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High performance computing systems are often inhibited by the performance of 

their storage system and their ability to deliver data. In stream processing of 

data, Active Storage Networks (ASN) provide an opportunity to optimize stor­

age system and computational performance by offloading some computation to 

the network switch. Data processing in a distributed system often requires the 

data to be aggregated at a single client before performing the data operation. An 

implementation of this processing in the interconnection network which has the 

global view of the data could speed up the application. An ASN is based around 

an intelligent network switch that allows data processing to occur on data as it 

flows through the storage area network from storage nodes to client nodes. We 

propose an approach to perform transformation and reduction data operations 

in an intelligent network switch comprised of FPGAs. A low cost non blocking 

2-dilated flattened butterfly interconnection network is chosen for prototype im-
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plementation of ASN. Common data processing applications, namely data sort, 

data search, fc-min/max and K-means clustering applications have been imple­

mented on the switching elements of this network. The scalability of the ASN in 

performing data processing applications is evaluated by applying functional and 

data parallel techniques to the K-means clustering problem. The implementations 

show that the in-network processing in an ASN greatly improves performance. 

In the other part of our work, we focus on providing operating system sup­

port for dynamic reconfiguration of FPGA to provide support for task offloading 

to FPGA. Operating system support for HW/SW co-design is in its infancy and 

faces several challenges before it could provide achievable benefits Some of the 

issues surrounding hybrid computing are resource management across heteroge­

neous multi-cores, data communication, recovery from errors etc. We have built 

a prototype reconfigurable system that can offload tasks from a processor to the 

reconfigurable core. We also developed several scheduling algorithms for resource 

allocation among HW and SW computing kernels and analyze the performance 

trade-offs of these algorithms. 
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Chapter 1 

Introduction 

1.1 Overview 

1.2 Thesis Contributions 

In this work, we implemented an Active Storage Network(ASN) on switches 

composed of NetFPGAs. The focus of this work is on the computational as­

pects of an ASN and how applications can take advantage of intelligent net­

work switches to perform computations. A few key data processing applications 

namely data sort, data search, K-min/max, and K-means clustering have been 

implemented on the ASN. The performance improvements made by offloading 

some processing from storage node to the network are demonstrated by compar­

ing the application computation time using an ASN with the computation time 

when it is performed with a normal switch. We also show several functional and 

data parallel techniques for data processing on the switching elements in ASN. 

1 



2 

These techniques can be applied for large-scale data distributed across network. 

In particular, we show how these techniques applied to a K-means clustering 

algorithm scale with larger networks and improve the performance. 

In order to support hardware implementations in the ASN, we need bet­

ter scheduling mechanisms.We also propose to build a system that can utilize 

the hybrid architecture of an FPGA with the embedded processor. The embed­

ded processors on a FPGA running an operating system can utilize the partial 

reconfiguration feature of the FPGA and dynamically offload function calls to 

the reconfigurable fabric on the FPGA. HW-SW co-synthesis requires advanced 

support of tools and resource allocation algorithms. We have developed several 

scheduling algorithms for dynamic task allocation on hybrid system and evalu­

ate their performance. These algorithms are based on profile information of the 

application and can adapt to various workloads with different runtime require­

ments. 

1.3 Outline 

This thesis is organized into two parts.active storage networks and hybrid 

computing. Chapter 2 describes the topology and architecture of an ASN switch 

built on top of a NetFPGA development board. The application modules data 

search, data sort, Kmin/ Kmax and k-means clustering built on top of ASN switch 

are explained in detail in Chapter 3. The performance improvements made 

by processing applications over the network are also evaluated in this chapter . 
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Chapter 4 explains in detail the concept of hybrid computing and scheduling 

algorithms for task sharing between software and reconfigurable hardware. We 

conclude in chapter 5.2 with a discussion of future directions. 



Chapter 2 

Active Storage Networks 

2.1 Introduction 

Large scale data processing is heavily I/O dependent. Data must be re­

trieved from slow mechanical hard drives and then distributed across faster but 

still relatively slow (as compared to processors) networks. Congestion on a net­

work can cause degradation, and as data sizes increase, the memory footprint 

of these data sets make data manipulation on a processor difficult. As a result, 

computation speed is often not the determinant in how fast a data processing 

application performs. 

On the data processing side considerable amount of work has been per­

formed in developing efficient external memory algorithms for large scale datasets 

that do not fit in main memory [1-3]. Pipelining techniques can be used to in­

terleave computation and communication and improve performance [4]. These 

algorithms aim at optimizing the total number of I/O operations rather than the 

4 
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computations. Standard template library in C + + uses efficient parallel 10 tech­

niques for common data processing tasks [5]. However, the theoretical limit of 

at-least one scan of the entire data set residing across the network is inevitable. 

On the data storage side, there have been several approaches to the design of 

parallel I/O systems. Several commercial and academic parallel file systems have 

been developed using new Object Storage Device (OSD) techniques [6]. These 

systems allow dedicated data and control paths thus demonstrating aggregate 

throughput scalability for very large systems. However, these systems do not 

scale well when I/O requests are too small to stripe across multiple nodes or when 

applications do many meta-data operations such as file creations and deletions, 

fstats, and directory reads. Parallel I/O systems also do not perform well when a 

single client wants to read data from many storage nodes and perform a reduction 

operation like min-max or a search. In such cases, with high performance storage 

nodes, we can easily saturate the network connection to the client. Consider that 

if a storage node can deliver 1 Gb/s of data, 10 nodes can potentially deliver 

10 Gb/s of data, thereby overwhelming a single 1 Gb/s network connection to a 

client. Thus, the client does not see the benefit of the parallel I/O. 

Our approach to the problem is to attack the network contention where it 

exists. This forms the basis of our work for stream processing in an active stor­

age network (ASN). An ASN is comprised of a smart network switch along with 

intelligence embedded in the I/O network. By embedding processing capabilities 

in the switching elements of the network, the storage node performance as well 
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as the computational performance of the parallel I/O systems can be enhanced. 

Processing capabilities in the switching element can also contribute to an opti­

mized flow of data in the parallel I/O system and further enhance the overall 

performance of the system. 

We demonstrate this idea of an ASN by performing data processing in an 

intelligent switching system which is built using FPGAs. We have designed a few 

data processing applications, namely data sort, data search, K-min/K-max,and 

K-means clustering and show the performance improvements made by offloading 

processing from storage node to the network. The performance improvements 

are shown by comparing the application computation time using an ASN and a 

normal switch. 

Data processing kernels can be classified into two categories namely data 

reduction and data transformation kernels. Data reduction kernels take multiple 

data elements as input and condense the input to a set of smaller elements, 

eg. data summation, multiplication,aggregate queries etc. Data transformational 

kernels take multiple data elements and transforms them to an equivalent number 

of output elements. Examples of data transformation include sort, convolutions, 

image processing,etc. 

While performing a reduction operation, an ASN switch can perform the 

operation at the switch level thereby eliminating some of the traffic in the network 

that could consume the client bandwidth. From the above mentioned example 

with 10 storage nodes, if the client wants to perform an operation to find the 
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minimum of a large set of keys stored across these storage nodes, an ASN switch 

with some intelligence could eliminate 90% of the non-minimum keys from each 

node which would be discarded at the client anyways, Thereby, the switch can 

send data to the client at full 1 Gb/s rate while it receives data from storage node 

at 10 Gb/s rate and the entire network can operate at maximum bandwidth. 

ASNs have a similar concept to that of active disks [7]. In active disks, 

some of the computation is offloaded from the processor at the client to the disk. 

Previous work has demonstrated the effectiveness of this approach particularly 

with functions such as storage management, data mining, and multimedia [8]. 

However, the drawback of active disks in a distributed storage setting is that the 

data is striped across several storage nodes and each processor at the storage node 

can only see data residing at that node. Thus, any intelligence at the storage 

node can not operate on the entire set of data spread across storage nodes. For 

example, when doing a query in a database for the k items closest to a particular 

key, each of the m storage nodes will return the k closest items in its portion of 

the data. The requesting client must then sort through mk items to determine 

the k closest items overall. The overall computation is 0(n) + 0(mk) where n is 

the number of data items per storage node. 

In an ASN, the goal is to move intelligence to the network which has a 

better view of data than the individual storage node, thereby reducing the data 

transfer latencies and improving the network performance Processing ability on 

the network also eases some of the computational workload at the network client. 
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Most of the applications that operate on large sets of data require transforming 

the data from one form to another. Offloading data intensive parts of these 

applications to the network could ease client computing resources. It could also 

reduce network traffic as some of the data transfer operations that read and write 

data from client to the storage can be avoided. This further provides the impetus 

to embed intelligence in a networks. 

Some other applications that could benefit from the idea of ASN include 

redundancy optimizations and file-system caching. Parallel I/O systems provide 

data protection through replication and parity across nodes in the cluster. With 

the use of an active storage network, the switch can offload parity computations 

from the client. Distributed file system performance often depends on aggressive 

caching to reduce network traffic. However, managing a cache across multiple 

clients can be problematic. ASNs offer an opportunity to present a global cache 

shared amongst all clients. By placing a centralized cache at the switch, we can 

free up memory at the client for other purposes. In this paper, we focus on the 

computational aspects of an ASN.n the k closest items in its portion of the data. 

The requesting client must then sort through mk items to determine the k closest 

items overall. The overall computation is 0(n) + 0{mk) where n is the number 

of data items per storage node. 
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2.2 Related Work 

Specialized hardware for application processing is common in data inten­

sive and computation intensive applications. There has been significant work on 

search [9-12], sort [13-16], and K-means clustering [17-20] using reconfigurable 

hardware. 

ASNs have a similar concept to that of active disks. In active disks, some 

of the computation is offloaded from the processor at the client to the disk. 

Previous work has demonstrated the effectiveness of this approach particularly 

with functions such as storage management, data mining, and multimedia [8]. 

However, the drawback of active disks in a distributed storage setting is that the 

data is striped across several storage nodes and each processor at the storage node 

can only see data residing at that node. Thus, any intelligence at the storage 

node can not operate on the entire set of data spread across storage nodes. 

Performing computation in the network has been proposed in early super­

computer designs. For example, the NYU Ultra computer had a fetch-and-add 

instruction for use in multiprocessor synchronization primitives [21]. These net­

works, however, have fixed functional primitives and do not allow programma-

bility as with our ASN architecture. Moreover, the primitives are very simple 

and targeted towards compute-node communications. The ASN, on the other 

hand, can implement complex functions and are intended for the primary data 

communication path - i.e. storage to compute node. 
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2.3 A S N topology and architecture 

A critical component of an ASN is the network switch since the switch 

implements the data processing on data as it is is aggregated and distributed 

from multiple sources. Typically, custom silicon is used to build gigabit and 

multi-gigabit switches and these switches offer the best performance. FPGAs 

on the other hand provide an intermediate design point by offering maximum 

flexibility in the network processing while achieving high performance. For this 

reason we use a switch built using an FPGA. A basic network switch implemented 

in an FPGA is readily available on the NetFPGA board from Stanford [22]. We 

have modified the architecture to embed data sort, data search and K-means 

clustering capabilities in the network switch. 

