,” |EEE Transactions on Computer-Aided Design, vol. CAD-4, no. 1, pp. 92-98,
Jan. 1985.

R. M. Kling and P. Banerjee, “Concurrent ESP: A placement algorithm for execution on
distributed processors,” in Digest of Papers, Inter national Conference on Computer-Aided
Design, Santa Clara, CA, Nov. 1987, pp. 354-357.

E. I. Horvath, “A parallel force direct based VLS| standard cell placement algorithm,” in
Proceedings of the International Symposium on Circuits and Systems, Chicago, IL, May
1993, pp. 111:2071-2074.

Z. Xing and P. Banerjee, “A parallel hierarchical algorithm for module placement based
on sparse linear equations,” in Proceedings of the International Symposium on Circuits
and Systems, Atlanta, GA, May 1996, pp. 1V:691-694.

91

VITA

John Attupurathu Chandy received the S.B. in Electrica Engineering from the Massachu-
setts Institute of Technology in 1989. He then joined the Data General Corporation in Westbor-
ough, MA, as a hardware engineer where he was responsible for firmware design for open sys-
tems workstations and multiprocessor servers. In 1991, he enrolled at the University of Illinois
at Urbana-Champaign, where he was supported by the Semiconductor Research Corporation as
aresearch assistant in the Center for Reliable and High-Performance Computing. He received
the M.S. degree in 1993 and will receive the Ph.D. degree in Electrical Engineering in 1996
from the University of Illinois at Urbana-Champaign. He will be joining Cadence Design Sys-
temsin Chelmsford, MA. His research interests are in parallel software and high performance

I/O systems.

92

