
Reconfigurable Processing Architectures for

St ream Processing and Hybrid Computing

Janardhan Singaraju, Ph.D.

University of Connecticut, 2011

High performance computing systems are often inhibited by the performance of

their storage system and their ability to deliver data. In stream processing of

data, Active Storage Networks (ASN) provide an opportunity to optimize stor­

age system and computational performance by offloading some computation to

the network switch. Data processing in a distributed system often requires the

data to be aggregated at a single client before performing the data operation. An

implementation of this processing in the interconnection network which has the

global view of the data could speed up the application. An ASN is based around

an intelligent network switch that allows data processing to occur on data as it

flows through the storage area network from storage nodes to client nodes. We

propose an approach to perform transformation and reduction data operations

in an intelligent network switch comprised of FPGAs. A low cost non blocking

2-dilated flattened butterfly interconnection network is chosen for prototype im-

Janardhan Singaraju - University of Connecticut, 2011

plementation of ASN. Common data processing applications, namely data sort,

data search, fc-min/max and K-means clustering applications have been imple­

mented on the switching elements of this network. The scalability of the ASN in

performing data processing applications is evaluated by applying functional and

data parallel techniques to the K-means clustering problem. The implementations

show that the in-network processing in an ASN greatly improves performance.

In the other part of our work, we focus on providing operating system sup­

port for dynamic reconfiguration of FPGA to provide support for task offloading

to FPGA. Operating system support for HW/SW co-design is in its infancy and

faces several challenges before it could provide achievable benefits Some of the

issues surrounding hybrid computing are resource management across heteroge­

neous multi-cores, data communication, recovery from errors etc. We have built

a prototype reconfigurable system that can offload tasks from a processor to the

reconfigurable core. We also developed several scheduling algorithms for resource

allocation among HW and SW computing kernels and analyze the performance

trade-offs of these algorithms.

Reconfigurable Processing Architectures for

Stream Processing and Hybrid Computing

Janardhan Singaraju

A Dissertation

Submitted in Partial Fullfilment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Connecticut

UMI Number: 3492139

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation Publishing

UMI 3492139
Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

APPROVAL PAGE

Doctor of Philosophy Dissertation

Reconfigurable processing architectures for stream

processing and hybrid computing

Presented by

Janardhan Singaraju, B.Tech. M.S.

Major Advisor

Associate Advisor

Associate Advisor

Associate Advisor

Associate Advisor

-*-©r"john A. Chandy

Dr Lei Wang

Dr Yunsi Fei

Dr Mohammad Tehranipoor

Dr Faquir J

University of Connecticut

September, 2011

TABLE OF CONTENTS

C h a p t e r 1: Introduction 1

1.1 Overview 1

1.2 Thesis Contributions 1

1.3 Outline ' 2

C h a p t e r 2: Active Storage Networks 4

2.1 Introduction 4

2.2 Related Work 9

2.3 ASN topology and architecture 10

2.4 ASN Switch 11

2.4.1 NetFPGA 11

2.4.2 User data processing stage 15

2.4.3 2-dilated flattened butterfly 18

C h a p t e r 3 : Application Modules 21

3.1 Data Search 25

3.1.1 Character match array 26

3.1.2 PE array 26

3.1.3 Results: Search 28

3.2 K-min/K-max 30

3.2.1 Results: K-Min/K-Max 32

iii

3.3 Sort 33

3.3.1 Sort module 34

3.3.2 Results: Data sort 38

3.4 K-means clustering 46

3.5 K-Means Data Clustering Algorithm 48

3.5.1 Optimization 53

3.5.2 Parallelization techniques 55

3.5.3 Data level parallelism 56

3.5.4 Cluster level parallelism 57

3.5.5 Results: K-means clustering 58

3.5.6 Multiple FPGAs 61

C h a p t e r 4: Hybrid Computing 65

4.1 Introduction 65

4.2 Reconfigurable processing architecture 68

4.3 Related work 71

4.4 Operating system support 71

4.5 Scheduling algorithm 75

4.5.1 Static scheduling 79

4.5.2 Dynamic scheduling 81

4.6 Results 82

C h a p t e r 5: Conclusions 86

iv

5.1 Outcome and Significance 87

5.2 Future Research 88

References 88

Bibliography 89

v

LIST OF FIGURES

1 NetFPGA Board Architecture 12

2 NetFPGA Switch Pipeline 13

3 User Data Processing stage containing the Sort module 18

4 2-dilated flattened butterfly 20

5 An 8 x 1 routing scheme on a 8 x 8 2-dilated flattened butterfly

network 24

6 Data Search 29

7 Time to search 8GB-24GB of data 30

8 k-min/k-max module 32

9 Sort processor module 37

10 Packet Header Format 40

11 Bandwidth comparison for 1512 byte packets 42

12 Bandwidth comparison for 112 byte packets 43

13 Time to sort 8GB-24GB of data 43

14 Sort and distribute performance. Data size shown is the data size

per node 45

15 Time to find 50 min and max keys in 800-4000MB of data 47

16 K-means cluster unit 51

17 Kmin unit 51

vi

18 Cluster update unit 54

19 Data interleave optimization 54

20 Speedup on a single FPGA 60

21 Speedup on multiple FPGAs 60

22 Run time per iteration of K-means algorithm 61

23 Run time per iteration of K-means algorithm 63

24 Linking process 73

25 Runtime process 74

26 Prototype hybrid system 76

27 Scheduling algorithm runtime results 85

vn

Chapter 1

Introduction

1.1 Overview

1.2 Thesis Contributions

In this work, we implemented an Active Storage Network(ASN) on switches

composed of NetFPGAs. The focus of this work is on the computational as­

pects of an ASN and how applications can take advantage of intelligent net­

work switches to perform computations. A few key data processing applications

namely data sort, data search, K-min/max, and K-means clustering have been

implemented on the ASN. The performance improvements made by offloading

some processing from storage node to the network are demonstrated by compar­

ing the application computation time using an ASN with the computation time

when it is performed with a normal switch. We also show several functional and

data parallel techniques for data processing on the switching elements in ASN.

1

2

These techniques can be applied for large-scale data distributed across network.

In particular, we show how these techniques applied to a K-means clustering

algorithm scale with larger networks and improve the performance.

In order to support hardware implementations in the ASN, we need bet­

ter scheduling mechanisms.We also propose to build a system that can utilize

the hybrid architecture of an FPGA with the embedded processor. The embed­

ded processors on a FPGA running an operating system can utilize the partial

reconfiguration feature of the FPGA and dynamically offload function calls to

the reconfigurable fabric on the FPGA. HW-SW co-synthesis requires advanced

support of tools and resource allocation algorithms. We have developed several

scheduling algorithms for dynamic task allocation on hybrid system and evalu­

ate their performance. These algorithms are based on profile information of the

application and can adapt to various workloads with different runtime require­

ments.

1.3 Outline

This thesis is organized into two parts.active storage networks and hybrid

computing. Chapter 2 describes the topology and architecture of an ASN switch

built on top of a NetFPGA development board. The application modules data

search, data sort, Kmin/ Kmax and k-means clustering built on top of ASN switch

are explained in detail in Chapter 3. The performance improvements made

by processing applications over the network are also evaluated in this chapter .

3

Chapter 4 explains in detail the concept of hybrid computing and scheduling

algorithms for task sharing between software and reconfigurable hardware. We

conclude in chapter 5.2 with a discussion of future directions.

Chapter 2

Active Storage Networks

2.1 Introduction

Large scale data processing is heavily I/O dependent. Data must be re­

trieved from slow mechanical hard drives and then distributed across faster but

still relatively slow (as compared to processors) networks. Congestion on a net­

work can cause degradation, and as data sizes increase, the memory footprint

of these data sets make data manipulation on a processor difficult. As a result,

computation speed is often not the determinant in how fast a data processing

application performs.

On the data processing side considerable amount of work has been per­

formed in developing efficient external memory algorithms for large scale datasets

that do not fit in main memory [1-3]. Pipelining techniques can be used to in­

terleave computation and communication and improve performance [4]. These

algorithms aim at optimizing the total number of I/O operations rather than the

4

5

computations. Standard template library in C + + uses efficient parallel 10 tech­

niques for common data processing tasks [5]. However, the theoretical limit of

at-least one scan of the entire data set residing across the network is inevitable.

On the data storage side, there have been several approaches to the design of

parallel I/O systems. Several commercial and academic parallel file systems have

been developed using new Object Storage Device (OSD) techniques [6]. These

systems allow dedicated data and control paths thus demonstrating aggregate

throughput scalability for very large systems. However, these systems do not

scale well when I/O requests are too small to stripe across multiple nodes or when

applications do many meta-data operations such as file creations and deletions,

fstats, and directory reads. Parallel I/O systems also do not perform well when a

single client wants to read data from many storage nodes and perform a reduction

operation like min-max or a search. In such cases, with high performance storage

nodes, we can easily saturate the network connection to the client. Consider that

if a storage node can deliver 1 Gb/s of data, 10 nodes can potentially deliver

10 Gb/s of data, thereby overwhelming a single 1 Gb/s network connection to a

client. Thus, the client does not see the benefit of the parallel I/O.

Our approach to the problem is to attack the network contention where it

exists. This forms the basis of our work for stream processing in an active stor­

age network (ASN). An ASN is comprised of a smart network switch along with

intelligence embedded in the I/O network. By embedding processing capabilities

in the switching elements of the network, the storage node performance as well

6

as the computational performance of the parallel I/O systems can be enhanced.

Processing capabilities in the switching element can also contribute to an opti­

mized flow of data in the parallel I/O system and further enhance the overall

performance of the system.

We demonstrate this idea of an ASN by performing data processing in an

intelligent switching system which is built using FPGAs. We have designed a few

data processing applications, namely data sort, data search, K-min/K-max,and

K-means clustering and show the performance improvements made by offloading

processing from storage node to the network. The performance improvements

are shown by comparing the application computation time using an ASN and a

normal switch.

Data processing kernels can be classified into two categories namely data

reduction and data transformation kernels. Data reduction kernels take multiple

data elements as input and condense the input to a set of smaller elements,

eg. data summation, multiplication,aggregate queries etc. Data transformational

kernels take multiple data elements and transforms them to an equivalent number

of output elements. Examples of data transformation include sort, convolutions,

image processing,etc.

While performing a reduction operation, an ASN switch can perform the

operation at the switch level thereby eliminating some of the traffic in the network

that could consume the client bandwidth. From the above mentioned example

with 10 storage nodes, if the client wants to perform an operation to find the

7

minimum of a large set of keys stored across these storage nodes, an ASN switch

with some intelligence could eliminate 90% of the non-minimum keys from each

node which would be discarded at the client anyways, Thereby, the switch can

send data to the client at full 1 Gb/s rate while it receives data from storage node

at 10 Gb/s rate and the entire network can operate at maximum bandwidth.

ASNs have a similar concept to that of active disks [7]. In active disks,

some of the computation is offloaded from the processor at the client to the disk.

Previous work has demonstrated the effectiveness of this approach particularly

with functions such as storage management, data mining, and multimedia [8].

However, the drawback of active disks in a distributed storage setting is that the

data is striped across several storage nodes and each processor at the storage node

can only see data residing at that node. Thus, any intelligence at the storage

node can not operate on the entire set of data spread across storage nodes. For

example, when doing a query in a database for the k items closest to a particular

key, each of the m storage nodes will return the k closest items in its portion of

the data. The requesting client must then sort through mk items to determine

the k closest items overall. The overall computation is 0(n) + 0(mk) where n is

the number of data items per storage node.

In an ASN, the goal is to move intelligence to the network which has a

better view of data than the individual storage node, thereby reducing the data

transfer latencies and improving the network performance Processing ability on

the network also eases some of the computational workload at the network client.

8

Most of the applications that operate on large sets of data require transforming

the data from one form to another. Offloading data intensive parts of these

applications to the network could ease client computing resources. It could also

reduce network traffic as some of the data transfer operations that read and write

data from client to the storage can be avoided. This further provides the impetus

to embed intelligence in a networks.

Some other applications that could benefit from the idea of ASN include

redundancy optimizations and file-system caching. Parallel I/O systems provide

data protection through replication and parity across nodes in the cluster. With

the use of an active storage network, the switch can offload parity computations

from the client. Distributed file system performance often depends on aggressive

caching to reduce network traffic. However, managing a cache across multiple

clients can be problematic. ASNs offer an opportunity to present a global cache

shared amongst all clients. By placing a centralized cache at the switch, we can

free up memory at the client for other purposes. In this paper, we focus on the

computational aspects of an ASN.n the k closest items in its portion of the data.

The requesting client must then sort through mk items to determine the k closest

items overall. The overall computation is 0(n) + 0{mk) where n is the number

of data items per storage node.

9

2.2 Related Work

Specialized hardware for application processing is common in data inten­

sive and computation intensive applications. There has been significant work on

search [9-12], sort [13-16], and K-means clustering [17-20] using reconfigurable

hardware.

ASNs have a similar concept to that of active disks. In active disks, some

of the computation is offloaded from the processor at the client to the disk.

Previous work has demonstrated the effectiveness of this approach particularly

with functions such as storage management, data mining, and multimedia [8].

However, the drawback of active disks in a distributed storage setting is that the

data is striped across several storage nodes and each processor at the storage node

can only see data residing at that node. Thus, any intelligence at the storage

node can not operate on the entire set of data spread across storage nodes.

