
Hardware parallelism vs. software parallelism

John A. Chandy Janardhan Singaraju
Department of Electrical & Computer Engineering

University of Connecticut

Abstract

In this paper, we explore the rationale for multicore par-
allelism and instead argue that a better use of transistors
is to use reconfigurable hardware cores. The difficulty
in achieving software parallelism means that new ways
of exploiting the silicon real estate need to be explored.
Hardware implementations can often expose much finer
grained parallelism than possible with software imple-
mentations. We discuss some of the challenges from a
design and system support perspective.

1 Background
In recent years, microprocessor design has hit a clock
cycle wall as energy consumption has limited the clock
scaling that was the norm for three decades. Since tran-
sistor scaling has continued unabated, the design path of
choice has been to use these transistors to add multiple
cores. Intel’s commodity microprocessors currently have
up to 6 cores and within the next year 8 core processors
are expected. Intel has already demonstrated 80 cores in
a 45 nm process [1]. Startups such as Tilera are shipping
64 core processors at 90nm. Graphic processors have
been even more aggressive as evidenced by NVidia’s re-
cent GeForce 280 GPU with 240 stream processors on
a 65 nm process. Within five years fabrication process
technology is expected to reach 11 nm, and as a result, it
is not unreasonable to expect within that timeframe over
100 cores in commodity microprocessors and over 1000
cores in GPUs and specialty microprocessors.

The difficulty with this future road map is how end
users are supposed to use these processors. It is clear
that there are data intensive and compute intensive par-
allelizable applications that can use these parallel pro-
cessing capability. One only needs to see that the largest
supercomputers in the world are running applications
such as large-scale simulation, genome sequencing, and
data mining - applications that would easily map to these
many core CPUs. However, supercomputer applications
are not enough to drive commodity processors. Thus, the
challenge is to find consumer and mainstream applica-
tions that can take advantage of the abundance of cores.

In current multicore CPUs, the primary usage of the

extra cores has been to support multitasking - i.e. the
many processes that run in the background such as virus
checking, indexing, defragmentation, etc. However,
multitasking is unlikely to scale past about 8 cores. The
challenge is to develop applications that can go beyond
multitasking and use parallelism to utilize the cores.
Decades of research have shown that parallelism is diffi-
cult to find in typical applications whether by hand cod-
ing or automated compiler techniques. The only appli-
cations that easily scale to 100’s or 1000’s of cores or
those that can be decomposed into independent tasks or
those that operate on independent sets of data. Examples
of such mainstream applications include image editing,
rendering, and search. However, overall, the set of ap-
plications that are easily parallelizable is limited. There-
fore, going past 8-16 cores is unlikely to provide benefits
to most application workloads.

One option to adequately use the silicon area is hybrid
multicore architectures. For example, gaming systems
have been huge beneficiaries of the 100+ core capabil-
ities of high end GPUs. That realization has led to the
proposal of heterogeneous multicores where streaming
graphic processors are integrated with traditional CPUs.
The Cell Broadband Engine is the best known example of
such an architecture where a POWER CPU is augmented
with 8 Synergistic Processing Elements that can handle
various types of data streaming operations [2].

With the potential of thousands of available cores, the
question becomes what cores should we choose on a het-
erogeneous processor. Since the amount of readily acces-
sible parallelism in commodity applications is limited,
8-16 CPU cores is probably sufficient to handle multi-
tasking and small-scale parallelism. 200+ GPU cores
can handle graphics and multimedia data streams. A
few DSP cores may be useful to handle communications.
What do we do with the remaining cores?

2 Reconfigurable Hybrid Multicore Archi-
tecture

Our belief is that finding 100-way parallelism in main-
stream software is a lost cause, and instead the place to
look for parallelism is in hardware. In other words, the

Algorithm Speedup FPGA CPU
DES Encryption [3] 24 Garp 133 MHz SPARC 167 MHz

Number Factoring [4] 6.8 Xilinx XC4085 16 MHz UltraSPARC 200 MHz
Intrusion Detection [5] 27.8 Xilinx Virtex2 303 MHz Pentium 4 1.7 GHz