The selection of switching topology is also extremely important in an ASN. 

The topology has an impact on the flexibility of computations performable on 

ASN. Aspects like the type and nature of the interconnects used, latency, non-

blocking, etc. are decided by the switching topology and thus have an important 

impact on the overall performance and scalability of the network. The NetF­

PGA, which is the building block of the ASN, has four Ethernet ports and two 

SATA ports. If we use a conventional Benes or Clos topology we can not make 

use of the SATA connection which effectively decreases the throughput of each 

switching node. In order to make use of the maximum 8Gb/s throughput of 

the NetFPGA board, we use interface modules developed for the SATA ports 



11 

[23] and a wide sense nonblocking switching topology named 2-dilated flattened 

butterfly [24-26]. 

2.4 A S N Switch 

The ASN switch is built on top of a NetFPGA board provided by Stan­

ford and Digilent to help building working prototypes of high-speed, hardware-

accelerated networking systems. [22]. 

2.4.1 N e t F P G A 

2.4.1.1 N e t F P G A architecture 

The NetFPGA board is a PCI card, which contains a Virtex-II Pro (XC2VP50) 

FPGA, specifically designed for network applications. It has four 1 Gigabit/second 

Ethernet (GigE) interfaces and two SATA ports which makes it suitable to build 

a switching network. It also has four banks of locally-attached static and dynamic 

random access memory (SRAM and DRAM). The NetFPGA research group also 

provides the source code for the board so that it can be used as a hardware ac­

celerated OpenFlow switch [27]. Figure 1 [22] shows the full resources available 

on the NetFPGA. 
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2.4.1.2 Reference switch pipeline 

Figure 2 shows the design of the reference Ethernet switch provided in the 

NetFPGA package [22]. It is a five stage pipeline structure where each mod­

ule communicates using a simple packet based synchronous FIFO push interface 

which makes it easy to add additional modules to the structure for the purpose 

of packet processing. The user data path is 64 bits wide and it is driven by a 125 

MHz clock. Therefore, the switch can handle a maximum throughput of 8 Gb/s 
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- i.e. the hardware can process packets at line rate. Any packet through the 

switch should pass through all these stages as shown. The first stage is composed 

of a series of input queues that receive packets from the I/O ports. The MAC 

Rx queues and the CPU queues compose this stage. The CPU queues are the 

queues for the packets received from the PCI over DMA and these queues are not 

used in our design. The second stage of the reference switch process the queues 

in the first stage one by one in a round robin way. This input arbiter stage pulls 

a whole packet from one of the input queues and passes the packet on to the 

next stage for processing. The third stage output port look up, reads the packet 

header received from the previous stage and decides on the appropriate output 

queue to which this packet needs to be forwarded to. Finally the output queues 

stage puts the packets in appropriate destination output queues after which the 

packets are transmitted out through the Ethernet ports. 

In the proposed switching topology, we are making use of the SATA port 

of the NetFPGA card for the interconnection between switching elements. The 

NetFPGA card supports two SATA ports. We are making use of the Aurora 

protocol for serial communication through SATA [28]. Aurora is a LogiCORE 

IP designed by Xilinx to enable easy implementation of the FPGA RocketIO 

transceivers while providing a light-weight user interface on top of which designers 

can build a serial link. It is a scalable, lightweight, link-layer protocol for high­

speed serial communication. It also supports full duplex operation and flow 

control. 
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SATA with Aurora can give the maximum throughput if we drive the Rocke­

tIO transceivers using a differential clock network [29]. Using a single ended clock 

generator of 125MHz and Aurora, we can transmit two bytes in a single clock 

pulse at a maximum throughput of 2 Gb/s which is still twice that of gigabit Eth­

ernet. Thus, each NetFPGA switching element will be able to provide maximum 

possible throughput of 8 Gb/s by making use of four 1 Gb/s Ethernet link and 

two 2 Gb/s SATA ports for the interconnection between switching blocks. The 

proposed ASN switch topology is designed to exploit the complete bandwidth 

of the SATA link and thus the bisection bandwidth of the switching network is 

maximized. 

2.4.2 User data processing stage 

For the purposes of an ASN, we have added an extra stage between the 

output-port-lookup and output queues stages in the reference switch. This is the 

stage where all the data processing applications are handled by a special hard­

ware modules. These data processing modules can include reduction operations 

like min/max, average, sum, search, clustering, compression, etc. and transfor­

mational operations like FFTs and sort. The user data processing stage can have 

one or more of these modules as needed by the overall application. The user data 

processing stage receives data from the output-port-lookup stage as a stream of 

Ethernet packets. Figure 3 depicts the data processing units in this stage. Inter­

nally, the packets are examined to determine if the packets should be processed 
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by a user module. If so, these packets are sent to the appropriate application 

module. 

2.4.2.1 Header parse logic 

The nodes and the clients communicate using the user datagram proto­

col (UDP) protocol. UDP is a simple connectionless protocol built on IP that 

does not require prior handshaking before establishing a connection between the 

client and server. TCP, on the other hand, uses handshaking to establish a reli­

able connection. Which comes at the cost of additional header data and slower 

speed. Because of the extra processing required to handle TCP, we have chosen 

UDP as the transport protocol. Since UDP does not guarantee packet delivery, 

client applications using the ASN are must take separate measures to provide the 

reliability. 

In a network setting, there will be several types of packets flowing through 

the network switch that may not be related to the user application. Some of 

these packets include packets from applications like HTTP, POP, SMTP, telnet 

and SSH etc. Not all packets in the switch need to be processed by the user 

data processing stage. These special packets can be identified by the UDP port 

number and a 16 bit magic header at the beginning of the UDP packet data. 

This header can be easily added by the client application. In addition to the 

magic header, an extra 32 bits of packet sequence number is added by the client 

application to assist them in providing a reliable service. This 6 bytes of extra 
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header information provide an intermediate solution between the highly reliable, 

slower TCP protocol and the less reliable but faster UDP protocol. The header 

parse logic verifies the packet header for the application port number and the 

magic header to ascertain that the packet is intended to be processed by the 

switch. The header parser logic also verifies if the incoming packet is in sequence 

with the previous stream of packets processed by it. In case of an out of sequence 

packet, it issues a request to the packet generator logic which in turn sends a 

request packet to the source requesting for the missing packet. 

2.4.2.2 Packet generator 

The packet generator uses the header information parsed by the header 

parse logic to construct these request packets. The packet generator is also re­

sponsible for constructing packets with the output data from the sort module or 

processed data from any other module implemented in the user data processing 

stage. The packet generator logic calculates the UDP checksum for the new data 

and updates the appropriate location in the header field of the packet. Once the 

packet is constructed, it is forwarded to the destination queues from where they 

are ultimately transmitted to the client/server. 
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2.4.3 2-dilated flattened butterfly 

A critical choice in the design of an ASN switch is the topology of the switch. 

Some of the important design parameters are the number of interconnects, num­

ber of switching elements, overall latency, aggregate bandwidth, and whether it 

is non-blocking. The number of interconnects/links per switching element and 

the number of switching elements decides the total cost of the switch/topology 

network. Since we are using the NetFPGA as the switching element, cost will 

be primarily decided by the number of NetFPGA boards used. The nonblocking 

behavior is particularly important to insure that the switch can always deliver 

the maximum throughput, i.e. with a A'xA'' switch with a per-port bandwidth 
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equal to B, the aggregate throughput should be NB regardless of the connec­

tions between ports. A 2-dilated flattened butterfly is a wide-sense nonblocking 

(WSNB) network that can connect from any idle input to any idle output without 

disturbing existing connections. It has a similar structure to a flattened butterfly 

with twice the bandwidth or with duplicated links. The structure of a 8x8 2-ary 

three dimensional 2-dilated flattened butterfly structure is shown in Figure 4. In 

this structure, interconnections in the first and second dimensions(vertical links) 

are implemented using 2Gb/s SATA links and all interconnections in the third 

dimension (horizontal links) are implemented using lGb/s Ethernet links. Each 

switching element shown in Figure 4 can be implemented using a NetFPGA 

board and it can deliver a maximum throughput of 8Gb/s since each switching 

element consists of four lGb/s and two 2Gb/s links. This 8x8 structure can be 

used as the basic building block to construct larger networks. The procedure to 

constructing larger flattened butterfly networks from smaller network is explained 

in [30]. 

In order to utilize the maximum throughput of 8GB/s provided by the 

NetFPGA and the low component cost of interconnects, we have used a 2-dilated 

flattened butterfly network as a backbone of ASN. 
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Chapter 3 

Application Modules 

ASNs can accelerate application performance in two specific classes of operations: 

reductions and transformations. Reductions take a large set of data and reduce it 

to a smaller set of data. Scientific applications often use similar reduction opera­

tions such as minimum, maximum, summation, etc. Transformational operations 

are another class of functions that take a large set of data and transform it into 

another large set of data. This transformation may be written back to storage or 

returned to the client. Video editing is composed of many transformational op­

erations such as convolutions, filters, and compression which could benefit from 

an ASN. 

We have implemented several reduction and transformation operations in 

the ASN including search, sort, k-min/max and k-means clustering. These appli­

cations are implemented in the user data processing stage of the network switch 

described above. The header parsing logic parses the Ethernet packets, strip the 

21 
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packet headers and provides data in an appropriate format to the application 

module. The application modules see the stream of Ethernet packets coming in 

to the switch as a stream of application data from the header parse logic. The 

necessary reduction operations are performed and the processed data is forwarded 

to the packet generator where new packets are constructed and dispatched to the 

intended destination. In the remainder of this section, we describe four rep­

resentative application kernels - namely search, sort, K-min/max and k-means 

clustering. 

We have implemented data search, sort, and k-means clustering applica­

tions in an ASN switch built on top of a NetFPGA board. An 8 x 8 ASN net­

work forming a 2-dilated flattened butterfly structure is built using 8 NetFPGA 

boards. The 8 x 8 switching network consists of 8 switching elements with each 

switching element having 2 input and 2 output ports. A single NetFPGA board 

with four ports can implement the switching element. We used a 8 x 1 subset 

of the network connecting 8 server nodes to a single client node, to evaluate the 

performance benefits of ASN switch for reduction and transformation operations. 