Performing computation in the network has been proposed in early super­

computer designs. For example, the NYU Ultra computer had a fetch-and-add

instruction for use in multiprocessor synchronization primitives [21]. These net­

works, however, have fixed functional primitives and do not allow programma-

bility as with our ASN architecture. Moreover, the primitives are very simple

and targeted towards compute-node communications. The ASN, on the other

hand, can implement complex functions and are intended for the primary data

communication path - i.e. storage to compute node.

10

2.3 A S N topology and architecture

A critical component of an ASN is the network switch since the switch

implements the data processing on data as it is is aggregated and distributed

from multiple sources. Typically, custom silicon is used to build gigabit and

multi-gigabit switches and these switches offer the best performance. FPGAs

on the other hand provide an intermediate design point by offering maximum

flexibility in the network processing while achieving high performance. For this

reason we use a switch built using an FPGA. A basic network switch implemented

in an FPGA is readily available on the NetFPGA board from Stanford [22]. We

have modified the architecture to embed data sort, data search and K-means

clustering capabilities in the network switch.

The selection of switching topology is also extremely important in an ASN.

The topology has an impact on the flexibility of computations performable on

ASN. Aspects like the type and nature of the interconnects used, latency, non-

blocking, etc. are decided by the switching topology and thus have an important

impact on the overall performance and scalability of the network. The NetF­

PGA, which is the building block of the ASN, has four Ethernet ports and two

SATA ports. If we use a conventional Benes or Clos topology we can not make

use of the SATA connection which effectively decreases the throughput of each

switching node. In order to make use of the maximum 8Gb/s throughput of

the NetFPGA board, we use interface modules developed for the SATA ports

11

[23] and a wide sense nonblocking switching topology named 2-dilated flattened

butterfly [24-26].

2.4 A S N Switch

The ASN switch is built on top of a NetFPGA board provided by Stan­

ford and Digilent to help building working prototypes of high-speed, hardware-

accelerated networking systems. [22].

2.4.1 N e t F P G A

2.4.1.1 N e t F P G A architecture

The NetFPGA board is a PCI card, which contains a Virtex-II Pro (XC2VP50)

FPGA, specifically designed for network applications. It has four 1 Gigabit/second

Ethernet (GigE) interfaces and two SATA ports which makes it suitable to build

a switching network. It also has four banks of locally-attached static and dynamic

random access memory (SRAM and DRAM). The NetFPGA research group also

provides the source code for the board so that it can be used as a hardware ac­

celerated OpenFlow switch [27]. Figure 1 [22] shows the full resources available

on the NetFPGA.

12

a.

I 0
-< m

i 0
-< rn

x 0 -< rn

x 0
-< m

NetFPGA
platform

FPGAw/provided infrastructure

5m -c
5> 0

5m
> 0 =

> o -

31"

Th-

Ih
FIFO

packet
buffers

Field Programmable
Gate Array (FPGA):

Virtex ll-Pro 50

User-defined
Network

Processing
Logic

3E
Control, PCI
Interface

TJ O

3°"

S22
is GJ

SI

Host
computer

Linux OS - NetFPGA Kernel driver

User-defined software networking applications

Fig. 1: NetFPGA Board Architecture

13

MAC
RxQ

CPU
RxQ

MAC
TxQ

CPU
TxQ

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

Input Arbiter

Output Port Lookup

CPU
TxQ

MAC
TxQ

MAC
RxQ

CPU
TxQ

CPU
RxQ

MAC
TxQ

CPU
TxQ

Fig. 2: NetFPGA Switch Pipeline

2.4.1.2 Reference switch pipeline

Figure 2 shows the design of the reference Ethernet switch provided in the

NetFPGA package [22]. It is a five stage pipeline structure where each mod­

ule communicates using a simple packet based synchronous FIFO push interface

which makes it easy to add additional modules to the structure for the purpose

of packet processing. The user data path is 64 bits wide and it is driven by a 125

MHz clock. Therefore, the switch can handle a maximum throughput of 8 Gb/s

14

- i.e. the hardware can process packets at line rate. Any packet through the

switch should pass through all these stages as shown. The first stage is composed

of a series of input queues that receive packets from the I/O ports. The MAC

Rx queues and the CPU queues compose this stage. The CPU queues are the

queues for the packets received from the PCI over DMA and these queues are not

used in our design. The second stage of the reference switch process the queues

in the first stage one by one in a round robin way. This input arbiter stage pulls

a whole packet from one of the input queues and passes the packet on to the

next stage for processing. The third stage output port look up, reads the packet

header received from the previous stage and decides on the appropriate output

queue to which this packet needs to be forwarded to. Finally the output queues

stage puts the packets in appropriate destination output queues after which the

packets are transmitted out through the Ethernet ports.

In the proposed switching topology, we are making use of the SATA port

of the NetFPGA card for the interconnection between switching elements. The

NetFPGA card supports two SATA ports. We are making use of the Aurora

protocol for serial communication through SATA [28]. Aurora is a LogiCORE

IP designed by Xilinx to enable easy implementation of the FPGA RocketIO

transceivers while providing a light-weight user interface on top of which designers

can build a serial link. It is a scalable, lightweight, link-layer protocol for high­

speed serial communication. It also supports full duplex operation and flow

control.

15

SATA with Aurora can give the maximum throughput if we drive the Rocke­

tIO transceivers using a differential clock network [29]. Using a single ended clock

generator of 125MHz and Aurora, we can transmit two bytes in a single clock

pulse at a maximum throughput of 2 Gb/s which is still twice that of gigabit Eth­

ernet. Thus, each NetFPGA switching element will be able to provide maximum

possible throughput of 8 Gb/s by making use of four 1 Gb/s Ethernet link and

two 2 Gb/s SATA ports for the interconnection between switching blocks. The

proposed ASN switch topology is designed to exploit the complete bandwidth

of the SATA link and thus the bisection bandwidth of the switching network is

maximized.

2.4.2 User data processing stage

For the purposes of an ASN, we have added an extra stage between the

output-port-lookup and output queues stages in the reference switch. This is the

stage where all the data processing applications are handled by a special hard­

ware modules. These data processing modules can include reduction operations

like min/max, average, sum, search, clustering, compression, etc. and transfor­

mational operations like FFTs and sort. The user data processing stage can have

one or more of these modules as needed by the overall application. The user data

processing stage receives data from the output-port-lookup stage as a stream of

Ethernet packets. Figure 3 depicts the data processing units in this stage. Inter­

nally, the packets are examined to determine if the packets should be processed

16

by a user module. If so, these packets are sent to the appropriate application

module.

2.4.2.1 Header parse logic

The nodes and the clients communicate using the user datagram proto­

col (UDP) protocol. UDP is a simple connectionless protocol built on IP that

does not require prior handshaking before establishing a connection between the

client and server. TCP, on the other hand, uses handshaking to establish a reli­

able connection. Which comes at the cost of additional header data and slower

speed. Because of the extra processing required to handle TCP, we have chosen

UDP as the transport protocol. Since UDP does not guarantee packet delivery,

client applications using the ASN are must take separate measures to provide the

reliability.

In a network setting, there will be several types of packets flowing through

the network switch that may not be related to the user application. Some of

these packets include packets from applications like HTTP, POP, SMTP, telnet

and SSH etc. Not all packets in the switch need to be processed by the user

data processing stage. These special packets can be identified by the UDP port

number and a 16 bit magic header at the beginning of the UDP packet data.

This header can be easily added by the client application. In addition to the

magic header, an extra 32 bits of packet sequence number is added by the client

application to assist them in providing a reliable service. This 6 bytes of extra

17

header information provide an intermediate solution between the highly reliable,

slower TCP protocol and the less reliable but faster UDP protocol. The header

parse logic verifies the packet header for the application port number and the

magic header to ascertain that the packet is intended to be processed by the

switch. The header parser logic also verifies if the incoming packet is in sequence

with the previous stream of packets processed by it. In case of an out of sequence

packet, it issues a request to the packet generator logic which in turn sends a

request packet to the source requesting for the missing packet.

2.4.2.2 Packet generator

The packet generator uses the header information parsed by the header

parse logic to construct these request packets. The packet generator is also re­

sponsible for constructing packets with the output data from the sort module or

processed data from any other module implemented in the user data processing

stage. The packet generator logic calculates the UDP checksum for the new data

and updates the appropriate location in the header field of the packet. Once the

packet is constructed, it is forwarded to the destination queues from where they

are ultimately transmitted to the client/server.

18

From output-port-lookup

<x>

Header parse logic

c
•</>

w
V
u
o
u
0.
re
o
u

V)

1
Sort Mod

•if *
Sort

processor

1
*

ule i

* *
Sort

processor

1
Sort

processor

1

J,

Packet generator

5
To output queues

Fig. 3: User Data Processing stage containing the Sort module

2.4.3 2-dilated flattened butterfly

A critical choice in the design of an ASN switch is the topology of the switch.

Some of the important design parameters are the number of interconnects, num­

ber of switching elements, overall latency, aggregate bandwidth, and whether it

is non-blocking. The number of interconnects/links per switching element and

the number of switching elements decides the total cost of the switch/topology

network. Since we are using the NetFPGA as the switching element, cost will

be primarily decided by the number of NetFPGA boards used. The nonblocking

behavior is particularly important to insure that the switch can always deliver

the maximum throughput, i.e. with a A'xA'' switch with a per-port bandwidth

19

equal to B, the aggregate throughput should be NB regardless of the connec­

tions between ports. A 2-dilated flattened butterfly is a wide-sense nonblocking

(WSNB) network that can connect from any idle input to any idle output without

disturbing existing connections. It has a similar structure to a flattened butterfly

with twice the bandwidth or with duplicated links. The structure of a 8x8 2-ary

three dimensional 2-dilated flattened butterfly structure is shown in Figure 4. In

this structure, interconnections in the first and second dimensions(vertical links)

are implemented using 2Gb/s SATA links and all interconnections in the third

dimension (horizontal links) are implemented using lGb/s Ethernet links. Each

switching element shown in Figure 4 can be implemented using a NetFPGA

board and it can deliver a maximum throughput of 8Gb/s since each switching

element consists of four lGb/s and two 2Gb/s links. This 8x8 structure can be

used as the basic building block to construct larger networks. The procedure to

constructing larger flattened butterfly networks from smaller network is explained

in [30].

In order to utilize the maximum throughput of 8GB/s provided by the

NetFPGA and the low component cost of interconnects, we have used a 2-dilated

flattened butterfly network as a backbone of ASN.

0
0

03
0

0
0

0
0

0
0

0
0

0
0

0
0

Fig. 4: 2-dilated flattened butterfly.

Chapter 3

Application Modules

ASNs can accelerate application performance in two specific classes of operations:

reductions and transformations. Reductions take a large set of data and reduce it

to a smaller set of data. Scientific applications often use similar reduction opera­

tions such as minimum, maximum, summation, etc. Transformational operations

are another class of functions that take a large set of data and transform it into

another large set of data. This transformation may be written back to storage or

returned to the client. Video editing is composed of many transformational op­

erations such as convolutions, filters, and compression which could benefit from

an ASN.

We have implemented several reduction and transformation operations in

the ASN including search, sort, k-min/max and k-means clustering. These appli­

cations are implemented in the user data processing stage of the network switch

described above. The header parsing logic parses the Ethernet packets, strip the

21

22

packet headers and provides data in an appropriate format to the application

module. The application modules see the stream of Ethernet packets coming in

to the switch as a stream of application data from the header parse logic. The

necessary reduction operations are performed and the processed data is forwarded

to the packet generator where new packets are constructed and dispatched to the

intended destination. In the remainder of this section, we describe four rep­

resentative application kernels - namely search, sort, K-min/max and k-means

clustering.

We have implemented data search, sort, and k-means clustering applica­

tions in an ASN switch built on top of a NetFPGA board. An 8 x 8 ASN net­

work forming a 2-dilated flattened butterfly structure is built using 8 NetFPGA

boards. The 8 x 8 switching network consists of 8 switching elements with each

switching element having 2 input and 2 output ports. A single NetFPGA board

with four ports can implement the switching element. We used a 8 x 1 subset

of the network connecting 8 server nodes to a single client node, to evaluate the

performance benefits of ASN switch for reduction and transformation operations.

Figure 5 shows an implementation scheme for an 8 x 1 reduction/transformation

operation and routing path from several servers to the client at node 9. The

switching elements 1 to 4 perform the first level of application processing. As

each of the switching elements are connected to two server nodes, they do not

have the global view of the entire data. Hence a next level of processing is re­

quired. The switching elements 5 and 7 perform the final stage of processing

23

before transmitting data to the client at node 9. Switching elements 6 and 8

operate as pure switching elements and do not perform search or sort operations.

In fact for search application, the second level processing in switching elements 5

and 7 is not necessary as the first level would be sufficient to search the client data

from all the nodes, k-means clustering application however uses all the available

switching elements for application processing.

In normal operation, the switching network acts as the interconnect between

the servers and the client. The client would then have to locally perform any of

the applications like search, sort, or k-means clustering on the accumulated data.

However in an ASN topology, these applications are implemented in the switching

network itself, thereby the client receives the processed results from the network.

When implementing application processing in the network, the ASN net­

work differentiates the application packets from normal Ethernet packets by a

16 bit magic number (0x2020) at the beginning of UDP packet data. The other

packets in the network are simply routed according the routing scheme imple­

mented. The ASN packet size is limited to 1512 bytes. NetFPGA currently does

not support jumbo frame sizes but the architecture provided for the search, sort

and k-means applications are scalable for bigger packets. With 14 byte Ethernet,

20 byte IP, 8 byte UDP and 2 byte ASN headers, the application data is limited

to 1464 bytes per packet. The application data consists of multiple key — value

pairs. In the data search and sort applications, the value field is propagated after

the necessary operation on the key. A smaller value would mean more keys per

24

Fig. 5: An 8 x 1 routing scheme on a 8 x 8 2-dilated flattened butterfly network

packet and hence more comparisons. For this reason, the value field is kept to

the minimum to reflect the worse case scenario.