Numerical Simulation [6] 5.69 Xilinx Virtex4 50 MHz Intel P4 3.0Ghz
Genome Sequencing [7] 100 Xilinx Virtex4 125 MHz AMD Opteron 2.2 GHz

Table 1: Hardware to software speedup

remaining cores should be used to provide hardware that
can be configured to implement a wide variety of logic
functions - a reconfigurable fabric as found in current
FPGAs. The rationale is that reconfigurable hardware is
a better use of transistors than processor cores that may
not be fully utilized because of the difficulty in finding
adequate parallelism. Reconfigurable hardware can of-
ten find more parallelism in an algorithm because there
are no context switching costs allowing blocks to be at
a much finer granularity. In addition, bitwise parallelism
is much more readily available than task parallelism.

This has been recognized in work by Williams et al
where thecomputational density (CD)of various archi-
tectures is measured [8]. CD is a metric that represents
the computational capability available in a silicon die.
Williams et al found that reconfigurable devices have the
best computational density for bit-level and integer oper-
ations while traditional CPUs do best for floating point
operations. This result would seem to indicate that the
best utilization of resources on a many-core die is to
make some of those cores reconfigurable to support inte-
ger operations rather than make more CPU cores that are
best suited for FP operations that are rarely used in gen-
eral purpose applications. Table 1 shows speedups for
various algorithms on an FPGA compared to software al-
gorithms. Hardware provides significant speedups at sig-
nificantly lower clock speeds. Sirowy and Forin showed
that hardware implementations can be more efficient by
eliminating fetch overhead, enhancing instruction paral-
lelism and more pipelining [9].

The architecture that we are envisioning would have
CPU cores, stream processing cores (SPC), reconfig-
urable hardware, and multi-ported memory to supports
access from multiple cores. We call this aReconfig-
urable Hybrid Multicore Architecture (RHyMA). We as-
sume some network on chip such as a mesh is available.
Other implementations of a RHyMA may include differ-
ent types of cores including vector units, DSPs, periph-
erals, and other specialized functional units.

The merging of computational cores with reconfig-
urable cores is not new as there were several research
reconfigurable computing architectures proposed in the

1990s [10, 11, 12]. However, these architectures did not
enter into the mainstream for two reasons: chip real es-
tate was better used for computation at that time and
hardware design is difficult. We believe the first rea-
son is no longer an issue since hardware resources are
now more abundant. The second reason is still problem-
atic but we present a design framework that hopefully
addresses this issue somewhat.

3 RHyMA Software and OS Support
In order to facilitate this transformation to RHyMA, a
key requirement is software support for such architec-
tures, particularly in terms of tools to develop applica-
tions that can run on reconfigurable multicore processors.

3.1 Design Flow
While we have made the case that microprocessor ar-
chitects must begin to adopt reconfigurable cores within
their processors, RHyMA will only be viable with ade-
quate general software support. This includes both op-
erating system support as well as enhanced design tools.
Operating systems must support multithreaded and mul-
ticore environments as well as capabilities to load and
unload configurations, real-time repartitioning, and allo-
cation of reconfigurable hardware resources.

Recent efforts such as OpenFPGA [13] and PFIF [14]
provide standardized software APIs to hardware IP
cores. These APIs provide an interface between software
and hardware thereby allowing software to call hard-
ware functions by specifying mechanisms to pass data
to and from the hardware. These APIs allow software
to work with hardware and allow hardware designers to
develop portable IP core libraries. However, there are
no mechanisms to manage the loading and unloading of
cores, include software implementations or support mul-
tiple hardware implementations. Therefore, the operat-
ing system must support mechanisms for dynamically
loading these libraries as well as possibly choosing be-
tween multiple implementations of various cores.

We have currently developed a design flow for
RHyMA application development as shown in Figure 1.
The design flow has two paths, one for software and one

2

Compiler

C C++ Java JHDL VHDL Verilog

Synthesis

Place &

Route

Linker Wrapper
.rco

a.out

.o

Figure 1:Hybrid Computing Design Flow.

for hardware. The software path can use standard soft-
ware design languages like C, C++, Java, Fortran, etc.
Tasks that can be implemented in hardware will be im-
plemented in appropriate specification languages such as
VHDL or Verilog. Note that even though a particular task
may be implemented in hardware, there should still be
a software implementation available. This software im-
plementation is executed when the hardware implemen-
tation on the array is not available, for example during
reconfiguration or if array space is not available.

