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The total amount of information stored on disks has increased tremendously in re­

cent years with data storage, sharing and backup becoming more important than 

ever. The demand for storage has not only changed in size, but also in speed, reli­

ability and security. These requirements not only create a big challenge for storage 

administrators who must decide on several aspects of storage policy with respect to 

provisioning backups, retention, redundancy, security, performance, etc. but also for 

storage system architects who must aim for a one system fits all design. Storage poli­

cies like backup and security are typically set by system administrators for an entire 

file system, logical volume or storage pool. However, this granularity is too large and 

can sacrifice storage efficiency and performance - particularly since different files have 

different storage requirements. In the same context, clustered storage systems that 

are typically used for data storage or as file servers, provide very high performance 

and maximum scalability by striping data across multiple nodes. However, high num­

ber of storage nodes in such large systems also raises concerns for reliability in terms 

of loss of data due to failed nodes, or corrupt blocks on disk drives. Redundancy 

techniques similar to RAID across these nodes are not common because of the high 

overhead incurred owing to the parity calculations for all the files present on the file 

system. In the same way, data integrity checks are often omitted or disabled in file 

systems to guarantee high throughput from the storage system. This is because not 

all the files require redundancy or data protection mechanism, and achieving higher 

throughput outweighs the need to have these computationally expensive routines in 



place. 

In this thesis, we begin by studying the I/O access patterns of different applications 

that typically use clustered storage. The study helps us understand the application 

requirements from a file system. We then propose a framework for an attribute-based 

extendable storage system which will allow storage policy decisions to be made at a 

file-level granularity and at all levels of the storage stack, including file system and 

device managers. We propose to do this by using a file's extended attributes that will 

enable different defined tasks via plugins or functions implemented at various levels 

within the storage stack. The applications can set extended attributes for their files, 

or directories, and extract a complete content-aware storage functionality from the 

storage system stack. We present a stackabie user-space file system which will make 

it easier to write and install these plugins. Using our stackabie file system technique, 

these plugins can be programmed in user-space and mounted by non-privileged users. 

We also provide two scenarios where our framework can be used to provide an overall 

improved performance for a reliable clustered storage system. 



Extendable Storage Framework 

for Reliable Clustered Storage 

Systems 
by 

Sumit Narayan 

B.E., University of Madras, 2002 

M.S., University of Connecticut, 2004 

A Dissertation 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy 

at the 

University of Connecticut 

2010 



UMI Number: 3420180 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMT 
Dissertation Publishing 

UMI 3420180 
Copyright 2010 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

uest 
ProQuest LLC 

789 East Eisenhower Parkway 
P.O. Box 1346 

Ann Arbor, Ml 48106-1346 



APPROVAL PAGE 

Doctor of Philosophy Thesis 

Extendable Storage Framework for Reliable Clustered Storage Systems 

Presented by 
Sumit Narayan, M.S. 

Major Advisor 
John A. Chandy 

Associate Advisor 
Chun-Hsi Huang 

Associate Advisor 

Associate Advisor 

Associate Advisor 

Yunsi Fei 

Bing Wang 

Robert Ross 

University of Connecticut 
2010 



Acknowledgements 

I would like to thank many people who have contributed either directly, or in­

directly, in making this thesis a reality for me. I will try to list all of them and I 

apologize if I have missed out some names. 

I would like to begin with thanking and expressing my deep and sincere gratitude 

to my advisor Professor John Chandy for his constant faith in me and his support 

every time I tried to pursue a new direction for research. His advice was always 

insightful and discussions with him always left me enlightened. 

My sincere thanks to Chun-Hsi Huang, Yunsi Fei and Bing Wang for serving on 

my thesis committee. They provided me with valuable insights and comments to 

improve this work. Special thanks to Rob Ross for his interest, helpful advice and his 

feedback on this work, not to mention serving on my thesis committee. 

Many thanks to Vishal Ravindra for being a wonderful roommate and for all 

the late-night debates and sport discussions. Thanks to my friends Christian Berger, 

Javier Areta, Manisha Mishra, Marco Guerriro, Ozgur Erdinc, and William Donat for 

making my stay at UConn a memorable one. I would also like to thank my colleagues 

AjithKumar Thamarakuzhi, Jianwei Dai, Mike Kapralos, Shuo Wang, and Weiguo 

Tang for their help with various things. 