The keys are generated at random with each key having 32 bytes of data.

For our experiments, we used file sizes up to 4G bytes per server node. The client

would then receive up to 24 GB from all the 8 servers. Each of the applications

and the experimental results are described in the following sections.

25

3.1 Data Search

Search is a common application for data processing. Database search is

performed on a key — value pair, where a search for a specific string in the key

field would return the matching key — value pair. The core of this application is

to look for specific string called searchstring henceforth, in all the keys in the

system, search is a time consuming operation in a distributed system where all

the key — value pairs are spread across multiple storage nodes.

Search strategies can be broadly classified as linear, binary, hash and tree

based search. Some of the string search algorithms include Rabin-Karp algo­

rithm [31], KnuthMorrisPratt algorithm [32] and the Boyer-Moore algorithms

[33]. Tree and hash based search algorithms are faster than linear search algo­

rithms but they require the search space to be arranged in a tree or hash based

data structures. Linear search strategy suits the network search scenario as data

streams through the network from several storage nodes. We implemented a

CAM based hardware search module in the network switch that can search for a

specific searchstring in the incoming packet.

The search module constitutes of the character match array and the PE

array logic blocks.

26

3.1.1 Charac t e r match ar ray

The character match array contains a k x 1 array of CAM blocks into which

the k byte searchstring is loaded. Each of the CAM blocks contains an 8-bit

memory to store a single ASCII character of the searchstring. A wider memory

can support multi character comparisons such as the Unicode code character set.

The CAM block also stores two additional bits to indicate if the character stored

forms the beginning or the end of the searchstring. These extra bits are loaded

in to the CAM array along with the searchstring. The CAM block compares

the input character with the search character stored in the memory. The keys

from the network are given to the CAM block a character at a time. This input

character is applied simultaneously to all n columns in the array. The comparison

results from all the CAM blocks are propagated to the PE array as character

match signals M(i). The CAM evaluates a character match in a single cycle.

However, the multi character string match is evaluated by the PE array in the

subsequent stage.

3.1.2 P E array

The PE array is a k x 1 array of processing elements (PE) that executes

the algorithm shown in Figure 1. To perform the search operation, the key data

from the header parse logic is given as input to the character match array, a

character at a time. If the input character matches a column in the CAM array,

27

the match signal is set and passed onto the corresponding PE for that column.

Each PE holds a binary value called a flag which indicates that the input key

data matches the searchstring in the CAM up to this point. The PE flags are

labeled PE(i). The flag is set for all the character matches at the beginning of the

searchstring. The PE logic propagates the flag to the subsequent PEs if there

is a corresponding match signal M(i) from the from the character match array.

The flag is however dropped for a character mismatch. A search hit occurs if the

flag propagates all the way to the end of the searchstring. Figure 6 shows an

instance of search for the string "NCC" in action. The searchstring is stored

in to the character match array and the key data from packets are applied as

input to the character match array. In the first clock cycle (Not shown in the

figure), a match on a character 'N' in the input set a flag in the PE array. In the

subsequent cycle, the character match on ' C moved the flag to the new position.

In spite of the character matches on ' C at multiple locations, the PE flag is set

at a location that has a PE(i-l) set. In the final cycle the character match on the

last character of the searchstring ' C resulted in a search hit. The search method

described above could search for any number of searchstrings loaded in to the

character match array. After a search hit on a key, the corresponding key —value

pair from the incoming packet is propagated to the packet generator logic. The

other key — value pairs from the packet that did not match the searchstring can

be dropped. The search process described here is a linear operation and can be

done in 0{n) time.

28

This architecture supports search on multiple searchstrings stored in the

CAM array. The array of the PE elements process all searches in parallel. A

search on - search strings each having a length s bytes can be evaluated in s

cycles. A dynamic search on new searchstrings can be easily performed by re­

placing the contents of the CAM array with the required searchstrings.

1

2.

3

4

5

6

7

8

9

10

11:

12:

if M(i) and wordbegin then
PE(i) - 1

else if M(i) and PE(i-l) then
PE(i) = 1
PE(i-l) = 0
if E(i) = 1 then

searchhit = 1
end if

else
PE(i) = 0
searchhit = 0

end if
Algorithm 1: PE Algorithm

3.1.3 Resul ts : Search

In a network search implementation, The available resources on the Xil-

inx Virtex-II Pro FPGA limited the space available for the searchstrings to

4096 Bytes. We chose random sized searchstringss ranging up to a maximum

of 32 bytes per searchstring for both the software and network search imple­

mentations. The software application for search is based on Aho-Corasick [34]

29

c

N

o

0
1—r-

Search hit

Fig. 6: Data Search

algorithm for dictionary searches. In a network search, the searchstrings are

initially loaded only in to the switching elements 1- 4 of the ASN network 5 and

the switching elements transmit the results of search operation to the client. The

client receives only a portion of the server data that matches the searchstrings.

for the measurements purposes, the server data is embedded with one extra ref­

erence packet of 50 bytes at the beginning of the data, these reference packets

are not processed in the switching elements of ASN but are transferred to the

client from the switch queue. The network search is timed at the client side once

it receives these reference packets from all the servers. The results plotted in fig­

ure 7 show network search performing an average of 7 times faster than software

search.

Character ~^
Match Array N

0 PE array 0 0
I T

0 <u

30

Data Search

-•-HW Search

-»-SW Search

Data/node

Fig. 7: Time to search 8GB-24GB of data

3.2 K-min/K-max

Min/Max is a data reduction operation to find the smallest or largest item

in a given dataset; the k-min/ k-max problem is to get the first k correspond­

ing min/max items. It is a restricted version of sort and has its applications

in database and data mining systems. In a distributed setting, the data set is

distributed across several storage nodes on a network. The traditional implemen­

tation of k-min/k-max requires the dataset to be retrieved from all the storage

nodes to a single client before the k-min/k-max operation can be performed. An

ASN implementation would benefit this application by overcoming the bottle­

neck associated with performing this reduction operation. It can also improve

31

the network performance by eliminating unnecessary data traffic in the network

which otherwise would be needed.

The k-min/k-max user data processing module contains k buckets con­

nected as shown in Figure 8. Each of the buckets consists of a register to store

a data item and a logic function that executes an algorithm as described below.

The key data from the header parse logic is given as input to the k-min/k-max

module. The key data is of alpha-numeric in nature and can be of varying length

having a maximum size up to the size of register in the bucket.

The registers in all the buckets are initialized to a lowest or a highest

value possible for k-min and k-max operations respectively. These values are

0x00000000 00000000 and OxFFFFFFFF FFFFFFF for a 64 bit register and are

relative to the size of register. The key data from several storage nodes are given

sequentially to the first bucket. The first bucket compares the key data to the

register content at this bucket. For a k-min operation, if the data item is smaller

than the register content, the register is updated with the key value and a value

of OxFFFFFFFF FFFFFFFF is forwarded to the subsequent bucket. In case the

key is greater than the content of the register, it is simply forwarded to the next

bucket. Similarly for a k-max operation, the register in a bucket is update with a

new value if the key is greater than the register content. A value of 0x00000000

is propagated to the next bucket in this case. The key itself is forwarded to the

next bucket if it is smaller than the register content. In essence, the buckets

operate as a shift register maintaining a sorted list of the top k keys. At the end

Key-data In

32

Key-data Out

K-min/K-max
logic

LXE TTT1
Register

ZL
K-min/K-max

logic

I I I I 1 M I I
Register

• j i

i ' ! '
: :

' i
•
•
•

ZL
K-min/K-max

logic

i i i i i i r
Register v~

Fig. 8: k-min/k-max module

of the network packet data-stream, the k buckets contain the k-min items in a

non-decreasing order and k-max items in a non- increasing order. These k items

are then forwarded to the the packet generator where they will be assembled as

new packets and dispatched to the final destination.

Each of the buckets process key data in parallel so the application runs

at full line speed. The runtime for finding k-min or k-max keys from n keys is

0(n + k). Since typically k S> n, the runtime is 0(n).

3.2.1 Results: K-Min/K-Max

In our experiments, we have set k = 50 to find 50 minimum and maximum

values in the data for both software and network k-min/k-max implementations.

For the network k-min/k-max implementation, the experiment is repeated for

different client data sizes beginning from 800M to 4000M. A reference packet at

the beginning of the data is used for experiment timing purposes. The k-min/k-

max elements in the switch elements are flushed to the client after the last packet

33

from the server data. The network sort is timed at the client between the interval

it receives the reference packet and the last packet from the k-min/k-max data.

The results in Figure 15 show that the ASN k-min/k-max application runs 20

times faster than the corresponding software implementation.

3.3 Sort

Sorting is a common transformation application where data from multiple

channels of I/O systems converge at a single node. By moving this process to

the switch, the client node which is originally intended to perform this operation

locally receives data in sorted order and can use its processing resources on other

time consuming computations. Sorting is a common task performed in data

handling applications like indexing, data mining and database management. The

most common database query is some form of "SELECT ... from ... ORDER

BY ..." that retrieves sorted data from the database such that it matches a set

of criteria. With a normal SELECT and active disks alone, each disk will do

the query independently and then return the data to the client. However, when

doing an ordered query on n nodes, the m returned results from each of the node

must be sorted before being returned to the client.

With the amount of data storage growing to the order of terabytes, data

sorting often becomes the bottleneck in some applications thereby affecting their

performance. In fact, a popular measure of server and I/O performance is the

GraySort benchmark [5], which attempts to sort terabyte size key-value pairs.

34

Several FPGA based architectures for implementing sorting have been pro­

posed [16,35]. However, data records residing on a storage over network have to

be fetched in to the local storage at a host computer before they can be sorted.

ASN can take benefit of this fact by implementing the sort process over the net­

work. The FPGA based sort implemented in the ASN switch sorts data records

as they stream the network and the host computer receives the sorted data.

Our assumption is that the active computation at each storage node will

pre-sort its portion of the data and send the pre-sorted data to a requesting

server. Normally, the server would then be responsible to merge sort the sorted

data from the various storage nodes. With an ASN, the data will be sorted within

the network. A tree based merge sort in the ASN can reduce the sort time from

mn log m to log2 run where m is the number of nodes and n is the size of the

data.

3.3.1 Sort module

We have implemented the data sort processing kernel as a sort module in

the switch user data processing stage. The basic block of the sort module is the

sort processor shown in figure 9. A sort processors takes two continuous data

streams of key — value pairs and merge sorts them by their key value. In general,

p data streams can be sorted using logp levels of sort processors connected in a

binary tree. In the NetFPGA we are limited to four 1 GigE interfaces thus the

two stage binary tree can process four continuous data streams in parallel.

35

The significance of the sort processor is that it can sort data streams con­

taining key — value pairs of any arbitrary length. Since key — value pairs in in

a network could be of arbitrary length, a general purpose sort processor is an

essential requirement. The sort processor fetches two 64 bit inputs dataA and

dataB, by issuing reqA and regB requests. If the comparison of the two inputs

does not yield a result, i.e. if the keys for dataA and dataB are the same, the

next 64 bits of dataA and dataB are fetched and the current dataA and dataB

are stored in temporary storage where they wait for the next comparison. The

temporary storage limits the maximum sort distance to which two equal keys can

be sorted. This value is flexible and is dependent on the resources available on

the FPGA. We allocated 64 bytes for the temporary storage. If the comparison

yields a result, the smaller of the two inputs is sent as sorted output to an output

buffer and the appropriate request signals are set to fetch new set of data. In

some cases where the two keys are equal, the comparison does not yield a result

even after the end of the key — value pair is reached. The sort processor identi­

fies this' case and clears the temporary storage results to the output buffer. The

sorted output in this case could have the equal key — value pairs in any order.

While the data streams through, the key — value pair might end anywhere on the

64 bit boundary. The sort element recognizes the end of the key character and

limits the sorted output till the end of that key — value pair. The sort resumes

from the beginning of the next key and this process continues on till there is no

more data left to be sorted.

36

The output-port-lookup stage in the reference pipeline stores the packets in

SRAM where they wait on the sort module to operate. The sort module contains

three state machines operating in parallel. The read state machine issues read

requests to fetch data from SRAM. The fetched data is buffered in data store

FIFOs from where the sort element described above gets its data.The read state

machine is analogous to instruction pre-fetch cycle in a CPU. The sort processor

issues requests for dataA and dataB as and when required, prefetching the dataA

and dataB in to the FIFOs greatly improves the performance as the requests from

sort processor are handled immediately and the wait time between issuing request

and fetching data is reduced. Once the sort operation is completed, the sorted

output in the output buffer is written back to the SRAM by the write state

machine.

The sort processor compares k sorted keys from two packets yielding 2k

sorted keys at the output. In the worst case there will be k comparisons, with

each comparison a constant time operation. The merge will take k cycles to

complete. In general, a packet with a b byte payload would take | cycles for

the merge operation. The run time for the sort is the same as a software sort.

However the significance of network sort lies is in reducing the deficiencies of a

parallel I/O systems in a distributed network setting.