Since the software design path can use standard com-
pilers, the hardware design path is the more interesting
of the two. The expectation is that experienced hardware
designers would make a set of libraries available for soft-
ware developers to use in applications. The design pro-
cess has three main components: synthesis, place and
route (P&R), and wrapper generation. The synthesis pro-
cess takes a hardware description specification and trans-
forms it into a circuit netlist. The P&R process outputs a
bitstream which describes the configuration of the recon-
figurable array. When a task is instantiated, the amount
and shape of the space available on the array will vary
and thus require different placements at runtime. We can
create bitstreams at compile time for multiple static con-
figurations for a particular hardware task. These multi-
ple configurations would exist in the object file for use at
runtime as described in more detail in Section 3.2. Since
partial reconfiguration is limited to a fixed number of
possible orientations, the number of configurations that
would need to be generated and stored is small.

3.2 Multiple Hardware Implementations

Besides reverting to the software implementation, the de-
sign flow also provides another fallback. It is possible to

specify multiple hardware implementations of the same
task with varying levels of performance area tradeoffs.
For example, one high performance implementation may
use several degrees of hardware parallelism and a second
more compact implementation may not use any paral-
lelism at all. In systems where power consumption is
a concern, the design may also include energy friendly
implementations that can be instantiated if necessary.

It is the responsibility of the wrapper tool to coalesce
these multiple implementations of a hardware task and
generate a .rco or reconfigurable computing object file.
The wrapper tool takes in a C++ or Java API file that de-
scribes the various implementations and their interfaces
and behaviors. A sample API wrapper file may look as
shown below. The API is similar to the JHDL API to
instantiate configurations. The difference is that the API
wrapper that we propose is an interface to the operating
system to let it manage configurations rather than have
the application manage configurations directly.

class encrypt_rc : rc_wrapper {
public:

void unload_state() { ... }
void load_state() { ... }
void execute(...) { ... }
void wait(...) { ... }
virutal void repartition(...) { ... }

}

encrypt_rc::encrypt_rc()
{

register_implementation(slow_encrypt_entity);
register_implementation(fast_encrypt_entity);
register_sw_implementation(sw_encrypt);

}

Each hardware task requires an API file where the
task is defined as a subclass of the rcwrapper class.
The required methods areunload state which un-
loads state from the hardware to memory,load state
which loads the state back into the hardware, and
execute which is called to initiate the hardware task.
unload state andload state are called on con-
text switches. execute will transfer parameter data
to the hardware block and start the execution asyn-
chronously andwait waits for the hardware to com-
plete. The optionalrepartition method will be
called to do repartitioning of the task. Typically, this
method would shrink the implementation in a prescribed
fashion rather than requiring multiple hardware imple-
mentations. For example, a hardware cache could be re-
duced in size programmatically. The constructor for the
class registers the available software and hardware im-
plementations with the run-time system. The wrapper
tool compiles the API file and then copies the bitstreams
from the P&R process into the data section of the.o file.
The resulting output file is the.rco file.

3

The final step in the design flow is the linker, which
creates the executable. The RHyMA linker performs the
same functions as a normal linker by resolving unbound
variables and names. However, two main differences are
apparent. First, function calls that resolve to functions
having hardware and software implementations will be
replaced by a call to the wrapper API’sexecute call.
This allows OS management of the hardware task ex-
ecution. The second difference is a modification of the
executable so that the OS can be made aware of any hard-
ware tasks that may be called during the execution of the
file. We have successfully created the wrapper function-
ality for FPGAs with embedded CPUs and are currently
extending it to support partial reconfiguration.

3.3 Task Execution

With RHyMA one may have the luxury to dedicate re-
configurable hardware to a particular task. It is more
likely that, you will find multiple threads running on
the processor, thus requiring the ability to reconfigure
the hardware as threads change. Thus, mechanisms are
necessary to accommodate two threads sharing a recon-
figurable hardware. This will require support for real-
time partitioning of the reconfigurable hardware. As new
threads enter the system, repartitioning may be required
as well as support for unloading and loading application
kernels. As kernels get removed from the reconfigurable
hardware, this will require architectural support for state
retention across context switches.