Last, but most importantly, I would like to thank my loving family. My parents 

have played a very big role in getting this thesis done. Their immense love, support 

and enormous amount of encouragement always allowed me to stay focused on my 

work. I am grateful to my brother Vineet and sister-in-law Nancy for their love and 



iv 

encouragement. Their surprise weekend visits always made me happy. I would like 

to thank Suvasri for her love, affection and understanding. She has been a constant 

source of inspiration and motivation, without which I wouldn't have been able to 

complete this thesis. 

The financial support of the National Science Foundation is gratefully acknowl­

edged. 



Contents 

Chapter 

List of Tables ix 

List of Figures x 

1 Introduction 1 

1.1 Motivation 2 

1.2 Thesis Outline 5 

2 Background and Related Work 6 

2.1 Storage Systems 6 

2.2 Redundant Arrays of Inexpensive Disks (RAID) 7 

2.3 Classification of Storage Systems 9 

2.3.1 Direct Attached Storage (DAS) 9 

2.3.2 Storage Area Network (SAN) 9 

2.3.3 Network-Attached Storage (NAS) 10 

2.4 Clustered Storage Systems 10 

2.4.1 Parallel Virtual File System (PVFS) 12 

2.4.2 Lustre File System 13 

2.5 I/O Characterization 13 

2.6 File System Properties and Extensions 14 



vi 

2.7 Redundancy and Failures 17 

2.8 Data Integrity 18 

3 Application Characterization on a Parallel File System 20 

3.1 Applications 21 

3.1.1 NPB-BMI Benchmarking Tool 22 

3.1.2 OpenAtom 23 

3.1.3 FLASH 24 

3.1.4 Web Server 24 

3.2 Application I/O Characterization 25 

3.2.1 Inter-arrival Time 26 

3.2.2 Request Size 29 

3.2.3 Long Range Dependence 32 

3.3 Summary 35 

4 Attribute-based Extendable Storage Framework 37 

4.1 Storage Policy 38 

4.1.1 Redundancy 38 

4.1.2 Data Retention and Recovery 39 

4.1.3 Performance 41 

4.1.4 Security 41 

4.1.5 Provenance 42 

4.2 ATTEST Architecture 42 

4.2.1 Extended Attributes 43 

4.2.2 Extendable Plugin Architecture 44 

4.2.3 Metadata Handling 47 

4.2.4 Migration 47 

4.3 Design 48 



vii 

4.3.1 Attributes and Rules 48 

4.3.2 Device Tags 51 

4.3.3 Mapping Table 52 

4.3.4 Plugins 53 

4.3.5 Migration 54 

4.4 Results 54 

4.4.1 Experimental Setup 54 

4.4.2 am-utils 55 

4.4.3 IOZone 56 

4.4.4 File creation 57 

4.5 Summary 58 

5 User Space Storage System Stack Modules with File Level Control 60 

5.1 Stackable File Systems 63 

5.2 File system in User space (FUSE) 64 

5.3 Stackable FUSE 66 

5.4 Implementation 68 

5.5 Results 70 

5.6 Summary 73 

6 Extendable Storage Framework for Clustered Storage Systems 74 

6.1 Implementation 75 

6.2 Results 78 

6.3 Summary 80 

7 Improving Reliability in Clustered Storage Systems using ATTEST 81 

7.1 Failure Modes in Clustered Storage 82 

7.1.1 Single-node Failure Model 84 

7.1.2 Data Corruption 84 



viii 

7.2 Reliable Clustered Storage 86 

7.2.1 Writes Under Failure 88 

7.2.2 Reads under failure 90 

7.3 Detecting Data Corruption 91 

7.3.1 Aligned requests 93 

7.3.2 Unaligned requests 94 

7.4 Results - Single Node Failures 94 

7.4.1 Single Client 97 

7.4.2 Multiple Clients 99 

7.5 Results - Silent Data Corruption 101 

7.6 Results - Reliable Storage using ATTEST 105 

7.7 Summary 106 

8 Conclusions 108 

Bibliography 1 1 1 

Vita 1 2 4 



List of Tables 

Table 

3.1 Basic Application Characteristics 25 

3.2 Request Sizes for the NPB-BMI application 33 

3.3 Hurst Parameter for different workloads 35 

4.1 Time to create 10,000 files 59 



List of Figures 

Figure 

2.1 RAID Levels 8 

2.2 Parallel file system architecture 11 

3.1 Inter-arrival Time on NPB-BMI ' C Class 27 

3.2 Inter-arrival Time on OpenAtom 28 

3.3 Inter-arrival Time on FLASH 30 

3.4 Inter-arrival Time on Web server 31 