Figure 5 shows an implementation scheme for an 8 x 1 reduction/transformation 

operation and routing path from several servers to the client at node 9. The 

switching elements 1 to 4 perform the first level of application processing. As 

each of the switching elements are connected to two server nodes, they do not 

have the global view of the entire data. Hence a next level of processing is re­

quired. The switching elements 5 and 7 perform the final stage of processing 
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before transmitting data to the client at node 9. Switching elements 6 and 8 

operate as pure switching elements and do not perform search or sort operations. 

In fact for search application, the second level processing in switching elements 5 

and 7 is not necessary as the first level would be sufficient to search the client data 

from all the nodes, k-means clustering application however uses all the available 

switching elements for application processing. 

In normal operation, the switching network acts as the interconnect between 

the servers and the client. The client would then have to locally perform any of 

the applications like search, sort, or k-means clustering on the accumulated data. 

However in an ASN topology, these applications are implemented in the switching 

network itself, thereby the client receives the processed results from the network. 

When implementing application processing in the network, the ASN net­

work differentiates the application packets from normal Ethernet packets by a 

16 bit magic number (0x2020) at the beginning of UDP packet data. The other 

packets in the network are simply routed according the routing scheme imple­

mented. The ASN packet size is limited to 1512 bytes. NetFPGA currently does 

not support jumbo frame sizes but the architecture provided for the search, sort 

and k-means applications are scalable for bigger packets. With 14 byte Ethernet, 

20 byte IP, 8 byte UDP and 2 byte ASN headers, the application data is limited 

to 1464 bytes per packet. The application data consists of multiple key — value 

pairs. In the data search and sort applications, the value field is propagated after 

the necessary operation on the key. A smaller value would mean more keys per 
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Fig. 5: An 8 x 1 routing scheme on a 8 x 8 2-dilated flattened butterfly network 

packet and hence more comparisons. For this reason, the value field is kept to 

the minimum to reflect the worse case scenario. 

The keys are generated at random with each key having 32 bytes of data. 

For our experiments, we used file sizes up to 4G bytes per server node. The client 

would then receive up to 24 GB from all the 8 servers. Each of the applications 

and the experimental results are described in the following sections. 
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3.1 Data Search 

Search is a common application for data processing. Database search is 

performed on a key — value pair, where a search for a specific string in the key 

field would return the matching key — value pair. The core of this application is 

to look for specific string called searchstring henceforth, in all the keys in the 

system, search is a time consuming operation in a distributed system where all 

the key — value pairs are spread across multiple storage nodes. 

Search strategies can be broadly classified as linear, binary, hash and tree 

based search. Some of the string search algorithms include Rabin-Karp algo­

rithm [31], KnuthMorrisPratt algorithm [32] and the Boyer-Moore algorithms 

[33]. Tree and hash based search algorithms are faster than linear search algo­

rithms but they require the search space to be arranged in a tree or hash based 

data structures. Linear search strategy suits the network search scenario as data 

streams through the network from several storage nodes. We implemented a 

CAM based hardware search module in the network switch that can search for a 

specific searchstring in the incoming packet. 

The search module constitutes of the character match array and the PE 

array logic blocks. 
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3.1.1 Charac t e r match ar ray 

The character match array contains a k x 1 array of CAM blocks into which 

the k byte searchstring is loaded. Each of the CAM blocks contains an 8-bit 

memory to store a single ASCII character of the searchstring. A wider memory 

can support multi character comparisons such as the Unicode code character set. 

The CAM block also stores two additional bits to indicate if the character stored 

forms the beginning or the end of the searchstring. These extra bits are loaded 

in to the CAM array along with the searchstring. The CAM block compares 

the input character with the search character stored in the memory. The keys 

from the network are given to the CAM block a character at a time. This input 

character is applied simultaneously to all n columns in the array. The comparison 

results from all the CAM blocks are propagated to the PE array as character 

match signals M(i). The CAM evaluates a character match in a single cycle. 

However, the multi character string match is evaluated by the PE array in the 

subsequent stage. 

3.1.2 P E array 

The PE array is a k x 1 array of processing elements (PE) that executes 

the algorithm shown in Figure 1. To perform the search operation, the key data 

from the header parse logic is given as input to the character match array, a 

character at a time. If the input character matches a column in the CAM array, 
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the match signal is set and passed onto the corresponding PE for that column. 

Each PE holds a binary value called a flag which indicates that the input key 

data matches the searchstring in the CAM up to this point. The PE flags are 

labeled PE(i). The flag is set for all the character matches at the beginning of the 

searchstring. The PE logic propagates the flag to the subsequent PEs if there 

is a corresponding match signal M(i) from the from the character match array. 

The flag is however dropped for a character mismatch. A search hit occurs if the 

flag propagates all the way to the end of the searchstring. Figure 6 shows an 

instance of search for the string "NCC" in action. The searchstring is stored 

in to the character match array and the key data from packets are applied as 

input to the character match array. In the first clock cycle (Not shown in the 

figure), a match on a character 'N' in the input set a flag in the PE array. In the 

subsequent cycle, the character match on ' C moved the flag to the new position. 

In spite of the character matches on ' C at multiple locations, the PE flag is set 

at a location that has a PE(i-l) set. In the final cycle the character match on the 

last character of the searchstring ' C resulted in a search hit. The search method 

described above could search for any number of searchstrings loaded in to the 

character match array. After a search hit on a key, the corresponding key —value 

pair from the incoming packet is propagated to the packet generator logic. The 

other key — value pairs from the packet that did not match the searchstring can 

be dropped. The search process described here is a linear operation and can be 

done in 0{n) time. 
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This architecture supports search on multiple searchstrings stored in the 

CAM array. The array of the PE elements process all searches in parallel. A 

search on - search strings each having a length s bytes can be evaluated in s 

cycles. A dynamic search on new searchstrings can be easily performed by re­

placing the contents of the CAM array with the required searchstrings. 

1 

2. 

3 

4 

5 

6 

7 

8 

9 

10 

11: 

12: 

if M(i) and wordbegin then 
PE(i) - 1 

else if M(i) and PE(i-l) then 
PE(i) = 1 
PE(i-l) = 0 
if E(i) = 1 then 

searchhit = 1 
end if 

else 
PE(i) = 0 
searchhit = 0 

end if 
Algorithm 1: PE Algorithm 

3.1.3 Resul ts : Search 

In a network search implementation, The available resources on the Xil-

inx Virtex-II Pro FPGA limited the space available for the searchstrings to 

4096 Bytes. We chose random sized searchstringss ranging up to a maximum 

of 32 bytes per searchstring for both the software and network search imple­

mentations. The software application for search is based on Aho-Corasick [34] 
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algorithm for dictionary searches. In a network search, the searchstrings are 

initially loaded only in to the switching elements 1- 4 of the ASN network 5 and 

the switching elements transmit the results of search operation to the client. The 

client receives only a portion of the server data that matches the searchstrings. 

for the measurements purposes, the server data is embedded with one extra ref­

erence packet of 50 bytes at the beginning of the data, these reference packets 

are not processed in the switching elements of ASN but are transferred to the 

client from the switch queue. The network search is timed at the client side once 

it receives these reference packets from all the servers. The results plotted in fig­

ure 7 show network search performing an average of 7 times faster than software 

search. 

Character ~^ 
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3.2 K-min/K-max 

Min/Max is a data reduction operation to find the smallest or largest item 

in a given dataset; the k-min/ k-max problem is to get the first k correspond­

ing min/max items. It is a restricted version of sort and has its applications 

in database and data mining systems. In a distributed setting, the data set is 

distributed across several storage nodes on a network. The traditional implemen­

tation of k-min/k-max requires the dataset to be retrieved from all the storage 

nodes to a single client before the k-min/k-max operation can be performed. An 

ASN implementation would benefit this application by overcoming the bottle­

neck associated with performing this reduction operation. It can also improve 
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the network performance by eliminating unnecessary data traffic in the network 

which otherwise would be needed. 

The k-min/k-max user data processing module contains k buckets con­

nected as shown in Figure 8. Each of the buckets consists of a register to store 

a data item and a logic function that executes an algorithm as described below. 

The key data from the header parse logic is given as input to the k-min/k-max 

module. The key data is of alpha-numeric in nature and can be of varying length 

having a maximum size up to the size of register in the bucket. 

The registers in all the buckets are initialized to a lowest or a highest 

value possible for k-min and k-max operations respectively. These values are 

0x00000000 00000000 and OxFFFFFFFF FFFFFFF for a 64 bit register and are 

relative to the size of register. The key data from several storage nodes are given 

sequentially to the first bucket. The first bucket compares the key data to the 

register content at this bucket. For a k-min operation, if the data item is smaller 

than the register content, the register is updated with the key value and a value 

of OxFFFFFFFF FFFFFFFF is forwarded to the subsequent bucket. In case the 

key is greater than the content of the register, it is simply forwarded to the next 

bucket. Similarly for a k-max operation, the register in a bucket is update with a 

new value if the key is greater than the register content. A value of 0x00000000 

is propagated to the next bucket in this case. The key itself is forwarded to the 

next bucket if it is smaller than the register content. In essence, the buckets 

operate as a shift register maintaining a sorted list of the top k keys. At the end 
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of the network packet data-stream, the k buckets contain the k-min items in a 

non-decreasing order and k-max items in a non- increasing order. These k items 

are then forwarded to the the packet generator where they will be assembled as 

new packets and dispatched to the final destination. 

Each of the buckets process key data in parallel so the application runs 

at full line speed. The runtime for finding k-min or k-max keys from n keys is 

0(n + k). Since typically k S> n, the runtime is 0(n). 

3.2.1 Results: K-Min/K-Max 

In our experiments, we have set k = 50 to find 50 minimum and maximum 

values in the data for both software and network k-min/k-max implementations. 

For the network k-min/k-max implementation, the experiment is repeated for 

different client data sizes beginning from 800M to 4000M. A reference packet at 

the beginning of the data is used for experiment timing purposes. The k-min/k-

max elements in the switch elements are flushed to the client after the last packet 
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from the server data. The network sort is timed at the client between the interval 

it receives the reference packet and the last packet from the k-min/k-max data. 

The results in Figure 15 show that the ASN k-min/k-max application runs 20 

times faster than the corresponding software implementation. 

3.3 Sort 

Sorting is a common transformation application where data from multiple 

channels of I/O systems converge at a single node. By moving this process to 

the switch, the client node which is originally intended to perform this operation 

locally receives data in sorted order and can use its processing resources on other 

time consuming computations. Sorting is a common task performed in data 

handling applications like indexing, data mining and database management. The 

most common database query is some form of "SELECT ... from ... ORDER 

BY ..." that retrieves sorted data from the database such that it matches a set 

of criteria. With a normal SELECT and active disks alone, each disk will do 

the query independently and then return the data to the client. However, when 

doing an ordered query on n nodes, the m returned results from each of the node 

must be sorted before being returned to the client. 