A RHyMA-aware OS loads executables into the
RHyMA array, begins the execution, and then manages
the scheduling of the task. As an example, consider
a web browser that uses SSL encryption. Because the
browser has been dynamically linked to an RHyMA-
aware SSL library, the browser can automatically take
advantage of a hardware SSL implementation. When the
OS loads the browser for execution, thea.out header
tells the OS that the process will use the dynamic SSL
library which in turn tells the OS that the SSL library has
potential hardware implementations. The OS will scan
the possible hardware implementations and load them
onto the reconfigurable hardware. The configuration of
the hardware can take place in parallel with the execu-
tion of the browser. This is important, in that process
startup is not blocked waiting for loading of the hard-
ware particularly when it is possible that the hardware
may never get used (for example, the user never visits an
encrypted page). This new configuration is loaded into a
shadow context again in parallel with CPU execution as
well as main context execution. The first time the task
is called, the OS determines if the configuration load has

completed. If not, the OS runs the software implemen-
tation. If the load has completed, then the OS calls the
task’sexecute function to complete the task.

If the RHyMA array is already being used by an exist-
ing process, the OS must initiate a partitioning and place-
ment routine which will allow the array to be shared. The
OS must also decide whether to 1) keep the existing con-
figuration and let the new function run in software or 2)
remove the existing configuration and let the new func-
tion run in hardware thereby consigning the old function
back to software or 3) use smaller configurations of both
functions. This question must be answered with several
metrics in mind including the performance, priority and
CPU load of each thread.

Multicore execution adds a different dimension to the
problem since tasks on different CPU cores are possi-
bly sharing reconfigurable logic. If the CPU cores are
using the same hardware cores, the choice is whether to
partition the reconfigurable array amongst multiple cores
with smaller and lower performance configurations or to
use a full hardware configuration and then block cores
from accessing the hardware until the computation is
complete. Depending on the length of execution of the
computation, blocking may be more desirable.

4 Related Work

The integration of reconfigurable logic with CPUs is a
well known idea and reconfigurable computing has been
an active research area for many years. The primary
characteristic of reconfigurable computing is the integra-
tion of a microprocessor with programmable hardware.
Our work builds on this existing work and offers a de-
sign platform required to make RHyMA or any of these
earlier architectures a reality. There have been several re-
configurable computing architectures proposed by the re-
search community and they fall into two general classes
- functional unit based and coprocessor based.

Functional unit based reconfigurable computing takes
a microprocessor and integrates the reconfigurable hard-
ware as a functional unit within the microprocessor. Ex-
amples of these architectures include Chimaera [10],
PRISC [11], and OneChip [12]. These reconfigurable
functional units (RFU) execute custom instructions to
provide speedups of short instruction sequences. The ad-
vantage of the RFU design is that the tight coupling with
the processor core allows fast access to processor regis-
ters. Intelligent compilers are used to identify blocks of
code that can be mapped to a RFU [15].

With coprocessor based designs, the reconfigurable
hardware is distinct from the main processor core, in
that it does not participate in the pipeline. How-

4

ever, it may use some processor functionality such as
memory access or data caching. Examples of copro-
cessor based research reconfigurable platforms include
Garp [16] PipeRench [17], DISC [18], and PRISM [19].
Coprocessor architectures have become common in com-
mercial high performance computing systems such as the
Cray XD1 and SGI RC100. In a variation of the co-
processor architecture, Xilinx and Altera have both in-
troduced FPGAs with embedded processor cores. The
RHyMA architecture that we have presented is a form of
coprocessor based design.

5 Conclusions
We have argued for multicore parallelism in hardware in-
stead of software and presented some of the challenges
in making a reconfigurable hybrid multicore architecture
viable particularly in terms of design tools and operat-
ing system support. Much of the issues are due to soft-
ware management particularly with respect to software
design, multitasking and library support. We have pro-
posed some strategies for hardware-software cosynthe-
sis and linking and execution. Operating system support
requires support for task management, dynamic RC li-
braries, and power management.

6 Acknowledgment
This work was supported in part by the National Science
Foundation High End Computing University Research
Activity program under award number CCF-0621448.