37

f
dataA fifo

reqA
>

reqA
t

A < B

A

f

I

reqB
t

A > B

Ft

\

*

dataB fifo

reqB

reqA reqB
t t

~ - y»

t

^-> Output buffer

— • >

A = B

IV
A

Te

<—'

B

Tip

Fig. 9: Sort processor module

38

3.3.2 Resul ts : D a t a sort

Network sort is implemented on an NetFPGA based network switch. The

base NetFPGA switch design on Xilinx Virtex II pro consumed 15572 slices taking

up 65% of the FPGA slices. The inclusion of the network sort unit accounted for

a mere 4% addition of the slices thus consuming 16329 slices of the total 23616

slices amounting to 69% of the FPGA slices. The FIFO based network sort switch

also consumed 169 RAMB16s block RAM blocks compared to the 157 RAMB16s

blocks in the base switch design.

In the NetFPGA we are limited to four 1 GigE interfaces thus can support

only four directly connected machines. All the machines run Linux on a dual core

AMD Opteron 1.8Ghz processor. The data that is to be merged is distributed

across these four storage servers. In a typical network setting, the servers would

accumulate the data to a single client machine. A software application running

on this client would merge the accumulated data. However in a hardware based

network sort setting, the storage servers send their data to a network switch

where the merge is handled. A client-server C program handles all the data

transfer operations across the network, and a C software application handles the

software sort. The software application implements the best known k-way merge

sort algorithm and all the C programs are compiled in gcc with the maximum

optimization levels.

39

The server programs packs the Ethernet packets with a 16 bit magic header

0x2020 if they are to be sorted on the network switch. The Ethernet packets

without this header are treated as normal packets and are transmitted without

any processing. Figure 10 shows the packet header format for the network sort

processing. An 0x09 byte is used to separate key — value pairs within a packet.

The test data is randomly generated with a varying number of key sizes per

packet. For our experiments, we used a file size of 1 Gig bytes per storage server

node. In a key — value pair comparison, keys are compared and the value field is

propagated after the key field. A smaller value size would mean more number of

keys per packet and hence more comparisons. On the other hand, a higher value

size would result in less number of keys per packet and hence fewer comparisons.

To reflect the worst case scenario, the test data is generated to contain key field

only.

Packets with key sizes of 8, 16, 32 and 64 bytes are generated and transmit­

ted by the servers to the host. Two different test cases with packet sizes limited

to about 1512 bytes and 112 bytes were used. The 48 byte header for each of the

packet would limit the pay-load to approximately 1464 and 64 bytes respectively.

The current NetFPGA architecture does not support jumbo frame packets but

the sort architecture discussed above is easily portable to a NetFPGA version

that supports jumbo frame packets.

The resulting merged and sorted data can then be forwarded to either of

two locations: 1) to a single host that stores all the sorted data or 2) distributed

40

Ethernet Header
14 Bytes

IP Header
20 Bytes

UDP Header
8 Bytes

0x2020
2 Bytes

Seq No
4 Bytes

Key-Value pair
Variable length

0x09
1 Byte

Key-Value pair
Variable length

0x09
1 Byte

Packet Header Payload

Fig. 10: Packet Header Format.

back to the original servers where they store the globally sorted data in a virtual

striped manner. Each of these methods has its own merits. In a single host

scenario, one of the machines is used as both the host and server. The servers

act as storage node that sends its sorted data to the host and the host receives

the data from all four servers. We present these two scenarios separately below.

3.3.2.1 Single host

In this section, we evaluate the single host scenario where data is sent to a

single host and the resulting sorted data is stored locally at the host. Figures 11

and 12 show the throughputs of a plain network, network sort and the software

sort for 1512 byte and 112 byte packets. The throughputs for the plain network

and network sort are calculated based on the number of packets received at

the host from the network switch. For a network switch with data processing

capabilities, the network transfer time and the hardware sort time effect the

throughput. The throughput for the regular network switch reflects the network

transfer time only. The throughput for the software sort is calculated based on

the number of packets sorted by the software sort application at the host as it

receives data from the server. The network transfer time and the software sort

41

time influence this throughput. In a software sort, we do not measure the time

to write the sorted data to disk as our host node did not have sufficient memory

buffers to handle that much volume of data. Note that the FPGA network sort

does not suffer from this problem.

Figure 11 shows for a large packet with about 1464 bytes of payload data

and with smaller key size of 8 bytes, the network sort is little over 5 times faster

than the software sort. As the key size increases, the number of keys per packet

is reduced, and as a result, the average number of comparisons per packet is

reduced, thus reducing the overall software sort time. This effect is reflected in

the reduction of speedup to a value of 2 times for the key size of 64 bytes. Note

that the network sort performance for different key sizes is almost the same as

network performance. This is due to the fact that the worst case performance of

hardware sort on the network switch is the same as the network performance and

any improvements in hardware sort performance is negated by the slow network

performance Thus, in other words, the sort almost comes for free since it is being

done in line with the data transfer. These results are further supported by the

results from a smaller sized packet as shown in Figure 12. For a 64 bytes of

payload data, the improvements in the speedup are similar to that of a large

packet. With a key size of 8 bytes, the network sort performed about 3 times to

a software sort and for a larger key size of 64 bytes, the network sort performed

almost two times as faster as software sort. The results also indicated that the

1 Gbps I/O resources at the single host side are maxed out and the clients can

42

60000

C
8 50000
o

CO

£ 40000 -
0)

a 30000

* Network
Bandwidth

•••Network Sort

•v-software Sort

T V -

Key Size in Bytes

Fig. 11: Bandwidth comparison for 1512 byte packets.

not send data any faster in spite of their I/O resources running below their peak

abilities at around 0.25 Gbps.

3.3.2.2 Distributed sort

Storing data on a single host suffers from poor write performance as all the

sorted data is written to a single storage disk. Often, the sorted data is instead

stored back to the storage servers from where the unsorted data was read. This

is performed by a sort operation accompanied by a write operation to multiple

storage nodes. The network sort topology can improve this sort performance by

taking advantage of the parallel I/O to distribute the sorted data back to the

server nodes. The network sort in this case sorts data from multiple nodes in the

43

300000

W 150000

3

100000

* Network
Bandwidth

•*• Network Sort

*v« Software Sort

„ - V *

.Q

#v

16 32

Key Size in Bytes

64

Fig. 12: Bandwidth comparison for 112 byte packets.

2000

1800

1600

1400

1200

:1000

800

400

200

Data Sort

-HWSort

-SW Sort

1GB 2GB 3GB

Data/Node

4GB

Fig. 13: Time to sort 8GB-24GB of data

44

network switch and once the data is sorted, it is distributed back to the storage

servers instead of aggregating at a single host.

We ran two experiments. First, a software sort and distribute, where server

nodes send presorted data over a normal switch to a host which then merge sorts

the data and then sends the data back to the server nodes for storage. Secondly

a FPGA-based network sort and distribute where server nodes send presorted

data to the FPGA switch which merge sorts the data and send the data back to

the server nodes for storage. The difference is that the FPGA-based network sort

does not require a host to accumulate sorted data, thus removing the bottleneck

from the switch to the host.

Figure 14 shows the performance improvements made by employing the

network FPGA sort architecture for distributing sorted data back to the servers

as opposed to a single host based software sort and distribute. The key sizes in

the test data are limited to 32 bytes. The graphs shows the time to accumulate

sorted data on a single host. The results show the network sort and distribute

outperforming software sort and distribute in a single server topology. Network

sort and distribute ran 13 times faster.

While both software and hardware sorts grow linearly, the hardware sort

can do so at a much faster rate because of its ability to handle Gigabit network

transmissions at line rate. The results indicate that when the network is operating

at full bandwidth, the software application could not keep up with the rate at

which it receives packets and the server utilization was at maximum. The Linux

45

700

o 500
CD
00

cu 400
e
i-

300

100

•Harware Sort &
distribute

•Software Sort &
Distribute

2g

Data Size in GB

Fig. 14: Sort and distribute performance. Data size shown is the data size per
node.

command of time was executed to see the amount of time spent by the host in

running the user application. With a software implementation of sort, the host

spent an average of 9 times the time spent with an FPGA network implementation

of sort. This further makes the case for hardware sort over the network.

The sort unit in the current implementation operates on four incoming

packets at a time. This limit is due to the number of ports available on the

NetFPGA board. However, the design is scalable and it could be easily extended

to support any number of ports. Multiple NetFPGA boards can also be connected

in a tree-like network to increase the scalability.

46

Network sort is implemented on a 8X8 network switch for sorting data

spread across 8 storage nodes. The software application implements the best

known /c-way merge sort algorithm in C. The network sort is timed at the client

beginning the first server packet received at the client. The results in 13 show

network sort outperforming software sort with a speed up of over 11 times.

The higher performance of the hardware sort is due to the network topology

in a distributed storage setting and the reduction operation being performed. The

server is connected to the network with a 1 Gbps connection, the client can send

data to the server at a rate of 1/4 Gbps each. The sort application running in the

switch on a 125 Mhz clock could process a single byte of data per clock cycle in

the worst case scenario and therefore a yielding a worst case throughput of 1 Gbps

which is the maximum rate at which the server can receive the data. Irrespective

of the improvements in the software application for the sort, the software sort

under performs the hardware sort due to the network transfer delay associated

associated in this setting.

3.4 K-means clustering

Clustering algorithms are prevalent in image processing, statistical data

analysis, data compaction, and pattern recognition applications. Clustering al­

gorithms try to group a given dataset in to a set of clusters such that all the

elements belonging to a cluster are closely related with the least possible dis­

tance across the data items. Such a cluster assignment is an NP hard problem.

47

1400 -i

1200 -

1000 -
en

g 800 -
01
to
c
'v 600 -

400 -

200 -

o -\ 1 : , ,

0 800 1600 2400 3200 4000
Data in MB

Fig. 15: Time to find 50 min and max keys in 800-4000MB of data

K-means data clustering is a popular clustering algorithm that performs cluster­

ing based on Euclidean distance calculation across data points. It is used in a

wide variety of applications including data mining. The K-means algorithm is

compute intensive due to the iterative nature of the algorithm and the higher

degree of complexity involved with floating point computations. The amount of

data and computations involved make real time data processing virtually impos­

sible even on high end workstations.

-Software Kmin/Kmax

-Network Kmin/Kmax

48

3.5 K-Means Data Clustering Algorithm

Given N multidimensional data points each having D dimensions, the clus­

tering algorithm performs data grouping to k clusters as shown in algorithm 2.

Input: Set of N, D-dimensional data points, Number of clusters K
Output: N, /^-dimensional data points assigned to K clusters, K

cluster centers

• Initialize the cluster centers Cik with first k data points or a heuristic

repeat
foreach data point Xi in N do

foreach cluster Cj in K do

D • Calculate the Euclidean distances A*, = Ylj=i l-^ij ~ ^u ' l ~^k £ K

• Calculate At. and assign Xi to d.

end
end
Update cluster centroids

until Iteration count > a fixed constant \ Crossover count < 5;

Algorithm 2: Kmeans clustering algorithm

The algorithm starts by selecting k initial cluster centroids by a heuristic

or sampling method. The Euclidean distances are computed between each mul­

tidimensional data point and all the cluster centroids. Each data point is then

assigned to the cluster with the least Euclidean distance. After all data points

have been assigned a cluster, new cluster centroids are calculated by taking an

average of the data points in the new clusters. The algorithm proceeds with the

49

next iteration and terminates if the number of points crossing over to a new clus­

ter at the end of the iteration is below a threshold or after a sufficient number of

iterations have passed.

The most time consuming part of the computation is the Euclidean dis­

tance calculation between the data point and the cluster center. For all data

points, we must calculate the distance between the data point and all the K

cluster centroids. Moreover, these calculations are performed with floating point

numbers. However, these calculations do not have any data dependencies across

clusters and hence can be performed in parallel.

The Lloyds K means clustering algorithm differs from other clustering al­

gorithms in the objective function chosen for minimization which is the square of

the mean distance between the data points. Other variations of the algorithms

include minimizing the sum of distances to the nearest center [36] and minimizing

the geometric distances to the center [37]. In a hardware implementation, the

floating point operations take a varied number of cycles for completion depending

on the type of implementation. They are also expensive in hardware due to the

amount of area occupied on the chip/FPGA. For this reason initial hardware im­

plementations have tried to reduce the cost of Euclidean distance calculations by

replacing them with Manhattan distance and max distances [17,38] which would

require fewer floating point units. This resulted in a slight decrease in accuracy

which was outweighed by the saved space. Other implementations have taken a

hardware/software approach where the cluster assignment part of the algorithm

50

was implemented in software [39,17]. We implemented the original k means al­

gorithm thus preserving the accuracy. Our implementation is targeted for large

scale data in a distributed storage system by performing computations in the

a network switch as the data flows from the storage nodes to the computation

node.

The primary K-means clustering components are the cluster, kmin, and

cluster-update units. These units implement Lloyd's algorithm for optimal clus­

ter assignment. A cluster computes the distances across the cluster centroid and

the given data point. It is implemented with floating point subtracter, multiplier

and adder units as shown in Fig. 16. The cluster centroid is stored in a d wide reg­

ister in the cluster unit. It is a volatile data point that might change after every

iteration, but remains constant within each iteration. An iteration constituting

a single transfer of data set from the storage node to the hardware, concludes

by updating the cluster register with the new cluster centroids calculated by the

cluster .update unit. The first K data points received by the hardware are stored

in the k cluster registers. These k data points act as the initial cluster centroids

for the algorithm. The rate of convergence of the algorithm depends on the first

k data points received by the hardware. The data FIFO s in the user data pro­

cessing stage receive the remaining set of data points. An array of k cluster units

concurrently fetch data points from the data FIFO s and calculate the distances

to their corresponding data centers in parallel.