With the amount of data storage growing to the order of terabytes, data 

sorting often becomes the bottleneck in some applications thereby affecting their 

performance. In fact, a popular measure of server and I/O performance is the 

GraySort benchmark [5], which attempts to sort terabyte size key-value pairs. 
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Several FPGA based architectures for implementing sorting have been pro­

posed [16,35]. However, data records residing on a storage over network have to 

be fetched in to the local storage at a host computer before they can be sorted. 

ASN can take benefit of this fact by implementing the sort process over the net­

work. The FPGA based sort implemented in the ASN switch sorts data records 

as they stream the network and the host computer receives the sorted data. 

Our assumption is that the active computation at each storage node will 

pre-sort its portion of the data and send the pre-sorted data to a requesting 

server. Normally, the server would then be responsible to merge sort the sorted 

data from the various storage nodes. With an ASN, the data will be sorted within 

the network. A tree based merge sort in the ASN can reduce the sort time from 

mn log m to log2 run where m is the number of nodes and n is the size of the 

data. 

3.3.1 Sort module 

We have implemented the data sort processing kernel as a sort module in 

the switch user data processing stage. The basic block of the sort module is the 

sort processor shown in figure 9. A sort processors takes two continuous data 

streams of key — value pairs and merge sorts them by their key value. In general, 

p data streams can be sorted using logp levels of sort processors connected in a 

binary tree. In the NetFPGA we are limited to four 1 GigE interfaces thus the 

two stage binary tree can process four continuous data streams in parallel. 
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The significance of the sort processor is that it can sort data streams con­

taining key — value pairs of any arbitrary length. Since key — value pairs in in 

a network could be of arbitrary length, a general purpose sort processor is an 

essential requirement. The sort processor fetches two 64 bit inputs dataA and 

dataB, by issuing reqA and regB requests. If the comparison of the two inputs 

does not yield a result, i.e. if the keys for dataA and dataB are the same, the 

next 64 bits of dataA and dataB are fetched and the current dataA and dataB 

are stored in temporary storage where they wait for the next comparison. The 

temporary storage limits the maximum sort distance to which two equal keys can 

be sorted. This value is flexible and is dependent on the resources available on 

the FPGA. We allocated 64 bytes for the temporary storage. If the comparison 

yields a result, the smaller of the two inputs is sent as sorted output to an output 

buffer and the appropriate request signals are set to fetch new set of data. In 

some cases where the two keys are equal, the comparison does not yield a result 

even after the end of the key — value pair is reached. The sort processor identi­

fies this' case and clears the temporary storage results to the output buffer. The 

sorted output in this case could have the equal key — value pairs in any order. 

While the data streams through, the key — value pair might end anywhere on the 

64 bit boundary. The sort element recognizes the end of the key character and 

limits the sorted output till the end of that key — value pair. The sort resumes 

from the beginning of the next key and this process continues on till there is no 

more data left to be sorted. 
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The output-port-lookup stage in the reference pipeline stores the packets in 

SRAM where they wait on the sort module to operate. The sort module contains 

three state machines operating in parallel. The read state machine issues read 

requests to fetch data from SRAM. The fetched data is buffered in data store 

FIFOs from where the sort element described above gets its data.The read state 

machine is analogous to instruction pre-fetch cycle in a CPU. The sort processor 

issues requests for dataA and dataB as and when required, prefetching the dataA 

and dataB in to the FIFOs greatly improves the performance as the requests from 

sort processor are handled immediately and the wait time between issuing request 

and fetching data is reduced. Once the sort operation is completed, the sorted 

output in the output buffer is written back to the SRAM by the write state 

machine. 

The sort processor compares k sorted keys from two packets yielding 2k 

sorted keys at the output. In the worst case there will be k comparisons, with 

each comparison a constant time operation. The merge will take k cycles to 

complete. In general, a packet with a b byte payload would take | cycles for 

the merge operation. The run time for the sort is the same as a software sort. 

However the significance of network sort lies is in reducing the deficiencies of a 

parallel I/O systems in a distributed network setting. 
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3.3.2 Resul ts : D a t a sort 

Network sort is implemented on an NetFPGA based network switch. The 

base NetFPGA switch design on Xilinx Virtex II pro consumed 15572 slices taking 

up 65% of the FPGA slices. The inclusion of the network sort unit accounted for 

a mere 4% addition of the slices thus consuming 16329 slices of the total 23616 

slices amounting to 69% of the FPGA slices. The FIFO based network sort switch 

also consumed 169 RAMB16s block RAM blocks compared to the 157 RAMB16s 

blocks in the base switch design. 

In the NetFPGA we are limited to four 1 GigE interfaces thus can support 

only four directly connected machines. All the machines run Linux on a dual core 

AMD Opteron 1.8Ghz processor. The data that is to be merged is distributed 

across these four storage servers. In a typical network setting, the servers would 

accumulate the data to a single client machine. A software application running 

on this client would merge the accumulated data. However in a hardware based 

network sort setting, the storage servers send their data to a network switch 

where the merge is handled. A client-server C program handles all the data 

transfer operations across the network, and a C software application handles the 

software sort. The software application implements the best known k-way merge 

sort algorithm and all the C programs are compiled in gcc with the maximum 

optimization levels. 
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The server programs packs the Ethernet packets with a 16 bit magic header 

0x2020 if they are to be sorted on the network switch. The Ethernet packets 

without this header are treated as normal packets and are transmitted without 

any processing. Figure 10 shows the packet header format for the network sort 

processing. An 0x09 byte is used to separate key — value pairs within a packet. 

The test data is randomly generated with a varying number of key sizes per 

packet. For our experiments, we used a file size of 1 Gig bytes per storage server 

node. In a key — value pair comparison, keys are compared and the value field is 

propagated after the key field. A smaller value size would mean more number of 

keys per packet and hence more comparisons. On the other hand, a higher value 

size would result in less number of keys per packet and hence fewer comparisons. 

To reflect the worst case scenario, the test data is generated to contain key field 

only. 

Packets with key sizes of 8, 16, 32 and 64 bytes are generated and transmit­

ted by the servers to the host. Two different test cases with packet sizes limited 

to about 1512 bytes and 112 bytes were used. The 48 byte header for each of the 

packet would limit the pay-load to approximately 1464 and 64 bytes respectively. 

The current NetFPGA architecture does not support jumbo frame packets but 

the sort architecture discussed above is easily portable to a NetFPGA version 

that supports jumbo frame packets. 

The resulting merged and sorted data can then be forwarded to either of 

two locations: 1) to a single host that stores all the sorted data or 2) distributed 
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Fig. 10: Packet Header Format. 

back to the original servers where they store the globally sorted data in a virtual 

striped manner. Each of these methods has its own merits. In a single host 

scenario, one of the machines is used as both the host and server. The servers 

act as storage node that sends its sorted data to the host and the host receives 

the data from all four servers. We present these two scenarios separately below. 

3.3.2.1 Single host 

In this section, we evaluate the single host scenario where data is sent to a 

single host and the resulting sorted data is stored locally at the host. Figures 11 

and 12 show the throughputs of a plain network, network sort and the software 

sort for 1512 byte and 112 byte packets. The throughputs for the plain network 

and network sort are calculated based on the number of packets received at 

the host from the network switch. For a network switch with data processing 

capabilities, the network transfer time and the hardware sort time effect the 

throughput. The throughput for the regular network switch reflects the network 

transfer time only. The throughput for the software sort is calculated based on 

the number of packets sorted by the software sort application at the host as it 

receives data from the server. The network transfer time and the software sort 
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time influence this throughput. In a software sort, we do not measure the time 

to write the sorted data to disk as our host node did not have sufficient memory 

buffers to handle that much volume of data. Note that the FPGA network sort 

does not suffer from this problem. 

Figure 11 shows for a large packet with about 1464 bytes of payload data 

and with smaller key size of 8 bytes, the network sort is little over 5 times faster 

than the software sort. As the key size increases, the number of keys per packet 

is reduced, and as a result, the average number of comparisons per packet is 

reduced, thus reducing the overall software sort time. This effect is reflected in 

the reduction of speedup to a value of 2 times for the key size of 64 bytes. Note 

that the network sort performance for different key sizes is almost the same as 

network performance. This is due to the fact that the worst case performance of 

hardware sort on the network switch is the same as the network performance and 

any improvements in hardware sort performance is negated by the slow network 

performance Thus, in other words, the sort almost comes for free since it is being 

done in line with the data transfer. These results are further supported by the 

results from a smaller sized packet as shown in Figure 12. For a 64 bytes of 

payload data, the improvements in the speedup are similar to that of a large 

packet. With a key size of 8 bytes, the network sort performed about 3 times to 

a software sort and for a larger key size of 64 bytes, the network sort performed 

almost two times as faster as software sort. The results also indicated that the 

1 Gbps I/O resources at the single host side are maxed out and the clients can 
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not send data any faster in spite of their I/O resources running below their peak 

abilities at around 0.25 Gbps. 

3.3.2.2 Distributed sort 

Storing data on a single host suffers from poor write performance as all the 

sorted data is written to a single storage disk. Often, the sorted data is instead 

stored back to the storage servers from where the unsorted data was read. This 

is performed by a sort operation accompanied by a write operation to multiple 

storage nodes. The network sort topology can improve this sort performance by 

taking advantage of the parallel I/O to distribute the sorted data back to the 

server nodes. The network sort in this case sorts data from multiple nodes in the 
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network switch and once the data is sorted, it is distributed back to the storage 

servers instead of aggregating at a single host. 

We ran two experiments. First, a software sort and distribute, where server 

nodes send presorted data over a normal switch to a host which then merge sorts 

the data and then sends the data back to the server nodes for storage. Secondly 

a FPGA-based network sort and distribute where server nodes send presorted 

data to the FPGA switch which merge sorts the data and send the data back to 

the server nodes for storage. The difference is that the FPGA-based network sort 

does not require a host to accumulate sorted data, thus removing the bottleneck 

from the switch to the host. 

Figure 14 shows the performance improvements made by employing the 

network FPGA sort architecture for distributing sorted data back to the servers 

as opposed to a single host based software sort and distribute. The key sizes in 

the test data are limited to 32 bytes. The graphs shows the time to accumulate 

sorted data on a single host. The results show the network sort and distribute 

outperforming software sort and distribute in a single server topology. Network 

sort and distribute ran 13 times faster. 