References
[1] J. Held, J. Bautista, and S. Koehl,From a Few Cores to

Many: A Tera-scale Computing Research Overview, Intel
Corporation, 2006.

[2] M. Gshwind, H. P. Hofstee, B. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki, “Synergistic processing
in Cell’s multicore architecture,”IEEE Micro, pp. 10–24,
March-April 2006.

[3] J. R. Hauser and J. Wawrzynek, “GARP: A MIPS proces-
sor with a reconfigurable coprocessor,” inProceedings of
the IEEE Symposium on FPGA-Based Custom Comput-
ing Machines, Apr. 1997, pp. 12–21.

[4] H. J. Kim and W. H. Mangione-Smith, “Factoring large
numbers with programmable hardware,” inProceedings
of the ACM/SIGDA Symposium on FPGAs, 2000, pp. 41–
48.

[5] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for
efficient and high-speed NIDS pattern matching,” inPro-
ceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, Apr. 2004, pp. 258–267.

[6] C. He, W. Zhao, and M. Lu, “Time domain numerical
simulation for transient wave equations on reconfigurable
coprocessor platform,” inProceedings of IEEE Sympo-

sium on Field-Programmable Custom Computing Ma-
chines, Apr. 2005.

[7] O. O. Storaasli, “Accelerating genome sequencing 100x
with FPGAs,” inHigh Performance Embedded Comput-
ing Workshop, 2007.

[8] J. Williams, A. D. George, J. Richardson, K. Gosrani, and
S. Suresh, “Computational density of fixed and reconfig-
urable multi-core devices for application acceleration,”in
Proceedings of Reconfigurable Systems Summer Institute,
Urbana, IL, Jul. 2008.

[9] S. Sirowy and A. Forin, “Where’s the beef? Why FPGAs
are so fast,” Microsoft Research, Tech. Rep. TR-2008-
130, 2008.

[10] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHI-
MAERA: A high-performance architecture with a tightly-
coupled reconfigurable unit,” inProceedings of the In-
ternational Symposium on Computer Architecture, Jun.
2000.

[11] R. Razdan and M. D. Smith, “A high-performance mi-
croarchitecture with hardware-programmable functional
units,” in Proceedings of the International Symposium on
Microarchitecture, 1994, pp. 172–180.

[12] R. D. Wittig and P. Chow, “OneChip: An FPGA pro-
cessor with reconfigurable logic,” inProceedings of the
IEEE Symposium on FPGA-Based Custom Computing
Machines, Apr. 1996.

[13] M. Wirthlin, D. Poznanovic, P. Sundararajan, A. Coppola,
D. Pellerin, W. Najjar, R. Bruce, M. Babst, O. Pritchard,
P. Palazzari, and G. Kuzmanov, “OpenFPGA CoreLib
core library interoperability effort,”Parallel Computing,
vol. 34, pp. 231–244, May 2008.

[14] M. Huang, I. Gonzalez, S. Lopez-Buedo, and T. El-
Ghazawi, “A framework to improve IP portability on re-
configurable computers,” inProceedings of International
Conference on Engineering of Reconfigurable Systems
and Algorithms, Jun. 2008.

[15] Z. A. Ye, N. Shenoy, and P. Banerjee, “A C compiler
for a processor with a reconfigurable functional unit,” in
Proceedings of ACM/SIGDA Symposium on Field Pro-
grammable Gate Arrays, Feb. 2000.

[16] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The Garp
architecture and C compiler,”IEEE Computer, vol. 33,
no. 4, pp. 62–69, Apr. 2000.

[17] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu,
S. Cadambi, R. R. Taylor, and R. Laufer, “PipeRench:
A coprocessor for streaming multimedia acceleration,”
in Proceedings of the International Symposium on Com-
puter Architecture, May 1999.

[18] M. J. Wirthlin and B. L. Hutchings, “A dynamic instruc-
tion set computer,” inProceedings of the IEEE Sympo-
sium on FPGAs for Custom Computing Machines, Apr.
1995, pp. 99–107.

[19] P. Athanas and H. Silverman, “Processor reconfiguration
through instruction-set metamorphosis,”IEEE Computer,
vol. 26, no. 3, pp. 11–18, Mar. 1993.

5