51

Data point

Euclidean Distance

Fig. 16: K-means cluster unit

Euclid distance J Closest cluster t

* ' '

Min

.

4>

Fig. 17: Kmin unit

52

The Euclidean distances computed from the k clusters are presented to the

Kmin unit where the closest cluster is computed. The Kmin unit has a binary

tree structure as shown in Fig. 17 with log if* stages where K* is the extension

of k to the nearest power of 2. The Kmin unit compares the distances with one

another determining the minimum in the last stage of the binary tree. Once the

smallest value is found, the cluster unit yielding the smallest value is decoded

by propagating the pointer to the top of the binary tree. The cluster center

having the minimum of the Euclidean distances is the closest cluster. The given

data point is then assigned to the new cluster center by updating the embedded

header field of the data point. The header field for each data point contains log k

bits at minimum for cluster assignment. The data point header field can also

include additional 32 bits for the Euclidean distance with the assigned cluster

centroid. The cluster .update unit is responsible for header update operations.

Any changes in the cluster assignments of the data point will also increment the

crossover count register in the cluster-update unit. A data point is latched in

the data FIFO until the cluster assignment, after which it is removed from the

data FIFO s and and sent to the packet generator where multiple such points are

assembled in to new packets and transmitted to the output queues.

At the end of the iteration, the cluster centers required for the subsequent

iteration are calculated by the cluster-update unit. The new cluster centers

for the k clusters are determined by the average of the data points per cluster.

53

Cluster-update unit calculates the sum of all the data points assigned to a clus­

ter. Since at most a single data point flows through the hardware pipeline, a

single cluster-update unit would be sufficient to maintain information of all the

k clusters. The cluster sum per iteration is calculated by adding the current data

point with the previous sum of a given cluster. Dividing the individual cluster

sum by the total number of elements assigned per cluster at the end of a iter­

ation would give the cluster centroids useful for the subsequent iteration. The

crossover count register is updated for every data point assignment to a different

cluster than it previously belonged to. It is reset after the completion of a itera­

tion. The crossover count register and the iteration count register are verified to

terminate the algorithm if the crossover count is less than a threshold value, it

means that there are only a few data points that were assigned to new clusters in

the current iteration and current assignment is closer to the optimal assignment.

The cluster .update unit contains a floating point adder, divider, K ri-dimensional

registers to hold the sum and k registers to hold the count of number of elements

per cluster as shown in Fig. 18.

3.5.1 Optimization

Pipelined floating point add/subtract units on an FPGA have a latency

anywhere from a single cycle to a 13 cycles for each operation. Similarly the

multiplication takes one to eight cycles. On an FPGA, floating point implemen­

tations have a trade off between the area and latency. The lower the latency,

54

, k
— •

| N M M

Fix-
Add

^ t

Fix to
Float

Data point
K-d wide

• «

I I I

Add

' \

-*•
~H 1

'

Div

New cluster center

Fig. 18: Cluster update unit

Data from Mu

T8

T7

T6

T5

T4

T3

T2

T l

To

(P12-C12)2

(Psi-Csi)2

(P71-C71)2

(P61-C61)2

(P51-C51)2

(P41-C41)2

(P31-C31)2

(P21-C21)2

(P l l -C l l) 2 Sum
1

Sum
2

Sum
3

Sum
4

Sum
5

Sum
6

Sum
7

Sum ^~

Pipelined Add unit with
8 cycle latency

Fig. 19: Data interleave optimization

55

the larger the cycle time and the area. Euclidean distance calculations of a data

point is data dependent with all the dimensions in the given point. For this

reason, a straightforward implementation with a floating point adder unit would

stall every dimension of the data point for the duration of the latency in the

adder circuit. An optimization strategy would be to interleave the dimensions of

different points together in such a way that the latency is hidden by performing

calculations of unrelated data points before the results for the initial calculations

are ready. An interleaving optimization for hiding eight cycle latency is shown in

Fig. 19. Data point Pij (where i is the point number and j the dimension), sent

to the cluster unit shown in Fig. 16 is interleaved in such a way that , i mod 5

(floating point add latency) varies from 1 to 5 V j . The floating point add unit in

Fig. 19 receives the interleaved |P^ — dj\ from the floating point multiplication

unit in Fig. 16. The result of the partial sum Y^ \P^ — dj\ f° r a dimension j of

the data point i will be ready after 5 cycles. This result will be ready just in time

for the add unit to perform another partial sum Y2 \Pij+i — CV/+i| . Interleaved

data required for this type of optimization could be easily generated at the data

source or with the help of reorder buffers on the FPGA.

3.5.2 Parallelization techniques

The K-means algorithm on a single FPGA exhibits cluster level parallelism

by performing Euclidean distance calculations belonging to all the cluster units

56

in parallel. For higher values of k, the amount of resources available on a sin­

gle FPGA will not be sufficient to fit all k cluster units. For such cases, the

number of cluster units on the FPGA is reduced to a fraction of k cluster units

in a single step. The remaining cluster units are computed in multi steps with

- cluster units per step. The original Kmin unit is modified to find the mini­

mum of Euclidean distances from of all the steps. The latency associated in the

multi step approach could degrade the performance but in a worst case when

n = k, the multi step approach becomes the sequential algorithm. In a multi

FPGA environment, the additional FPGA resources can be used to implement

the parallel algorithm in two ways. One way is to distribute data to every FPGA

and perform cluster assignment in parallel. The other approach would be to dis­

tribute the cluster units to each of the FPGAs and perform Euclidean distance

calculations in parallel. These two approaches are explained in the following

sections.

3.5.3 Data level parallelism

In a multi-FPGA system, each FPGA can operate on separate data points

thereby performing cluster assignments in parallel. Data level parallelism on a

multi FPGA system is possible if each of the FPGAs implement all k cluster

units. The data is uniformly partitioned across all the FPGAs, and each data

partition is sent to separate boards where each calculate the Euclidean distances

57

and cluster assignments in parallel. Each FPGA board calculates the local clus­

ter centroids based on the portioned data. At the end of each iteration, the local

cluster centroids are broadcast to the other boards. Upon receiving this broad­

cast information along with the local centroid information which was broadcast

earlier, new centroids at each board are calculated as the average of the received

centroids with the local centroid. Upon cluster update, each board sends a clus­

ter update acknowledgment indicating its readiness for the subsequent iteration.

This process proceeds till the iteration termination criterion of number of itera­

tions or sub threshold crossover count. Data level parallelism extracted this way

would have higher performance but with the limitation on the number of clus­

ters that can be fitted on each of the FPGA. A multi step approach with only a

fraction of the total k clusters per board in each step can be utilized for higher

values of k.

3.5.4 Cluster level parallelism

Another approach in extracting parallelism on a multi FPGA system is to

partition the k clusters across the FPGAs. This approach is intended for higher

values of k. Each FPGA operates in parallel on the entire data set calculating

the distances between data points and the FPGA's subset of k cluster units. The

local minimum of the Euclidean distances at each FPGA is broadcast to the other

FPGAs where the global minimum is computed. The global minimum is used in

resolving cluster assignment for the incoming data point. Since the data point is

58

applied simultaneously to all the FPGA boards, the global minimum calculated

at each FPGA board should result in the same cluster assignments for the data

point at all the FPGAs.

3.5.5 Results: K-means clustering

Several sets of experiments were run to explore parallelism on hardware with

a single FPGA board and with a combination of multiple FPGA boards. The

sequential and parallel versions of the software algorithm [40] were run to evaluate

the performance improvements made by implementing k means algorithm on a

network switch. All the machines used in the setup run Linux on a dual core

AMD Opteron 1.8Ghz processor with a 40GB SATA drive and a gigabit NIC. A

client-server program in C handles the data transfer operations. Test data up

to 1GB is generated at random as an input to the algorithm and is distributed

across several hosts for parallel software and hardware implementations. The

time for data partitioning is not timed in all the experimental results. All the

host machines are connected through an FPGA based network switch in a low

cost 2-dilated flattened butterfly network [41].

The base NetFPGA switch design on Xilinx Virtex II Pro consumed 15572

slices taking up 65% of the available FPGA slices. Due to the limited resources

available on the FPGA, we were able to fit up to a maximum of eight cluster

units. For clusters over eight, we used the multi step approach discussed in 3.5.2

59

3.5.5.1 Single F P G A

In a single host scenario, one of the machines is used as both the host and

server with the NetFPGA board as a co-processor. Data from the client is sent to

the NetFPGA through a gigabit interface. The NetFPGA performs the k means

clustering assignment and returns the data back to the host. These iterations are

continued till the termination at which time the NetFPGA returns a packet to

the host signaling termination. Results for a single host system in Fig. 20 show

the speedup of the hardware implementation over software implementation for

various cluster sizes and dimensions. The results show speed up 2-10 times that

of the software implementation. As can be seen, since the FPGA can calculate

several clusters in parallel, the speedup improved as we increase the number of

clusters. The runtime per iteration of the algorithm in hardware roughly remained

the same with a slight increasing trend towards the end for different number of

clusters. However the software runtime software grew non-linearly after 8 clusters.

This resulted in the superlinear speedups for cluster sizes beyond 8. The FPGA

has a limit of 8 clusters, so for 16 and 32 clusters, we used a multi step approach.

However for higher number of clusters, the multistep approach adds a sequential

bottleneck in hardware. Thus for even higher number of clusters, the speedup

may not grow linearly. The hardware implementation should still outperform the

software algorithm. The results also show speedups independent of the number

of dimensions.

60

12

10

"S 6

Speedup on single FPGA

2 -

ons

ons

No of Clusters

16

Fig. 20: Speedup on a single FPGA.

32

• sw
I ByCluster

a ByData

Fig. 21: Speedup on multiple FPGAs.

61

Kmeans clustering

No of clusters

-•-ByCluster

-*-ByData

Fig. 22: Run time per iteration of K-means algorithm

3.5.6 Multiple FPGAs

We connected multiple FPGA boards in a 2-dilated flattened butterfly net­

work to operate in parallel to implement the K-means algorithm. Sets of exper­

iments with two, four and eight FPGA boards were conducted. An equivalent

number of hosts act as storage nodes. A client server program on the hosts per­

form the data transfer operations on the partitioned data in the same manner as

on a single FPGA system.

Equivalent parallel versions of the software program were run to compare

the performance. During software implementations the the host nodes act as

processing nodes and are connected in the same network as in the hardware

implementations. The software algorithm utilizes MPICh2 for message parsing.

62

The results for the speedup due to the two parallelism techniques in hardware

compared to the parallel software algorithm are shown in Fig. 21

Parallelism by data

Data is distributed across the n hosts and the k cluster computations are

replicated on the multiple FPGAs. Speed up grew linearly with increase in clus­

ters. Results show a speedup of around 9 times over software implementation

[40]. As the data is distributed across multiple nodes, the bandwidth scales with

the number of FPGAs and the speed over parallel software implementation re­

mained constant with increase in FPGAs.

Parallelism by cluster

The K cluster computations are distributed across the multiple FPGAs and

the data is replicated across all the storage nodes. The results show an increase

in speedup with the number of clusters. The speedup however declined with

increasing the number of FPGAs. This is because the bandwidth does not scale

as we increase the number of FPGAs. The bandwidth of data coming in to the

multi FPGA system remained a constant 1 Gbps for all the FPGAs. The benefit

of cluster level parallelism will be evident as we increase the number of clusters.

Figure 23 shows the runtime per iteration of execution for different k. The results

show the data parallelism outperforming cluster level parallelism and a parallel

63

25 -

20 -

c
0
2 15 -

u

Z 10 -
E

H

5 -

0 -

""

r-

Kmeans clustering

x

1

—•

_ t —

' -»-SW

-•-ByCluster

-4-ByData

•

_ _ — » •

— i 1

16

No of clusters

32

Fig. 23: Run time per iteration of K-means algorithm

implementation in software based on work in [40]. However for larger values of k

the cluster level parallelism should catch up with data level parallelism.

Data level parallelism has better performance compared to cluster level

parallelism for lower values of k. One of the issues with data level parallelism is

the limit on the maximum number of clusters (k) that can be accommodated on

the FPGA. A maximum of eight clusters units can fit on the XC2VP50 FPGA,

and above eight clusters the multi step approach will be used. For a given set

of available FPGA resources, cluster level parallelism offers maximum choice in

terms of the number of cluster units that can be computed. For an an eight

64

FPGA network, using cluster level parallelism a maximum of 64 clusters can be

computed before having to resort to the multi step approach.

Chapter 4

Hybrid Computing

4.1 Introduction

Microprocessor design in recent years has hit a clock cycle roadblock that

has changed the design direction towards scaling the number of processor cores

on the chip. Chip multiprocessors with 2-8 cores have become common in the

commodity processor market. Intel has already demonstrated 80 cores in a 45 nm

process [42]. Graphic processors have been even more aggressive as evidenced

by NVidias recent GeForce 480 GPU with 480 cores on a 40 nm process. With

processing technology expected to reach 4nm in the coming decade, hundreds of

cores on a chip will be common. The technology road map pushes the limits

of computation power - However, finding commodity applications that can fully

utilize the hardware potential will be difficult. The difficulty with this future road

map is how end users are supposed to use these processors. There are few data

intensive and compute intensive parallel applications that can use these large

65

66

numbers of processors. Large-scale applications like genome sequencing, and

data mining, earth simulation etc require the full computation power of several

hundreds of processing cores. For regular desktop applications, the additional

processing power could be overkill. In current multi-core CPUs, the primary

usage of the extra cores has been to support multitasking - i.e. the many processes

that run in the background such as virus checking, indexing,de- fragmentation,

searching, downloading, etc. However, multitasking is unlikely to scale past about

8. The challenge is to develop applications that can go beyond multitasking and

use parallelism to utilize the cores.