While both software and hardware sorts grow linearly, the hardware sort 

can do so at a much faster rate because of its ability to handle Gigabit network 

transmissions at line rate. The results indicate that when the network is operating 

at full bandwidth, the software application could not keep up with the rate at 

which it receives packets and the server utilization was at maximum. The Linux 
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command of time was executed to see the amount of time spent by the host in 

running the user application. With a software implementation of sort, the host 

spent an average of 9 times the time spent with an FPGA network implementation 

of sort. This further makes the case for hardware sort over the network. 

The sort unit in the current implementation operates on four incoming 

packets at a time. This limit is due to the number of ports available on the 

NetFPGA board. However, the design is scalable and it could be easily extended 

to support any number of ports. Multiple NetFPGA boards can also be connected 

in a tree-like network to increase the scalability. 
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Network sort is implemented on a 8X8 network switch for sorting data 

spread across 8 storage nodes. The software application implements the best 

known /c-way merge sort algorithm in C. The network sort is timed at the client 

beginning the first server packet received at the client. The results in 13 show 

network sort outperforming software sort with a speed up of over 11 times. 

The higher performance of the hardware sort is due to the network topology 

in a distributed storage setting and the reduction operation being performed. The 

server is connected to the network with a 1 Gbps connection, the client can send 

data to the server at a rate of 1/4 Gbps each. The sort application running in the 

switch on a 125 Mhz clock could process a single byte of data per clock cycle in 

the worst case scenario and therefore a yielding a worst case throughput of 1 Gbps 

which is the maximum rate at which the server can receive the data. Irrespective 

of the improvements in the software application for the sort, the software sort 

under performs the hardware sort due to the network transfer delay associated 

associated in this setting. 

3.4 K-means clustering 

Clustering algorithms are prevalent in image processing, statistical data 

analysis, data compaction, and pattern recognition applications. Clustering al­

gorithms try to group a given dataset in to a set of clusters such that all the 

elements belonging to a cluster are closely related with the least possible dis­

tance across the data items. Such a cluster assignment is an NP hard problem. 
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K-means data clustering is a popular clustering algorithm that performs cluster­

ing based on Euclidean distance calculation across data points. It is used in a 

wide variety of applications including data mining. The K-means algorithm is 

compute intensive due to the iterative nature of the algorithm and the higher 

degree of complexity involved with floating point computations. The amount of 

data and computations involved make real time data processing virtually impos­

sible even on high end workstations. 

-Software Kmin/Kmax 

-Network Kmin/Kmax 
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3.5 K-Means Data Clustering Algorithm 

Given N multidimensional data points each having D dimensions, the clus­

tering algorithm performs data grouping to k clusters as shown in algorithm 2. 

Input: Set of N, D-dimensional data points, Number of clusters K 
Output: N, /^-dimensional data points assigned to K clusters, K 

cluster centers 

• Initialize the cluster centers Cik with first k data points or a heuristic 

repeat 
foreach data point Xi in N do 

foreach cluster Cj in K do 

D • Calculate the Euclidean distances A*, = Ylj=i l-^ij ~ ^u ' l ~^k £ K 

• Calculate At. and assign Xi to d. 

end 
end 
Update cluster centroids 

until Iteration count > a fixed constant \ Crossover count < 5; 

Algorithm 2: Kmeans clustering algorithm 

The algorithm starts by selecting k initial cluster centroids by a heuristic 

or sampling method. The Euclidean distances are computed between each mul­

tidimensional data point and all the cluster centroids. Each data point is then 

assigned to the cluster with the least Euclidean distance. After all data points 

have been assigned a cluster, new cluster centroids are calculated by taking an 

average of the data points in the new clusters. The algorithm proceeds with the 



49 

next iteration and terminates if the number of points crossing over to a new clus­

ter at the end of the iteration is below a threshold or after a sufficient number of 

iterations have passed. 

The most time consuming part of the computation is the Euclidean dis­

tance calculation between the data point and the cluster center. For all data 

points, we must calculate the distance between the data point and all the K 

cluster centroids. Moreover, these calculations are performed with floating point 

numbers. However, these calculations do not have any data dependencies across 

clusters and hence can be performed in parallel. 

The Lloyds K means clustering algorithm differs from other clustering al­

gorithms in the objective function chosen for minimization which is the square of 

the mean distance between the data points. Other variations of the algorithms 

include minimizing the sum of distances to the nearest center [36] and minimizing 

the geometric distances to the center [37]. In a hardware implementation, the 

floating point operations take a varied number of cycles for completion depending 

on the type of implementation. They are also expensive in hardware due to the 

amount of area occupied on the chip/FPGA. For this reason initial hardware im­

plementations have tried to reduce the cost of Euclidean distance calculations by 

replacing them with Manhattan distance and max distances [17,38] which would 

require fewer floating point units. This resulted in a slight decrease in accuracy 

which was outweighed by the saved space. Other implementations have taken a 

hardware/software approach where the cluster assignment part of the algorithm 
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was implemented in software [39,17]. We implemented the original k means al­

gorithm thus preserving the accuracy. Our implementation is targeted for large 

scale data in a distributed storage system by performing computations in the 

a network switch as the data flows from the storage nodes to the computation 

node. 

The primary K-means clustering components are the cluster, kmin, and 

cluster-update units. These units implement Lloyd's algorithm for optimal clus­

ter assignment. A cluster computes the distances across the cluster centroid and 

the given data point. It is implemented with floating point subtracter, multiplier 

and adder units as shown in Fig. 16. The cluster centroid is stored in a d wide reg­

ister in the cluster unit. It is a volatile data point that might change after every 

iteration, but remains constant within each iteration. An iteration constituting 

a single transfer of data set from the storage node to the hardware, concludes 

by updating the cluster register with the new cluster centroids calculated by the 

cluster .update unit. The first K data points received by the hardware are stored 

in the k cluster registers. These k data points act as the initial cluster centroids 

for the algorithm. The rate of convergence of the algorithm depends on the first 

k data points received by the hardware. The data FIFO s in the user data pro­

cessing stage receive the remaining set of data points. An array of k cluster units 

concurrently fetch data points from the data FIFO s and calculate the distances 

to their corresponding data centers in parallel. 
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The Euclidean distances computed from the k clusters are presented to the 

Kmin unit where the closest cluster is computed. The Kmin unit has a binary 

tree structure as shown in Fig. 17 with log if* stages where K* is the extension 

of k to the nearest power of 2. The Kmin unit compares the distances with one 

another determining the minimum in the last stage of the binary tree. Once the 

smallest value is found, the cluster unit yielding the smallest value is decoded 

by propagating the pointer to the top of the binary tree. The cluster center 

having the minimum of the Euclidean distances is the closest cluster. The given 

data point is then assigned to the new cluster center by updating the embedded 

header field of the data point. The header field for each data point contains log k 

bits at minimum for cluster assignment. The data point header field can also 

include additional 32 bits for the Euclidean distance with the assigned cluster 

centroid. The cluster .update unit is responsible for header update operations. 

Any changes in the cluster assignments of the data point will also increment the 

crossover count register in the cluster-update unit. A data point is latched in 

the data FIFO until the cluster assignment, after which it is removed from the 

data FIFO s and and sent to the packet generator where multiple such points are 

assembled in to new packets and transmitted to the output queues. 

At the end of the iteration, the cluster centers required for the subsequent 

iteration are calculated by the cluster-update unit. The new cluster centers 

for the k clusters are determined by the average of the data points per cluster. 
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Cluster-update unit calculates the sum of all the data points assigned to a clus­

ter. Since at most a single data point flows through the hardware pipeline, a 

single cluster-update unit would be sufficient to maintain information of all the 

k clusters. The cluster sum per iteration is calculated by adding the current data 

point with the previous sum of a given cluster. Dividing the individual cluster 

sum by the total number of elements assigned per cluster at the end of a iter­

ation would give the cluster centroids useful for the subsequent iteration. The 

crossover count register is updated for every data point assignment to a different 

cluster than it previously belonged to. It is reset after the completion of a itera­

tion. The crossover count register and the iteration count register are verified to 

terminate the algorithm if the crossover count is less than a threshold value, it 

means that there are only a few data points that were assigned to new clusters in 

the current iteration and current assignment is closer to the optimal assignment. 

The cluster .update unit contains a floating point adder, divider, K ri-dimensional 

registers to hold the sum and k registers to hold the count of number of elements 

per cluster as shown in Fig. 18. 

3.5.1 Optimization 

Pipelined floating point add/subtract units on an FPGA have a latency 

anywhere from a single cycle to a 13 cycles for each operation. Similarly the 

multiplication takes one to eight cycles. On an FPGA, floating point implemen­

tations have a trade off between the area and latency. The lower the latency, 
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the larger the cycle time and the area. Euclidean distance calculations of a data 

point is data dependent with all the dimensions in the given point. For this 

reason, a straightforward implementation with a floating point adder unit would 

stall every dimension of the data point for the duration of the latency in the 

adder circuit. An optimization strategy would be to interleave the dimensions of 

different points together in such a way that the latency is hidden by performing 

calculations of unrelated data points before the results for the initial calculations 

are ready. An interleaving optimization for hiding eight cycle latency is shown in 

Fig. 19. Data point Pij (where i is the point number and j the dimension), sent 

to the cluster unit shown in Fig. 16 is interleaved in such a way that , i mod 5 

(floating point add latency) varies from 1 to 5 V j . The floating point add unit in 

Fig. 19 receives the interleaved |P^ — dj\ from the floating point multiplication 

unit in Fig. 16. The result of the partial sum Y^ \P^ — dj\ f° r a dimension j of 

the data point i will be ready after 5 cycles. This result will be ready just in time 

for the add unit to perform another partial sum Y2 \Pij+i — CV/+i| . Interleaved 

data required for this type of optimization could be easily generated at the data 

source or with the help of reorder buffers on the FPGA. 

3.5.2 Parallelization techniques 

The K-means algorithm on a single FPGA exhibits cluster level parallelism 

by performing Euclidean distance calculations belonging to all the cluster units 
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in parallel. For higher values of k, the amount of resources available on a sin­

gle FPGA will not be sufficient to fit all k cluster units. For such cases, the 

number of cluster units on the FPGA is reduced to a fraction of k cluster units 

in a single step. The remaining cluster units are computed in multi steps with 

- cluster units per step. The original Kmin unit is modified to find the mini­

mum of Euclidean distances from of all the steps. The latency associated in the 

multi step approach could degrade the performance but in a worst case when 

n = k, the multi step approach becomes the sequential algorithm. In a multi 

FPGA environment, the additional FPGA resources can be used to implement 

the parallel algorithm in two ways. One way is to distribute data to every FPGA 

and perform cluster assignment in parallel. The other approach would be to dis­

tribute the cluster units to each of the FPGAs and perform Euclidean distance 

calculations in parallel. These two approaches are explained in the following 

sections. 

3.5.3 Data level parallelism 

In a multi-FPGA system, each FPGA can operate on separate data points 

thereby performing cluster assignments in parallel. Data level parallelism on a 

multi FPGA system is possible if each of the FPGAs implement all k cluster 

units. The data is uniformly partitioned across all the FPGAs, and each data 

partition is sent to separate boards where each calculate the Euclidean distances 
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and cluster assignments in parallel. Each FPGA board calculates the local clus­

ter centroids based on the portioned data. At the end of each iteration, the local 

cluster centroids are broadcast to the other boards. Upon receiving this broad­

cast information along with the local centroid information which was broadcast 

earlier, new centroids at each board are calculated as the average of the received 

centroids with the local centroid. Upon cluster update, each board sends a clus­

ter update acknowledgment indicating its readiness for the subsequent iteration. 

This process proceeds till the iteration termination criterion of number of itera­

tions or sub threshold crossover count. Data level parallelism extracted this way 

would have higher performance but with the limitation on the number of clus­

ters that can be fitted on each of the FPGA. A multi step approach with only a 

fraction of the total k clusters per board in each step can be utilized for higher 

values of k. 

3.5.4 Cluster level parallelism 

Another approach in extracting parallelism on a multi FPGA system is to 

partition the k clusters across the FPGAs. This approach is intended for higher 

values of k. Each FPGA operates in parallel on the entire data set calculating 

the distances between data points and the FPGA's subset of k cluster units. The 

local minimum of the Euclidean distances at each FPGA is broadcast to the other 

FPGAs where the global minimum is computed. The global minimum is used in 

resolving cluster assignment for the incoming data point. Since the data point is 
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applied simultaneously to all the FPGA boards, the global minimum calculated 

at each FPGA board should result in the same cluster assignments for the data 

point at all the FPGAs. 

3.5.5 Results: K-means clustering 

Several sets of experiments were run to explore parallelism on hardware with 

a single FPGA board and with a combination of multiple FPGA boards. The 

sequential and parallel versions of the software algorithm [40] were run to evaluate 

the performance improvements made by implementing k means algorithm on a 

network switch. All the machines used in the setup run Linux on a dual core 

AMD Opteron 1.8Ghz processor with a 40GB SATA drive and a gigabit NIC. A 

client-server program in C handles the data transfer operations. Test data up 

to 1GB is generated at random as an input to the algorithm and is distributed 

across several hosts for parallel software and hardware implementations. The 

time for data partitioning is not timed in all the experimental results. All the 

host machines are connected through an FPGA based network switch in a low 

cost 2-dilated flattened butterfly network [41]. 

The base NetFPGA switch design on Xilinx Virtex II Pro consumed 15572 

slices taking up 65% of the available FPGA slices. Due to the limited resources 

available on the FPGA, we were able to fit up to a maximum of eight cluster 

units. For clusters over eight, we used the multi step approach discussed in 3.5.2 
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3.5.5.1 Single F P G A 

In a single host scenario, one of the machines is used as both the host and 

server with the NetFPGA board as a co-processor. Data from the client is sent to 

the NetFPGA through a gigabit interface. The NetFPGA performs the k means 

clustering assignment and returns the data back to the host. These iterations are 

continued till the termination at which time the NetFPGA returns a packet to 

the host signaling termination. Results for a single host system in Fig. 20 show 

the speedup of the hardware implementation over software implementation for 

various cluster sizes and dimensions. The results show speed up 2-10 times that 

of the software implementation. As can be seen, since the FPGA can calculate 

several clusters in parallel, the speedup improved as we increase the number of 

clusters. The runtime per iteration of the algorithm in hardware roughly remained 

the same with a slight increasing trend towards the end for different number of 

clusters. However the software runtime software grew non-linearly after 8 clusters. 

This resulted in the superlinear speedups for cluster sizes beyond 8. The FPGA 

has a limit of 8 clusters, so for 16 and 32 clusters, we used a multi step approach. 

However for higher number of clusters, the multistep approach adds a sequential 

bottleneck in hardware. Thus for even higher number of clusters, the speedup 

may not grow linearly. The hardware implementation should still outperform the 

software algorithm. The results also show speedups independent of the number 

of dimensions. 
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3.5.6 Multiple FPGAs 

We connected multiple FPGA boards in a 2-dilated flattened butterfly net­

work to operate in parallel to implement the K-means algorithm. Sets of exper­

iments with two, four and eight FPGA boards were conducted. An equivalent 

number of hosts act as storage nodes. A client server program on the hosts per­

form the data transfer operations on the partitioned data in the same manner as 

on a single FPGA system. 

Equivalent parallel versions of the software program were run to compare 

the performance. During software implementations the the host nodes act as 

processing nodes and are connected in the same network as in the hardware 

implementations. The software algorithm utilizes MPICh2 for message parsing. 
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The results for the speedup due to the two parallelism techniques in hardware 

compared to the parallel software algorithm are shown in Fig. 21 

Parallelism by data 

Data is distributed across the n hosts and the k cluster computations are 

replicated on the multiple FPGAs. Speed up grew linearly with increase in clus­

ters. Results show a speedup of around 9 times over software implementation 

[40]. As the data is distributed across multiple nodes, the bandwidth scales with 

the number of FPGAs and the speed over parallel software implementation re­

mained constant with increase in FPGAs. 

Parallelism by cluster 

The K cluster computations are distributed across the multiple FPGAs and 

the data is replicated across all the storage nodes. The results show an increase 

in speedup with the number of clusters. The speedup however declined with 

increasing the number of FPGAs. This is because the bandwidth does not scale 

as we increase the number of FPGAs. The bandwidth of data coming in to the 

multi FPGA system remained a constant 1 Gbps for all the FPGAs. The benefit 

of cluster level parallelism will be evident as we increase the number of clusters. 

Figure 23 shows the runtime per iteration of execution for different k. The results 

show the data parallelism outperforming cluster level parallelism and a parallel 
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Fig. 23: Run time per iteration of K-means algorithm 

implementation in software based on work in [40]. However for larger values of k 

the cluster level parallelism should catch up with data level parallelism. 

Data level parallelism has better performance compared to cluster level 

parallelism for lower values of k. One of the issues with data level parallelism is 

the limit on the maximum number of clusters (k) that can be accommodated on 

the FPGA. A maximum of eight clusters units can fit on the XC2VP50 FPGA, 

and above eight clusters the multi step approach will be used. For a given set 

of available FPGA resources, cluster level parallelism offers maximum choice in 

terms of the number of cluster units that can be computed. For an an eight 
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FPGA network, using cluster level parallelism a maximum of 64 clusters can be 

computed before having to resort to the multi step approach. 



Chapter 4 

Hybrid Computing 

4.1 Introduction 

Microprocessor design in recent years has hit a clock cycle roadblock that 

has changed the design direction towards scaling the number of processor cores 

on the chip. Chip multiprocessors with 2-8 cores have become common in the 

commodity processor market. Intel has already demonstrated 80 cores in a 45 nm 

process [42]. Graphic processors have been even more aggressive as evidenced 

by NVidias recent GeForce 480 GPU with 480 cores on a 40 nm process. With 

processing technology expected to reach 4nm in the coming decade, hundreds of 

cores on a chip will be common. The technology road map pushes the limits 

of computation power - However, finding commodity applications that can fully 

utilize the hardware potential will be difficult. The difficulty with this future road 

map is how end users are supposed to use these processors. There are few data 

intensive and compute intensive parallel applications that can use these large 

65 



66 

numbers of processors. Large-scale applications like genome sequencing, and 

data mining, earth simulation etc require the full computation power of several 

hundreds of processing cores. For regular desktop applications, the additional 

processing power could be overkill. In current multi-core CPUs, the primary 

usage of the extra cores has been to support multitasking - i.e. the many processes 

that run in the background such as virus checking, indexing,de- fragmentation, 

searching, downloading, etc. However, multitasking is unlikely to scale past about 

8. The challenge is to develop applications that can go beyond multitasking and 

use parallelism to utilize the cores. 

Decades of research have shown that parallelism is difficult to find in typical 

applications whether by hand coding or automated compiler techniques. The 

only applications that easily scale to 100s or 1000s of cores or those that can 

be decomposed into independent tasks or those that operate on independent 

sets of data. Examples of such mainstream applications include image editing, 

rendering, and search. However, overall, the set of applications that are easily 

parallelizable is limited. Therefore, going past 8-16 cores is unlikely to provide 

benefits to most application workloads. 

One option to adequately use the silicon area is hybrid multi-core archi­

tectures. GPUs and Cell Broadband engines are some good examples of hetero­

geneous multi-cores where data streaming operations and data processing oper­

ations are handled in separate cores. The Cell Broadband Engine is a hybrid 

architecture where a POWER CPU is augmented with 8 Synergistic Processing 
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Elements that can handle various types of data streaming operations [43]. Other 

hybrid architectures like GPUs with hundreds of processing cores are gaining 

prominence. With 1000s of available cores, these architectures still do not take 

full advantage of the available transistors. We propose a reconfigurable hybrid 

architecture that merges traditional CPUs, SIMD-style GPU cores, and finally, a 

reconfigurable hardware fabric similar to that found in current FPGAs. Recon­

figurable hardware can extract maximum parallelism out of a task as hardware 

structures that can perform bit level parallel operations on data can be easily 

built. Moreover the custom tailored design can ensure data parallel operations at 

a wider range of granularity without the context switching overhead as in multi-

core processors. Reconfigurable devices have the best computational density for 

bit-level and integer operations while traditional CPUs do best for floating point 

operations [44,45]. A hybrid architecture integrating the reconfigurable fabric 

with processor can provide flexibility in implementing parallel applications and 

provide better utilization of resources on the chip. The computational cores can 

offload tasks to the reconfigurable cores on the hybrid system where several paral-

lelization strategies can be explored. Such a framework presents several different 

ways of handling the task in hardware, software and a combination of both. The 

performance benefits of these various implementation depend on the available 

resources in the hybrid core, the amount of time a task spends on reconfigurable 

core, the various parallelization techniques used in implementing a task on the 

reconfigurable core etc. These are some of the factors that are to be considered 
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while offloading tasks in a hybrid system. Several resource allocation strategies 

for low power, performance, efficient resource utilization catering to the needs of 

application have to be developed. The remaining part of our work focuses on 

these aspects. 

The integration of reconfigurable logic with CPUs is a well known idea 

and reconfigurable computing has been an active research area for many years. 

The primary characteristic of reconfigurable computing is the integration of a 

microprocessor with hardware that can be reprogrammed on the fly. Reconfig­

urable hardware include PALs, PLAs, smart memories, and field- programmable 

gate arrays (FPGAs). FPGAs provide the greatest amount of flexibility with 

programmable logic blocks connected by a sea of programmable interconnect. 