Decades of research have shown that parallelism is difficult to find in typical

applications whether by hand coding or automated compiler techniques. The

only applications that easily scale to 100s or 1000s of cores or those that can

be decomposed into independent tasks or those that operate on independent

sets of data. Examples of such mainstream applications include image editing,

rendering, and search. However, overall, the set of applications that are easily

parallelizable is limited. Therefore, going past 8-16 cores is unlikely to provide

benefits to most application workloads.

One option to adequately use the silicon area is hybrid multi-core archi­

tectures. GPUs and Cell Broadband engines are some good examples of hetero­

geneous multi-cores where data streaming operations and data processing oper­

ations are handled in separate cores. The Cell Broadband Engine is a hybrid

architecture where a POWER CPU is augmented with 8 Synergistic Processing

67

Elements that can handle various types of data streaming operations [43]. Other

hybrid architectures like GPUs with hundreds of processing cores are gaining

prominence. With 1000s of available cores, these architectures still do not take

full advantage of the available transistors. We propose a reconfigurable hybrid

architecture that merges traditional CPUs, SIMD-style GPU cores, and finally, a

reconfigurable hardware fabric similar to that found in current FPGAs. Recon­

figurable hardware can extract maximum parallelism out of a task as hardware

structures that can perform bit level parallel operations on data can be easily

built. Moreover the custom tailored design can ensure data parallel operations at

a wider range of granularity without the context switching overhead as in multi-

core processors. Reconfigurable devices have the best computational density for

bit-level and integer operations while traditional CPUs do best for floating point

operations [44,45]. A hybrid architecture integrating the reconfigurable fabric

with processor can provide flexibility in implementing parallel applications and

provide better utilization of resources on the chip. The computational cores can

offload tasks to the reconfigurable cores on the hybrid system where several paral-

lelization strategies can be explored. Such a framework presents several different

ways of handling the task in hardware, software and a combination of both. The

performance benefits of these various implementation depend on the available

resources in the hybrid core, the amount of time a task spends on reconfigurable

core, the various parallelization techniques used in implementing a task on the

reconfigurable core etc. These are some of the factors that are to be considered

68

while offloading tasks in a hybrid system. Several resource allocation strategies

for low power, performance, efficient resource utilization catering to the needs of

application have to be developed. The remaining part of our work focuses on

these aspects.

The integration of reconfigurable logic with CPUs is a well known idea

and reconfigurable computing has been an active research area for many years.

The primary characteristic of reconfigurable computing is the integration of a

microprocessor with hardware that can be reprogrammed on the fly. Reconfig­

urable hardware include PALs, PLAs, smart memories, and field- programmable

gate arrays (FPGAs). FPGAs provide the greatest amount of flexibility with

programmable logic blocks connected by a sea of programmable interconnect.

FPGAs have long been used to accelerate a variety of applications including net­

work intrusion detection [11,46,47], multimedia [48,49], numerical algorithms

[50], and encryption [51,52].

4.2 Reconfigurable processing architecture

There have been several reconfigurable computing architectures proposed

by the research community and these architectures fall into two general classes -

functional unit based and co-processor based. Functional unit type architectures

are targeted toward fine grain computational optimizations, whereas co-processor

architectures are more appropriate for large task offloading. In the context of

many-core architectures, we feel the co-processor architecture is most appropriate.

69

Functional unit based reconfigurable computing takes a microprocessor and

integrates the reconfigurable hardware as a functional unit within the micropro­

cessor. Examples of these architectures include Chimaera [53], PRISC [54], and

OneChip [55,56]. These reconfigurable functional units (RFU) execute custom

instructions to provide speedups of short instruction sequences. The advantage

of the RFU design is that the tight coupling with the processor core allows fast

access to processor registers. With co-processor based designs, the reconfigurable

hardware is distinct from the main processor core, in that it does not participate

in the pipeline. However, it may use some processor functionality such as memory

access or data caching. Examples of co-processor based research reconfigurable

platforms include Garp [52,57] PipeRench [48], DISC [58], and PRISM [59].

Co-processor architectures have become common in commercial high performance

computing systems such as the Cray XD1 and SGI RC100. In a variation of the

co-processor architecture, Xilinx and Altera have both introduced FPGAs with

embedded processor cores. Because the reconfigurable co-processor is separated

from the processor core, sending data from the processor to the co-processor

will typically incur additional latency. As a result, the algorithms that can be

moved to the reconfigurable hardware must be large enough to amortize the data

communication cost. This usually precludes the instruction level type kernels

possible with RFUs. The advantage of a co-processor, though, is that it is easy

to integrate with existing processor cores.

70

Reconfigurable computing architectures require both the design tool sup­

port and the operating system support in developing applications that can run

in a hybrid system. These applications also require libraries of reconfigurable

hardware kernels. Traditional software development depends on the availabil­

ity of compilers that translate high level languages such as C, C+-1-, or Java

to machine language or intermediate byte-code. Linkers then link the compiler

generated object code with appropriate libraries that implement either operating

system functionality or commonly used functions. Operating system functions

include such features as I/O, process manipulation, and memory allocation. Com­

monly used functions include higher levels of I/O such as streaming and stdio,

GUI libraries, string manipulation, math functions, and others. For C program­

mers, the standard repository for these functions is the libc library and C++

programmers are familiar with the STL library. In a software application, the

operating system resolves function calls to these libraries at runtime. In a co­

processor based hybrid architecture, the processing core running the operating

system would dynamically offload tasks in a running process to either HW or

SW. The operating system must also dynamically choose between multiple im­

plementations of various cores depending on the availability of resources on HW,

performance/power issues etc.

71

4.3 Related work

The integration of reconfigurable logic with CPUs is a well known idea and

reconfigurable computing has been an active research area for many years. Most

of the work on SW/HW co design such as OpenFPGA [60,61] and PFIF [62]

provide standardized software APIs to hardware IP cores. The RCLib set of cores

has been developed towards a set of standard interface guidelines [63]. These APIs

provide an interface between software and hardware thereby allowing software

to call hardware functions by specifying mechanisms to pass data to and from

the hardware. The APIs also allow software to work with hardware and allow

hardware designers to develop portable IP core libraries. However, there are

no mechanisms to manage the loading and unloading of cores, include software

implementations or support multiple hardware implementations. Our work aim

at providing at providing operating system support for task offloading

4.4 Operating system support

To provide generic operating system support, a shared library approach

at offloading tasks from software to hardware is used. Operating systems use

libraries to provide application a collection of frequently used functions. There

are two types of libraries namely static and dynamic libraries. As the name im­

plicates, static libraries are used at compile time by the compiler and linker to

generate an executable. An executable with static linkage would contain all the

72

code for different function calls in itself. An executable with static linkage would

therefore run faster as there is no need of resolving function calls. A dynamic

shared library contains the code for different function calls which are resolved by

the loader at runtime. A compiler using dynamic shared libraries will generate

executable with a smaller executable size. However at runtime, the loader is

responsible for function look up. The advantage of dynamic libraries is that com­

mon function that are used again and again need not reside in memory multiple

times. A compiler compiles source code for an application typically written in

higher level languages like C, C + + or Java, to a machine readable object code.

The object code contain many references to function calls that are unresolved.

The linker resolves the unresolved function calls to the functions available in

shared libraries. Figure 24 shows the steps involved in generating an executable.

A loader resolves these function calls to actual function implementations during

the runtime. Various applications can use the functions in the shared library dur­

ing the runtime. The disadvantage of dynamically shared library is that function

look-up is slow. We extend the mechanism of dynamic shared library support for

offloading task from software to hardware. A scheduler is implemented for task

offloading to hardware as shown in figure 25. The scheduler makes a decision

on implementing a given task in HW or SW and chooses the appropriate shared

library to implement a given function. If a decision is made to run a task in

HW, scheduler pick the appropriate function from the hardware shared library.

C C + + Java

CPU

Linker

a.out

Fig. 24: Linking process

73

If the scheduler finds that a given task cannot be implemented in HW, the given

function is implemented from the appropriate software shared library.

Shared library approaches need an extensive support of shared libraries that

run in hardware. These libraries also provide a way to configure the hardware

and move data between HW and SW.

On an FPGA, the hardware functions are implemented in higher level hard­

ware descriptive languages such as Verilog, VHDL,etc. These functions are syn­

thesized to bit streams that can be easily programed to the configuration mem­

ory of FPGA. Generally when configuring an FPGA, the entire configuration is

reloaded with a new bit stream. Recent techniques in FPGA's allow partially

writing the configuration memory keeping the other parts of configuration mem­

ory intact. This feature allows runtime reconfiguration of FPGA. Some parts of

the FPGA can be dynamically reconfigured while the other parts of FPGA are

74

a.out

I
Loader

Scheduler

SW
Shared
Library

HW
Shared
Library

Fig. 25: Runtime process

still in operation. We explore this partial reconfiguration of FPGA combining

the shared library feature of an operating system and the partial reconfiguration

feature of FPGA, we implemented a prototype hardware system on a Xilinx Vir­

tex 2P FPGA as shown in Figure 26. The Virtex 2P FPGA contains embedded

Power-PC processor running a Linux 2.6 kernel with shared library support. A

prototype wrapper hardware library was built. This wrapper can reconfigure an

FPGA and return control back to the processor. It is also responsible for data

transfer from hardware to the software. Though not implemented, we envision

a DMA type of transaction for data transfer between hardware and software. A

software application running on this processor can partially reconfigured parts

of FPGA with the required hardware function of user choice. The prototype

hardware implementation contains several partially reconfigurable regions for the

user as shown in the Figure 26. The embedded processor utilizes the internal

75

configuration access port (ICAP) for partial reconfiguration. As an example let

function A need to be executed in hardware. This function has a software imple­

mentation given by a shared library say libA.so.l. If we need to offload this task

to hardware, The functional reference to the the function A need to be resolved to

the hardware instead of libA.so.l. Before a hardware implementation, the FPGA

need to be properly configured with the bit-files corresponding to the function

A. A wrapper shared library libwrapA.so.l is implemented for hardware config­

uration. This library has the same function declarations as that of the software

library libA.so.l. We put the hardware wrapper library in a higher precedent

library path such that the loader program searches this wrapper library first for

function A. When executing a binary, the loader, thus, resolves the function call in

the binary to the function declared in the wrapper library instead of the software

library.

4.5 Scheduling algorithm

Specialized structures in hardware can accelerate specific tasks in hardware

over their software counterparts. However, in an operating system running sev­

eral tasks, accelerating all the tasks in hardware is not possible due to limitations

in the amount of space available in reconfigurable hardware. To achieve a global

optimal runtime, a select few tasks have to be run in the hardware. The remain­

ing tasks have to be run in software. A decision on implementing the tasks in

hardware or software can be made by an operating system. For a normal process

76

ICAP

A

1 1

* PCIE. '

T
l
i

' '

\x proc.

! PR '
1 Region i

i Data [
. access •

1

! PR '
1 Region i

i Data [
! access i

1

| PR '
1 Region i

i Data [
! access •

1
FPGA

Fig. 26: Prototype hybrid system

executable, a standard operating system will load the executable into memory,

pass program control over to the new process, and then manage the scheduling

of the process. In the same way, reconfigurable aware OS loads executables, be­

gins the execution, and then manages the scheduling of the task. A scheduling

algorithm can make this decision statically or at runtime to accelerate overall

application performance in a system. A superior reconfigurable scheduling algo­

rithm relies on scores of hardware libraries available for accelerating tasks. These

libraries include several versions of hardware bit-streams with different space,

speedup requirement for a same a processing unit. Inclusion of one version of

the library over the other in the reconfigurable hardware would have a different

77

impact on the overall run time of an application. A significant decision that the

OS must make is whether to 1) keep the existing configuration and let the new

function run in software. 2) remove the existing configuration and let the new

function run in hardware thereby consigning the old function back to software or

3) use smaller configurations of both functions. This question must be answered

with several metrics in mind including performance of each thread, priority of

each thread, CPU load of each thread, and energy usage.

Our initial approach to this problem is to treat this as a resource allocation

problem both in time and space. Time being the amount of time that the thread

is expected to require use of the shared reconfigurable resource. Space being

the amount of reconfigurable resources being used. This allocation problem is

distinct from configuration scheduling in FPGAs where a large circuit must be

partitioned and scheduled over time to fit in the available space. The allocation

problem that we are looking at is similar to job scheduling on a compute cluster

except for the constraint that not all allocations are viable. For example, on a

compute cluster, for the most part it does not matter which nodes are assigned to

a task. However, in a reconfigurable array it is critical that the rows of the array

are assigned to match the available implementations for the desired function.

Thus, the allocated rows must be contiguous. As mentioned, resource and task

allocation in the context of job scheduling has been well studied [64-66]. We

will draw on this existing work and heuristics specific to allocation problem. The

primary objective is execution time. Thus, the allocation must ensure that the

78

highest priority thread finishes first. This requires estimates of computation time

for each thread, and the runtime for each implementation of the function - both

hardware and software. These estimates can be provided as part of the scheduling

process. Thus, the parameters of interest are:

• To the expected overall run time for thread i assuming a software imple­

mentation.