FPGAs have long been used to accelerate a variety of applications including net­

work intrusion detection [11,46,47], multimedia [48,49], numerical algorithms 

[50], and encryption [51,52]. 

4.2 Reconfigurable processing architecture 

There have been several reconfigurable computing architectures proposed 

by the research community and these architectures fall into two general classes -

functional unit based and co-processor based. Functional unit type architectures 

are targeted toward fine grain computational optimizations, whereas co-processor 

architectures are more appropriate for large task offloading. In the context of 

many-core architectures, we feel the co-processor architecture is most appropriate. 
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Functional unit based reconfigurable computing takes a microprocessor and 

integrates the reconfigurable hardware as a functional unit within the micropro­

cessor. Examples of these architectures include Chimaera [53], PRISC [54], and 

OneChip [55,56]. These reconfigurable functional units (RFU) execute custom 

instructions to provide speedups of short instruction sequences. The advantage 

of the RFU design is that the tight coupling with the processor core allows fast 

access to processor registers. With co-processor based designs, the reconfigurable 

hardware is distinct from the main processor core, in that it does not participate 

in the pipeline. However, it may use some processor functionality such as memory 

access or data caching. Examples of co-processor based research reconfigurable 

platforms include Garp [52,57] PipeRench [48], DISC [58], and PRISM [59]. 

Co-processor architectures have become common in commercial high performance 

computing systems such as the Cray XD1 and SGI RC100. In a variation of the 

co-processor architecture, Xilinx and Altera have both introduced FPGAs with 

embedded processor cores. Because the reconfigurable co-processor is separated 

from the processor core, sending data from the processor to the co-processor 

will typically incur additional latency. As a result, the algorithms that can be 

moved to the reconfigurable hardware must be large enough to amortize the data 

communication cost. This usually precludes the instruction level type kernels 

possible with RFUs. The advantage of a co-processor, though, is that it is easy 

to integrate with existing processor cores. 
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Reconfigurable computing architectures require both the design tool sup­

port and the operating system support in developing applications that can run 

in a hybrid system. These applications also require libraries of reconfigurable 

hardware kernels. Traditional software development depends on the availabil­

ity of compilers that translate high level languages such as C, C+-1-, or Java 

to machine language or intermediate byte-code. Linkers then link the compiler 

generated object code with appropriate libraries that implement either operating 

system functionality or commonly used functions. Operating system functions 

include such features as I/O, process manipulation, and memory allocation. Com­

monly used functions include higher levels of I/O such as streaming and stdio, 

GUI libraries, string manipulation, math functions, and others. For C program­

mers, the standard repository for these functions is the libc library and C++ 

programmers are familiar with the STL library. In a software application, the 

operating system resolves function calls to these libraries at runtime. In a co­

processor based hybrid architecture, the processing core running the operating 

system would dynamically offload tasks in a running process to either HW or 

SW. The operating system must also dynamically choose between multiple im­

plementations of various cores depending on the availability of resources on HW, 

performance/power issues etc. 
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4.3 Related work 

The integration of reconfigurable logic with CPUs is a well known idea and 

reconfigurable computing has been an active research area for many years. Most 

of the work on SW/HW co design such as OpenFPGA [60,61] and PFIF [62] 

provide standardized software APIs to hardware IP cores. The RCLib set of cores 

has been developed towards a set of standard interface guidelines [63]. These APIs 

provide an interface between software and hardware thereby allowing software 

to call hardware functions by specifying mechanisms to pass data to and from 

the hardware. The APIs also allow software to work with hardware and allow 

hardware designers to develop portable IP core libraries. However, there are 

no mechanisms to manage the loading and unloading of cores, include software 

implementations or support multiple hardware implementations. Our work aim 

at providing at providing operating system support for task offloading 

4.4 Operating system support 

To provide generic operating system support, a shared library approach 

at offloading tasks from software to hardware is used. Operating systems use 

libraries to provide application a collection of frequently used functions. There 

are two types of libraries namely static and dynamic libraries. As the name im­

plicates, static libraries are used at compile time by the compiler and linker to 

generate an executable. An executable with static linkage would contain all the 
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code for different function calls in itself. An executable with static linkage would 

therefore run faster as there is no need of resolving function calls. A dynamic 

shared library contains the code for different function calls which are resolved by 

the loader at runtime. A compiler using dynamic shared libraries will generate 

executable with a smaller executable size. However at runtime, the loader is 

responsible for function look up. The advantage of dynamic libraries is that com­

mon function that are used again and again need not reside in memory multiple 

times. A compiler compiles source code for an application typically written in 

higher level languages like C, C + + or Java, to a machine readable object code. 

The object code contain many references to function calls that are unresolved. 

The linker resolves the unresolved function calls to the functions available in 

shared libraries. Figure 24 shows the steps involved in generating an executable. 

A loader resolves these function calls to actual function implementations during 

the runtime. Various applications can use the functions in the shared library dur­

ing the runtime. The disadvantage of dynamically shared library is that function 

look-up is slow. We extend the mechanism of dynamic shared library support for 

offloading task from software to hardware. A scheduler is implemented for task 

offloading to hardware as shown in figure 25. The scheduler makes a decision 

on implementing a given task in HW or SW and chooses the appropriate shared 

library to implement a given function. If a decision is made to run a task in 

HW, scheduler pick the appropriate function from the hardware shared library. 
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If the scheduler finds that a given task cannot be implemented in HW, the given 

function is implemented from the appropriate software shared library. 

Shared library approaches need an extensive support of shared libraries that 

run in hardware. These libraries also provide a way to configure the hardware 

and move data between HW and SW. 

On an FPGA, the hardware functions are implemented in higher level hard­

ware descriptive languages such as Verilog, VHDL,etc. These functions are syn­

thesized to bit streams that can be easily programed to the configuration mem­

ory of FPGA. Generally when configuring an FPGA, the entire configuration is 

reloaded with a new bit stream. Recent techniques in FPGA's allow partially 

writing the configuration memory keeping the other parts of configuration mem­

ory intact. This feature allows runtime reconfiguration of FPGA. Some parts of 

the FPGA can be dynamically reconfigured while the other parts of FPGA are 
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still in operation. We explore this partial reconfiguration of FPGA combining 

the shared library feature of an operating system and the partial reconfiguration 

feature of FPGA, we implemented a prototype hardware system on a Xilinx Vir­

tex 2P FPGA as shown in Figure 26. The Virtex 2P FPGA contains embedded 

Power-PC processor running a Linux 2.6 kernel with shared library support. A 

prototype wrapper hardware library was built. This wrapper can reconfigure an 

FPGA and return control back to the processor. It is also responsible for data 

transfer from hardware to the software. Though not implemented, we envision 

a DMA type of transaction for data transfer between hardware and software. A 

software application running on this processor can partially reconfigured parts 

of FPGA with the required hardware function of user choice. The prototype 

hardware implementation contains several partially reconfigurable regions for the 

user as shown in the Figure 26. The embedded processor utilizes the internal 
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configuration access port (ICAP) for partial reconfiguration. As an example let 

function A need to be executed in hardware. This function has a software imple­

mentation given by a shared library say libA.so.l. If we need to offload this task 

to hardware, The functional reference to the the function A need to be resolved to 

the hardware instead of libA.so.l. Before a hardware implementation, the FPGA 

need to be properly configured with the bit-files corresponding to the function 

A. A wrapper shared library libwrapA.so.l is implemented for hardware config­

uration. This library has the same function declarations as that of the software 

library libA.so.l. We put the hardware wrapper library in a higher precedent 

library path such that the loader program searches this wrapper library first for 

function A. When executing a binary, the loader, thus, resolves the function call in 

the binary to the function declared in the wrapper library instead of the software 

library. 

4.5 Scheduling algorithm 

Specialized structures in hardware can accelerate specific tasks in hardware 

over their software counterparts. However, in an operating system running sev­

eral tasks, accelerating all the tasks in hardware is not possible due to limitations 

in the amount of space available in reconfigurable hardware. To achieve a global 

optimal runtime, a select few tasks have to be run in the hardware. The remain­

ing tasks have to be run in software. A decision on implementing the tasks in 

hardware or software can be made by an operating system. For a normal process 
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Fig. 26: Prototype hybrid system 

executable, a standard operating system will load the executable into memory, 

pass program control over to the new process, and then manage the scheduling 

of the process. In the same way, reconfigurable aware OS loads executables, be­

gins the execution, and then manages the scheduling of the task. A scheduling 

algorithm can make this decision statically or at runtime to accelerate overall 

application performance in a system. A superior reconfigurable scheduling algo­

rithm relies on scores of hardware libraries available for accelerating tasks. These 

libraries include several versions of hardware bit-streams with different space, 

speedup requirement for a same a processing unit. Inclusion of one version of 

the library over the other in the reconfigurable hardware would have a different 
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impact on the overall run time of an application. A significant decision that the 

OS must make is whether to 1) keep the existing configuration and let the new 

function run in software. 2) remove the existing configuration and let the new 

function run in hardware thereby consigning the old function back to software or 

3) use smaller configurations of both functions. This question must be answered 

with several metrics in mind including performance of each thread, priority of 

each thread, CPU load of each thread, and energy usage. 

Our initial approach to this problem is to treat this as a resource allocation 

problem both in time and space. Time being the amount of time that the thread 

is expected to require use of the shared reconfigurable resource. Space being 

the amount of reconfigurable resources being used. This allocation problem is 

distinct from configuration scheduling in FPGAs where a large circuit must be 

partitioned and scheduled over time to fit in the available space. The allocation 

problem that we are looking at is similar to job scheduling on a compute cluster 

except for the constraint that not all allocations are viable. For example, on a 

compute cluster, for the most part it does not matter which nodes are assigned to 

a task. However, in a reconfigurable array it is critical that the rows of the array 

are assigned to match the available implementations for the desired function. 

Thus, the allocated rows must be contiguous. As mentioned, resource and task 

allocation in the context of job scheduling has been well studied [64-66]. We 

will draw on this existing work and heuristics specific to allocation problem. The 

primary objective is execution time. Thus, the allocation must ensure that the 
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highest priority thread finishes first. This requires estimates of computation time 

for each thread, and the runtime for each implementation of the function - both 

hardware and software. These estimates can be provided as part of the scheduling 

process. Thus, the parameters of interest are: 

• To the expected overall run time for thread i assuming a software imple­

mentation. 

• fij fraction of time that thread i spends in computation kernel j assuming 

a software implementation. 

• tjk the execution time of the kth implementation of computation kernel j 

where implementation, 0 is the software implementation. 