• fij fraction of time that thread i spends in computation kernel j assuming

a software implementation.

• tjk the execution time of the kth implementation of computation kernel j

where implementation, 0 is the software implementation.

• Ljk the space resources of the kth implementation of computation kernel j .

• ljk time to load the kth implementation of computation kernel j into the

hardware.

• tu time to unload the existing configurations and its state.

Tio is the baseline execution time for thread i, and the use of hardware can

reduce this time. The execution time for a thread is:

Ti = Ti0-J2 fl3TiO + J2 (fjr^hk> + hk) (1)
3 = 1 3 = 1 V j° J

where J is the number of computational kernels used by a thread and k! is

the selected implementation of a kernel function. The objective is to minimize

79

Ti for all threads given assigned priorities and choosing implementations and

hardware allocations to meet this goal. A simple algorithm would be to iteratively

start with the highest priority thread and minimize its Ti and then minimize the

next priority thread until no more threads can be minimized. If Ti is relatively

short, this might be appropriate. If, however, Ti is very long but fij is small,

it might make sense to swap out the hardware function for a different thread

depending on ljk- The objective function must also take into account the unload

time, tu, and its relationship to the improvement in Ti because if the unload

time is too long, it may not be worth reconfiguring the hardware. The objective

function can be altered to account for energy usage if being used in a power

constrained environment. For example, hardware implementations will typically

have higher power requirements, but since the execution time is much faster,

the overall energy usage may be lower. Thus, constraints on the allocation and

decision problem include overall energy usage and peak power utilization. Using

a shared library approach we implemented a scheduler shown in figure 25. The

scheduler makes a runtime decision on implementing a given task in hardware or

software. We also provide two scheduling algorithms for task allocation problem.

4.5.1 Static scheduling

Static scheduling makes a decision on implementing a given task in HW

before an application begins execution . The algorithm relies on profiling infor­

mation about a given application. This information include the total runtime of

80

an application in software, the number of functions executed and the amount of

time spent in each of the functions. This information is used in formulating a cost

function in determining the scheduling process. The cost function used by the

scheduling algorithm is given by equation 1. The cost function typically has a

negative value. Adding a new task k can alter the total runtime of an application

given by equation 2.

Static scheduling precedes by ordering all the tasks by their increasing order

of the cost function given in equation 2. This ordering process has a complexity

of 0(n log n) where n is the total number of tasks available for hardware imple­

mentation. Once the tasks are ordered, the sorted tasks are filled in the hardware.

Due to the space limitation on hardware, a subset k of the total tasks can be

filled in hardware, the remaining k — n tasks have to executed in software. The

tasks that are filled in the hardware stay in hardware for the runtime of the ap­

plication or a new static scheduling process is initiated. During the runtime of an

application, the job of the scheduler is to check weather a given task is available

in hardware and is not running. A table of running tasks can be formulated while

sorting the tasks and filling the hardware. During runtime, the table lookup can

be done in constant time.

f*T* {-sdd^: ~1)+lk (2)

81

The advantage of static scheduling is that the runtime decision making

process has a complexity of 0(1). However, when the total task list is large or

when the chosen tasks in HW run at the end of application, static scheduling

looses out further opportunities of running an application in hardware. Dynamic

scheduling provides an alternative to this problem.

4.5.2 Dynamic scheduling

Dynamic scheduling offers a flexible option of choosing the tasks at runtime.

The cost function used for dynamic scheduling is the same as for static scheduling

given in equation 2. Just as in static scheduling, profiling information about the

total runtime of the application and the frequencies of functions executed are

used in making runtime decisions on implementing the functions in hardware.

The dynamic scheduling algorithm proceeds by filling the hardware with

tasks as they are encountered in the application. While filling the tasks in hard­

ware, a table of the running tasks and total cost function of all the tasks in

hardware is noted in a table. The tasks are filled in the hardware as long as there

is space available. Once all the hardware resources have been used new tasks are

executed in hardware if adding the new task would lower the overall runtime.

For a task to be replaced in the hardware, the running task should have higher

cost function than the task that replaces it. Choosing the right task to remove

from the hardware is tricky. Another requirement for removing a task is that the

space occupied by the tasks in hardware should match the new task. If removing

82

one task does not provide sufficient space for the new task to be put in hardware,

multiple tasks from hardware have to be removed. Tasks that are currently not

running in hardware are preferred over the tasks that are currently running in

hardware.

The runtime for each schedule decision in O(k), where k is the number

of tasks in hardware. The advantage of dynamic scheduling is that when the

number of tasks are more, dynamic scheduling can provide better utilization of

hardware than static scheduling.

4.6 Resul t s

A scheduler for static and dynamic task allocation is written in C++. The

scheduler is compiled as a shared library with all necessary functions for a given

workload. We ran our scheduler on a GEMS simulator [67]. GEMS is a set of

Ruby and Opal modules built on top of Virtutech's SIMICS [68] cycle-accurate

simulator. The ruby and opal modules provide accurate simulator modules for

modeling the timing of the memory system and microprocessor. The simulator

ran a Linux 2.6 kernel on Sun sunfire 6500 machine with two ultraSPARCII

processors at 168 MHz. The Linux kernel is augmented with all the GNU tool

support. We chose a LLR function for a target tracking application [69] as a

work load. The work load accounted for over 95% of the total target tracking

application. The workload characteristics of the LLR function is given in the

table 1 . The table shows various kernels required in the given workload and

83

kernel

SIN
COS
ArcTAN
SQRT
EXP [70]
LOG [71]

Area occupied

8%
8%
8%
1%
8%
10%

Speedup

12
11
12
2
13
73

Active percent

0.6
1.6
3.0
2.0
91.6
1

Table 1: Workload characteristics of an LLR search function

the percentage of time spent on each kernel. The table also contains hardware

implementation results of area occupied speed up over corresponding software

counterparts. These kernels are double precision floating point units based on

cordic algorithms. Cordic floating point cores were implemented in hardware for

SIN, COS, ATAN, and SQRT functions. The results for hardware implementation

of EXP and LOG cores were taken from work done by Pottathuparambil et al.

[70] and Zhou et al.-[71], respectively. The hardware is modeled to run a Virtex

5 XC5VLX50T FPGA running at 100 MHz.

The results for scheduling implementation are shown in Figure 27. The

figure show the number of cycles taken to run the given workload on software, and

on hardware with static and dynamic scheduling. When running a software imple­

mentations, the kernels in table 1 were run from libmath software shared library.

The hardware results were accurately modeled based on the results from the table

1. The results show that static scheduling run around 6 times faster than the

software implementation. The dynamic scheduling yielded a 4 times speed up

84

over the software runtime. The reduction in the speedup for dynamic reconfigu­

ration is due to the overhead in task lookup. Since EXP function accounted for

about 92% of the total workload, the speedup due to hardware implementation of

the work load, ideally should have been close to 13 times. However, the overhead

in shared library lookup and the load time of FPGA resulted in reduction of

speedup to 6 times. The Virtex 5 XC5VLX50T FPGA has a load time of 439136

cycles. Shared library lookup and static scheduling brought down the speedup of

EXP function to about 7 times. The workload ran for about 26512188068 cycles.

The total overhead for static scheduling was 2379298929 cycles and for dynamic

scheduling, the overhead was 4523905107 cycles. A special application written

for task offloading could improve the speedup but a shared library approach pro­

vides a general purpose and easily portable way of going forward to offload tasks

to reconfigurable hardware.

85

||fW:-:::T:j

• Software

• Dynamic schediing

• Static scheduling

Scheduling algorithm

Fig. 27: Scheduling algorithm runtime results

Chapter 5

Conclusions

We implemented several data processing kernels for data search, data sort, Kmin/Kmax

and K-means clustering in an ASN built on a 2-dilated flattened butterfly net­

work. These processing kernels were implemented on an active switch built on

a NetFPGA development board. We evaluated the performance benifits of ap­

plication processing in ASN and show how data reduction and transformation

applications can take advantage of the idea of ASN. In our other work, we fo­

cused on managing multiple hardware kernels on reconfigurable hardware. We

built a prototype hybrid computing framework on a Virtex-2P FPGA using the

partial reconfiguration feature of the FPGA. We provided shared library sup­

port for Linux 2.6 kernel capable of dynamically offloading tasks to the Virtex

2P FPGA. We also developed static and dynamic scheduling algorithms for task

management between HW and SW.

86

87

5.1 Ou tcome and Significance

By implementing stream processing in an ASN, we hope to provide a novel

method of application processing for large scale data in storage networks. Several

large scale data processing applications in the fields of Image/Video processing,

data mining, file system optimizations etc can accelerate processing performance

by the concept of ASN. Offloading computations from the client to the network

can yield several benefits. Network processing can speedup application processing

considerably. Hardware in the network can accelerate applications by exploring

parallelism in the application through special structures built for the specific

application.These oprimizations are not possible in software implementation.The

client side computation burden to keep up in pace with the I/O can be eased.

Application processing in network can take control of the flow of data in network

therby reduce I/O deficiencies while performing transformation and reduction

operations. Advancements in parallel I/O push the bottleneck in computation

from I/O to the compute nodes, our work can strike a balance between the two

by providing I/O resources with computation abilities. On the hybrid computing

front, our work would facilitate operating system with dynamic loading support

for offloading computations to reconfigurable hardware. Hybrid computing is

still in its infancy and has several roadblocks before it becomes mainstream. One

of the issues with hybrid computing is the lack of tools support for handling

tasks between hardware and software. We hope to provide a step forward in this

88

area by providing a shared library approach at offloading tasks to reconfigurable

hardware. We also developed static and dynamic scheduling algorithms that use

the shared library approach to manage tasks accross HW and SW. A generic

operating system support for handling tasks would enable researchers to develop

hardware libraries that can be easily ported accross several systems.

5.2 Future Research

Current work on ASN supports only a single application on the ASN at

a time mainly due to the area limitation of the FPGA. Another limitation of

the ASN is that configuration of the FPGA requires the entire network to be

shutdown during the reconfiguration process. Partial reconfiguration support on

the network would also need appropriate protocol support for automatic recon­

figuration process and application management across various elements on the

network. Security in an open network is implemented by encrypting and de­

crypting network data. ASN processing would require special decryption engines

on the switches to retrieve valid data from encrypted data packets. We hope to

implement these features as part of future work. Dynamic reconfiguration on cur­

rent FPGAs suffer due to the large reconfiguration time. Preloaded FPGAs with

appropriate libraries could overcome this problem. As a future work, we hope to

develop several hardware libraries for common data processing applications and

prefetch algorithms for hiding the reconfiguration time.

Bibliography

[1] J. S. Vitter, "External memory algorithms and data structures: dealing with

massive data," ACM Comput. Surv., vol. 33, pp. 209-271, June 2001.

[2] L. Arge, G. S. Brodal, and L. Toma, "On external-memory mst, sssp and

multi-way planar graph separation," J. Algorithms, vol. 53, pp. 186-206,

November 2004.

[3] T. H. Cormeh and E. R. Davidson, "Fg: A framework generator for hiding

latency in parallel programs running on clusters," in ISCA PDCS, pp. 137—

144, 2004.

[4] D. Ajwani, R. Dementiev, and U. Meyer, "A computational study of

external-memory bfs algorithms," in Proceedings of the seventeenth an­

nual ACM-SIAM symposium on Discrete algorithm, (New York, NY, USA),

pp. 601-610, ACM, 2006.

[5] http://sortbenchmark.org. http://sortbenchmark.org.

[6] G. A. Gibson and R. V. Meter, "Network attached storage architecture,"

Commun. ACM, vol. 43, no. 11, pp. 37-45, 2000.

89

http://sortbenchmark.org
http://sortbenchmark.org

90

[7] A. Acharya, M. Uysal, and J. Saltz, "Active disks: Programming model,

algorithms and evaluation," in Proceedings of International Conference on

Architectural Support for programming Languages and Operating Sustems,

1998.

[8] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle, "Active disks for large-

scale data processing," IEEE Computer, vol. 34, no. 6, pp. 68-74, 2001.

[9] F.-Y. Leu, M.-C. Li, J.-C. Lin, and C.-T. Yang, "Detection workload in a

dynamic grid-based intrusion detection environment," J. Parallel Distrib.

Comput., vol. 68, no. 4, pp. 427-442, 2008.

[10] Y. H. Cho and W. H. Mangione-Smith, "Deep network packet filter design

for reconfigurable devices," ACM Trans. Embed. Comput. Syst., vol. 7, no. 2,

pp. 1-26, 2008.

[11] I. Sourdis and D. Pnevmatikatos, "Pre-decoded CAMs for efficient and high­

speed NIDS pattern matching," in FCCM '04: Proceedings of the 12th

Annual IEEE Symposium on Field-Programmable Custom Computing Ma­

chines, (Washington, DC, USA), pp. 258-267, IEEE Computer Society, 2004.

[12] J. Singaraju and J. A. Chandy, "FPGA based string matching for network

processing applications," Microprocess. Microsyst., vol. 32, no. 4, pp. 210—

222, 2008.

91

[13] B. Parhami and D.-M. Kwai, "Data-driven control scheme for linear arrays:

Application to a stable insertion sorter," IEEE Transactions on Parallel and

Distributed Systems, vol. 10, pp. 23-28, 1999.

[14] M. Bednara, O. Beyer, J. Teich, and R. Wanka, "Tradeoff analysis and archi­

tecture design of a hybrid hardware/software sorter," in Proceedings of the

IEEE International Conference on Application-Specific Systems, Architec­

tures, and Processors, ASAP '00, (Washington, DC, USA), pp. 299-, IEEE

Computer Society, 2000.

[15] J. Martinez, R. Cumplido, and C. Feregrino, "An FPGA parallel sorting

architecture for the Burrows Wheeler transform," in RECONFIG '05: Pro­

ceedings of the 2005 International Conference on Reconfigurable Comput­

ing and FPGAs (ReConFig'05) on Reconfigurable Computing and FPGAs,

(Washington, DC, USA), p. 17, IEEE Computer Society, 2005.

[16] R. Marcelino, H. Neto, and J. M. P. Cardoso, "Sorting units for FPGA-based

embedded systems," in Distributed Embedded Systems: Design, Middleware

and Resources (B. Kleinjohann, L. Kleinjohann, and W. Wolf, eds.), pp. 11-

22, Boston, MA: Springer, 2008.

92

[17] M. Estlick, M. Leeser, J. Theiler, and J. J. Szymanski, "Algorithmic transfor­

mations in the implementation of k- means clustering on reconfigurable hard­

ware," in Proceedings of the 2001 ACM/SIGDA ninth international sympo­

sium on Field programmable gate arrays, FPGA '01, (New York, NY, USA),

pp. 103-110, ACM, 2001.

[18] A. Goswami and R. Jin, "Fast and exact out-of-core k-means clustering," in

In ICDM, pp. 83-90, IEEE Computer Society, 2004.

[19] A. M. Dan Pelleg, "Accelerating exact k-means algorithms with geometric

reasoning," in Proceedings of the Fifth International Conference on Knowl­

edge Discovery in Databases (S. Chaudhuri and D. Madigan, eds.), pp. 277-

281, AAAI Press, aug 1999.

[20] T. Maruyama, "Real-time k-means clustering for color images on reconfig­

urable hardware," Pattern Recognition, International Conference on, vol. 2,

pp. 816-819, 2006.

[21] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and

M. Snir, "The NYU Ultracomputer — designing a MIMD, shared-memory

parallel machine (extended abstract)," in ISC A '82: Proceedings of the 9th

annual symposium on Computer Architecture, (Los Alamitos, CA, USA),

pp. 27-42, IEEE Computer Society Press, 1982.

[22] http://www.netfpga.org. http://www.netfpga.org.

http://www.netfpga.org
http://www.netfpga.org

93

[23] J. A. C. Ajithkumar Thamarakuzhi, "Scaling the netfpga switch using aurora

over sata," in NetFPGA Workshop, 2010.

[24] A. Thamarakuzhi and J. A. Chandy, "2-dilated flattened butterfly: A non-

blocking switching network.," in HPSR, pp. 153-158, IEEE, 2010.

[25] A. Thamarakuzhi and J. A. Chandy, "2-dilated flattened butterfly: A non-

blocking switching topology for high-radix networks," Computer Communi­

cations, vol. 34, no. 15, pp. 1822 - 1835, 2011.

[26] A. Thamarakuzhi and J. A. Chandy, "Adaptive load balanced routing for

2-dilated flattened butterfly switching network," International Conference

on Networking, 2011.

[27] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKeown,

"Implementing an OpenFlow switch on the NetFPGA platform," in Pro­

ceedings of the ACM/IEEE Symposium on Architectures for Networking and

Communications Systems, pp. 1-9, 2008.

[28] Xilinx, Inc., "Aurora link-layer protocol."

[29] Xilinx, Inc., "LogiCORE IP Aurora 8B/10B v4.2 user guide," June 2009.

[30] J. Kim, W. J. Dally, and D. Abts, "Flattened butterfly: A cost-efficient

topology for high-radix networks," in In Proc. of the International Sympo­

sium on Computer Architecture (ISCA), pp. 126-137, June 2007.

94

[31] R. M. Karp and M. O. Rabin, "Efficient randomized pattern-matching algo­

rithms," IBM J. Res. Dev., vol. 31, no. 2, pp. 249-260, 1987.

[32] D. E. Knuth, J. James H. Morris, and V. R. Pratt, "Fast pattern matching

in strings," SIAM Journal on Computing, vol. 6, no. 2, pp. 323-350, 1977.

[33] R. Boyer and J. Moore, "A fast string searching algorithm," Communications

ACM, 1977.

[34] A. V. Aho and M. J. Corasick, "Efficient string matching: an aid to biblio­

graphic search," Commun. ACM, vol. 18, June 1975.

[35] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha, "Gpu terasort:

High performance graphics co-processor sorting for large database manage­

ment," in Proceedings of the 2006 ACM SIGMOD International Conference

on Management of Data, (Chicago, IL), 2006.

[36] S. Arora, P. Raghavan, and S. Rao, "Approximation schemes for euclidean

k-medians and related problems," in In Proc. 30th Annu. ACM Sympos.

Theory Comput, pp. 106-113, 1998.

[37] P. K. Agarwal and C. M. Procopiuc, "Exact and approximation algorithms

for clustering," 1997.

95

[38] X. Wang and M. Leeser, "K-means clustering for multispectral images us­

ing floating-point divide," in Proceedings of the 15th Annual IEEE Sympo­

sium on Field-Programmable Custom Computing Machines, (Washington,

DC, USA), pp. 151-162, IEEE Computer Society, 2007.

[39] A. G. da S. Filho, A. C. Frery, C. C. de Araujo, H. Alice, J. Cerqueira, J. A.

Loureiro, M. E. de Lima, M. das Gragas S. Oliveira, and M. M. Horta, "Hy-

perspectral images clustering on reconfigurable hardware using the k-means

algorithm," in Proceedings of the 16th symposium on Integrated circuits and

systems design, SBCCI '03, (Washington, DC, USA), pp. 99-, IEEE Com­

puter Society, 2003.

[40] S. W. Son, S. Lang, P. Cams, R. Ross, R. Thakur, B. Ozisikyilmaz, P. Ku­

mar, W. K. Liao, and A. Choudhary, "Enabling active storage on parallel

I/O software stacks," in Proceedings of 26th IEEE Conference on Mass Stor­

age Systems and Technologies (MSST 2010), 2010.

[41] A. Thamarakuzhi and J. A. Chandy, "2-dilated flattened butterfly: A non-

blocking switching network," in 11th International Conference on High Per­

formance Switching and Routing (HPSR 2010), (Texas, USA), 2010.

[42] S. K. Jim Held, Jerry Bautista, "From a few cores to many: A tera-scale

computing research overview," Citeseer, p. 12, 2006.

96

[43] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and

T. Yamazaki, "Synergistic processing in cell's multicore architecture," IEEE

Micro, vol. 26, pp. 10-24, March 2006.

[44] J. Williams, C. Massie, A. D. George, J. Richardson, K. Gosrani, and

H. Lam, "Characterization of fixed and reconfigurable multi-core devices for

application acceleration," A CM Trans. Reconfigurable Technol. Syst., vol. 3,

pp. 19:1-19:29, November 2010.

[45] R. G. Williams, George and Suresh, "Computational density of fixed and

reconfigurable multi-core devices for application acceleration," in Proceedings

of Reconfigurable Systems Summer Institute, 2008.

[46] Z. K. Baker and V. K. Prasanna, "Automatic synthesis of efficient intrusion

detection systems on fpgas," IEEE Trans. Dependable Secur. Comput., vol. 3,

pp. 289-300, October 2006.

[47] J. Singaraju, L. Bu, and J. A. Chandy, "A signature match processor archi­

tecture for network intrusion detection," in Proceedings of the 13th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines,

(Washington, DC, USA), pp. 235-242, IEEE Computer Society, 2005.

[48] S. C. Goldstein, "Piperench: A coprocessor for streaming multimedia accel­

eration," 1999.

97

[49] K. Denolf, A. Chirila-Rus, R. D. Turney, P. R. Schumacher, and K. A.

Vissers, "Memory efficient design of an mpeg-4 video encoder for fpgas," in

FPL, pp. 391-396, 2005.

[50] C. He, W. Zhao, and M. Lu, "Time domain numerical simulation for tran­

sient waves on reconfigurable coprocessor platform," Field-Programmable

Custom Computing Machines, Annual IEEE Symposium on, vol. 0, pp. 127—

136, 2005.

[51] H. J. Kim and W. H. Mangione-Smith, "Factoring large numbers with pro­

grammable hardware," in Proceedings of the 2000 ACM/SIGDA eighth in­

ternational symposium on Field programmable gate arrays, FPGA '00, (New

York, NY, USA), pp. 41-48, ACM, 2000.

[52] J. R. Hauser and J. Wawrzynek, "Garp: a mips processor with a reconfig­

urable coprocessor," in Proceedings of the 5th IEEE Symposium on FPGA-

Based Custom Computing Machines, pp. 12-, IEEE Computer Society, 1997.

[53] S. Hauck, T. W. Fry, M. M. Hosier, and J. P. Kao, "The chimaera reconfig­

urable functional unit," IEEE Trans. Very Large Scale Integr. Syst., vol. 12,

pp. 206-217, February 2004.

[54] R. Razdan and M. D. Smith, "A high-performance microarchitecture with

hardware-programmable functional units," in Proceedings of the 27th annual

98

international symposium on Microarchitecture, MICRO 27, (New York, NY,

USA), pp. 172-180, ACM, 1994.

[55] C. Ralph, R. D. Wittig, R. D. Wittig, and R. D. Wittig, "Onechip: An fpga

processor with reconfigurable logic," in In IEEE Symposium on FPGAs for

Custom Computing Machines, pp. 126-135, 1995.

[56] J. A. Jacob and P. Chow, "Memory interfacing and instruction specifica­

tion for reconfigurable processors," in Proceedings of the 1999 ACM/SIGDA

seventh international symposium on Field programmable gate arrays, FPGA

'99, pp. 145-154, ACM, 1999.

[57] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, "The garp architecture and

c compiler," Computer, vol. 33, pp. 62-69, April 2000.

[58] M. J. Wirthlin, "A dynamic instruction set computer," in Proceedings of the

IEEE Symposium on FPGA's for Custom Computing Machines, (Washing­

ton, DC, USA), pp. 99-, IEEE Computer Society, 1995.

[59] P. M. Athanas and H. F. Silverman, "Processor reconfiguration through

instruction-set metamorphosis," Computer, vol. 26, March 1993.

[60] M. Wirthlin, D. Poznanovic, P. Sundararajan, A. Coppola, D. Pellerin,

W. Najjar, R. Bruce, M. Babst, O. Pritchard, P. Palazzari, and G. Kuz-

manov, "Openfpga corelib core library interoperability effort," Parallel Corn-

put., vol. 34, May 2008.

99

[61] M. Wirthlin, D. Poznanovic, P. Sundararajan, A. Coppola, D. Pellerin,

W. Najjar, R. Bruce, M. Babst, O. Pritchard, P. Palazzari, and G. Kuz-

manov, "Openfpga general api specification 0.4 (draft for comment),," July

2008.

[62] M. Huang, I. Gonzalez, S. Lopez-Buedo, and T. A. El-Ghazawi, "A frame­

work to improve ip portability on reconfigurable computers," in ERSA,

pp. 191-197, 2008.

[63] P. Saha, E. El-Araby, M. Huang, M. Taher, S. Lopez-Buedo, T. El-Ghazawi,

C. Shu, K. Gaj, A. Michalski, and D. Buell, "Portable library development

for reconfigurable computing systems: A case study," Parallel Comput.,

vol. 34, pp. 245-260, May 2008.

[64] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong,

"Theory and practice in parallel job scheduling," in Proceedings of the Job

Scheduling Strategies for Parallel Processing, IPPS '97, (London, UK), pp. 1-

34, 1997.

[65] I. D. Baev, W. M. Meleis, and A. E. Eichenberger, "Algorithms for total

weighted completion time scheduling," in Proceedings of the tenth annual

ACM-SIAM symposium on Discrete algorithms, SODA '99, (Philadelphia,

PA, USA), pp. 852-853, Society for Industrial and Applied Mathematics,

1999.

100

[66] A. Burns, D. Prasad, A. Bondavalli, F. Di Giandomenico, K. Ramamritham,

J. Stankovic, and L. Strigini, "The meaning and role of value in scheduling

flexible real-time systems," J. Syst. Archit., vol. 46, pp. 305-325, February

2000.

[67] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, "Multifacet's gen­

eral execution-driven multiprocessor simulator (gems) toolset," SIGARCH

Comput. Archit. News, vol. 33, pp. 92-99, November 2005.

[68] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, "Simics: A full system

simulation platform," Computer, vol. 35, pp. 50-58, February 2002.

[69] W. Blanding, P. Willett, and Y. Bar-Shalom, "Ml-pda: Advances and a new

multitarget approach," EURASIP J. Adv. Signal Process, vol. 2008, January

2008.

[70] R. Pottathuparambil and R. Sass, "A parallel/vectorized double-precision

exponential core to accelerate computational science applications," in Pro­

ceeding of the ACM/SIGDA international symposium on Field programmable

gate arrays, FPGA '09, (New York, NY, USA), pp. 285-285, ACM, 2009.

[71] J. Zhou, Y. Dou, Y. Lei, J. Xu, and Y. Dong, "Double precision hybrid-

mode floating-point fpga cordic co-processor," in Proceedings of the 2008

101

10th IEEE International Conference on High Performance Computing and

Communications, HPCC '08, (Washington, DC, USA), pp. 182-189, IEEE

Computer Society, 2008.