• Ljk the space resources of the kth implementation of computation kernel j . 

• ljk time to load the kth implementation of computation kernel j into the 

hardware. 

• tu time to unload the existing configurations and its state. 

Tio is the baseline execution time for thread i, and the use of hardware can 

reduce this time. The execution time for a thread is: 

Ti = Ti0-J2 fl3TiO + J2 (fjr^hk> + hk) (1) 
3 = 1 3 = 1 V j° J 

where J is the number of computational kernels used by a thread and k! is 

the selected implementation of a kernel function. The objective is to minimize 
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Ti for all threads given assigned priorities and choosing implementations and 

hardware allocations to meet this goal. A simple algorithm would be to iteratively 

start with the highest priority thread and minimize its Ti and then minimize the 

next priority thread until no more threads can be minimized. If Ti is relatively 

short, this might be appropriate. If, however, Ti is very long but fij is small, 

it might make sense to swap out the hardware function for a different thread 

depending on ljk- The objective function must also take into account the unload 

time, tu, and its relationship to the improvement in Ti because if the unload 

time is too long, it may not be worth reconfiguring the hardware. The objective 

function can be altered to account for energy usage if being used in a power 

constrained environment. For example, hardware implementations will typically 

have higher power requirements, but since the execution time is much faster, 

the overall energy usage may be lower. Thus, constraints on the allocation and 

decision problem include overall energy usage and peak power utilization. Using 

a shared library approach we implemented a scheduler shown in figure 25. The 

scheduler makes a runtime decision on implementing a given task in hardware or 

software. We also provide two scheduling algorithms for task allocation problem. 

4.5.1 Static scheduling 

Static scheduling makes a decision on implementing a given task in HW 

before an application begins execution . The algorithm relies on profiling infor­

mation about a given application. This information include the total runtime of 
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an application in software, the number of functions executed and the amount of 

time spent in each of the functions. This information is used in formulating a cost 

function in determining the scheduling process. The cost function used by the 

scheduling algorithm is given by equation 1. The cost function typically has a 

negative value. Adding a new task k can alter the total runtime of an application 

given by equation 2. 

Static scheduling precedes by ordering all the tasks by their increasing order 

of the cost function given in equation 2. This ordering process has a complexity 

of 0(n log n) where n is the total number of tasks available for hardware imple­

mentation. Once the tasks are ordered, the sorted tasks are filled in the hardware. 

Due to the space limitation on hardware, a subset k of the total tasks can be 

filled in hardware, the remaining k — n tasks have to executed in software. The 

tasks that are filled in the hardware stay in hardware for the runtime of the ap­

plication or a new static scheduling process is initiated. During the runtime of an 

application, the job of the scheduler is to check weather a given task is available 

in hardware and is not running. A table of running tasks can be formulated while 

sorting the tasks and filling the hardware. During runtime, the table lookup can 

be done in constant time. 

f*T* {-sdd^: ~1)+lk (2) 
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The advantage of static scheduling is that the runtime decision making 

process has a complexity of 0(1). However, when the total task list is large or 

when the chosen tasks in HW run at the end of application, static scheduling 

looses out further opportunities of running an application in hardware. Dynamic 

scheduling provides an alternative to this problem. 

4.5.2 Dynamic scheduling 

Dynamic scheduling offers a flexible option of choosing the tasks at runtime. 

The cost function used for dynamic scheduling is the same as for static scheduling 

given in equation 2. Just as in static scheduling, profiling information about the 

total runtime of the application and the frequencies of functions executed are 

used in making runtime decisions on implementing the functions in hardware. 

The dynamic scheduling algorithm proceeds by filling the hardware with 

tasks as they are encountered in the application. While filling the tasks in hard­

ware, a table of the running tasks and total cost function of all the tasks in 

hardware is noted in a table. The tasks are filled in the hardware as long as there 

is space available. Once all the hardware resources have been used new tasks are 

executed in hardware if adding the new task would lower the overall runtime. 

For a task to be replaced in the hardware, the running task should have higher 

cost function than the task that replaces it. Choosing the right task to remove 

from the hardware is tricky. Another requirement for removing a task is that the 

space occupied by the tasks in hardware should match the new task. If removing 
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one task does not provide sufficient space for the new task to be put in hardware, 

multiple tasks from hardware have to be removed. Tasks that are currently not 

running in hardware are preferred over the tasks that are currently running in 

hardware. 

The runtime for each schedule decision in O(k), where k is the number 

of tasks in hardware. The advantage of dynamic scheduling is that when the 

number of tasks are more, dynamic scheduling can provide better utilization of 

hardware than static scheduling. 

4.6 Resul t s 

A scheduler for static and dynamic task allocation is written in C++. The 

scheduler is compiled as a shared library with all necessary functions for a given 

workload. We ran our scheduler on a GEMS simulator [67]. GEMS is a set of 

Ruby and Opal modules built on top of Virtutech's SIMICS [68] cycle-accurate 

simulator. The ruby and opal modules provide accurate simulator modules for 

modeling the timing of the memory system and microprocessor. The simulator 

ran a Linux 2.6 kernel on Sun sunfire 6500 machine with two ultraSPARCII 

processors at 168 MHz. The Linux kernel is augmented with all the GNU tool 

support. We chose a LLR function for a target tracking application [69] as a 

work load. The work load accounted for over 95% of the total target tracking 

application. The workload characteristics of the LLR function is given in the 

table 1 . The table shows various kernels required in the given workload and 
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kernel 

SIN 
COS 
ArcTAN 
SQRT 
EXP [70] 
LOG [71] 

Area occupied 

8% 
8% 
8% 
1% 
8% 
10% 

Speedup 

12 
11 
12 
2 
13 
73 

Active percent 

0.6 
1.6 
3.0 
2.0 
91.6 
1 

Table 1: Workload characteristics of an LLR search function 

the percentage of time spent on each kernel. The table also contains hardware 

implementation results of area occupied speed up over corresponding software 

counterparts. These kernels are double precision floating point units based on 

cordic algorithms. Cordic floating point cores were implemented in hardware for 

SIN, COS, ATAN, and SQRT functions. The results for hardware implementation 

of EXP and LOG cores were taken from work done by Pottathuparambil et al. 

[70] and Zhou et al.-[71], respectively. The hardware is modeled to run a Virtex 

5 XC5VLX50T FPGA running at 100 MHz. 

The results for scheduling implementation are shown in Figure 27. The 

figure show the number of cycles taken to run the given workload on software, and 

on hardware with static and dynamic scheduling. When running a software imple­

mentations, the kernels in table 1 were run from libmath software shared library. 

The hardware results were accurately modeled based on the results from the table 

1. The results show that static scheduling run around 6 times faster than the 

software implementation. The dynamic scheduling yielded a 4 times speed up 
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over the software runtime. The reduction in the speedup for dynamic reconfigu­

ration is due to the overhead in task lookup. Since EXP function accounted for 

about 92% of the total workload, the speedup due to hardware implementation of 

the work load, ideally should have been close to 13 times. However, the overhead 

in shared library lookup and the load time of FPGA resulted in reduction of 

speedup to 6 times. The Virtex 5 XC5VLX50T FPGA has a load time of 439136 

cycles. Shared library lookup and static scheduling brought down the speedup of 

EXP function to about 7 times. The workload ran for about 26512188068 cycles. 

The total overhead for static scheduling was 2379298929 cycles and for dynamic 

scheduling, the overhead was 4523905107 cycles. A special application written 

for task offloading could improve the speedup but a shared library approach pro­

vides a general purpose and easily portable way of going forward to offload tasks 

to reconfigurable hardware. 
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Chapter 5 

Conclusions 

We implemented several data processing kernels for data search, data sort, Kmin/Kmax 

and K-means clustering in an ASN built on a 2-dilated flattened butterfly net­

work. These processing kernels were implemented on an active switch built on 

a NetFPGA development board. We evaluated the performance benifits of ap­

plication processing in ASN and show how data reduction and transformation 

applications can take advantage of the idea of ASN. In our other work, we fo­

cused on managing multiple hardware kernels on reconfigurable hardware. We 

built a prototype hybrid computing framework on a Virtex-2P FPGA using the 

partial reconfiguration feature of the FPGA. We provided shared library sup­

port for Linux 2.6 kernel capable of dynamically offloading tasks to the Virtex 

2P FPGA. We also developed static and dynamic scheduling algorithms for task 

management between HW and SW. 

86 
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5.1 Ou tcome and Significance 

By implementing stream processing in an ASN, we hope to provide a novel 

method of application processing for large scale data in storage networks. Several 

large scale data processing applications in the fields of Image/Video processing, 

data mining, file system optimizations etc can accelerate processing performance 

by the concept of ASN. Offloading computations from the client to the network 

can yield several benefits. Network processing can speedup application processing 

considerably. Hardware in the network can accelerate applications by exploring 

parallelism in the application through special structures built for the specific 

application.These oprimizations are not possible in software implementation.The 

client side computation burden to keep up in pace with the I/O can be eased. 

Application processing in network can take control of the flow of data in network 

therby reduce I/O deficiencies while performing transformation and reduction 

operations. Advancements in parallel I/O push the bottleneck in computation 

from I/O to the compute nodes, our work can strike a balance between the two 

by providing I/O resources with computation abilities. On the hybrid computing 

front, our work would facilitate operating system with dynamic loading support 

for offloading computations to reconfigurable hardware. Hybrid computing is 

still in its infancy and has several roadblocks before it becomes mainstream. One 

of the issues with hybrid computing is the lack of tools support for handling 

tasks between hardware and software. We hope to provide a step forward in this 



88 

area by providing a shared library approach at offloading tasks to reconfigurable 

hardware. We also developed static and dynamic scheduling algorithms that use 

the shared library approach to manage tasks accross HW and SW. A generic 

operating system support for handling tasks would enable researchers to develop 

hardware libraries that can be easily ported accross several systems. 

5.2 Future Research 

Current work on ASN supports only a single application on the ASN at 

a time mainly due to the area limitation of the FPGA. Another limitation of 

the ASN is that configuration of the FPGA requires the entire network to be 

shutdown during the reconfiguration process. Partial reconfiguration support on 

the network would also need appropriate protocol support for automatic recon­

figuration process and application management across various elements on the 

network. Security in an open network is implemented by encrypting and de­

crypting network data. ASN processing would require special decryption engines 

on the switches to retrieve valid data from encrypted data packets. We hope to 

implement these features as part of future work. Dynamic reconfiguration on cur­

rent FPGAs suffer due to the large reconfiguration time. Preloaded FPGAs with 

appropriate libraries could overcome this problem. As a future work, we hope to 

develop several hardware libraries for common data processing applications and 

prefetch algorithms for hiding the reconfiguration time. 
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