3.5 Inter-arrival time on MDS with 16 I /O nodes (Web server) 32 

3.6 Variance-time plot for OpenAtom 34 

4.1 ATTEST Framework Architecture 46 

4.2 File's Extended Attributes 49 

4.3 Rules format 50 

4.4 Directory's Extended Attributes 50 

4.5 Device Tags 52 

4.6 File system's block to logical volume mapping 53 

4.7 Extent-based mapping 53 

4.8 Time to compile am-utils 55 

4.9 Read throughput on ATTEST 57 

4.10 Write throughput on ATTEST 58 



xi 

5.1 Stackable file systems 63 

5.2 FUSE architecture 65 

5.3 Operation flow in sfuse 67 

5.4 Throughput comparison for different file system setup 70 

5.5 Compile time with ATTEST setup 72 

6.1 File's Extended Attributes on Clustered ATTEST 76 

6.2 ATTEST framework incorporated within PVFS 77 

6.3 Write throughput comparison of ATTEST on PVFS 78 

6.4 Read throughput comparison of ATTEST on PVFS 79 

7.1 Parallel file system architecture 83 

7.2 Handling of I /O operation using dirty region database 89 

7.3 Storing CRCs in PVFS's bstream files 93 

7.4 Writes on Lustre file system 95 

7.5 Reads on Lustre file system 95 

7.6 Writes on PVFS file system 96 

7.7 Reads on PVFS file system 96 

7.8 Write performance with 8 clients on Lustre file system 100 

7.9 Write performance with 8 clients on PVFS file system 100 

7.10 Write bandwidth using IOR (with sync,single client) 102 

7.11 Read bandwidth using IOR (without sync,single client) 102 

7.12 Write bandwidth using IOR (without sync,8 clients) 103 

7.13 Write bandwidth using IOR (with sync,8 clients) 103 

7.14 Data Integrity Checks with ATTEST Framework 105 



xii 

Abstract 

The total amount of information stored on disks has increased tremendously in re­

cent years with data storage, sharing and backup becoming more important than 

ever. The demand for storage has not only changed in size, but also in speed, reli­

ability and security. These requirements not only create a big challenge for storage 

administrators who must decide on several aspects of storage policy with respect to 

provisioning backups, retention, redundancy, security, performance, etc. but also for 

storage system architects who must aim for a one system fits all design. Storage poli­

cies like backup and security are typically set by system administrators for an entire 

file system, logical volume or storage pool. However, this granularity is too large and 

can sacrifice storage efficiency and performance - particularly since different files have 

different storage requirements. In the same context, clustered storage systems that 

are typically used for data storage or as file servers, provide very high performance 

and maximum scalability by striping data across multiple nodes. However, high num­

ber of storage nodes in such large systems also raises concerns for reliability in terms 

of loss of data due to failed nodes, or corrupt blocks on disk drives. Redundancy 

techniques similar to RAID across these nodes are not common because of the high 

overhead incurred owing to the parity calculations for all the files present on the file 

system. In the same way, data integrity checks are often omitted or disabled in file 

systems to guarantee high throughput from the storage system. This is because not 

all the files require redundancy or data protection mechanism, and achieving higher 

throughput outweighs the need to have these computationally expensive routines in 

place. 

In this thesis, we begin by studying the I/O access patterns of different applications 

that typically use clustered storage. The study helps us understand the application 

requirements from a file system. We then propose a framework for an attribute-based 
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extendable storage system which will allow storage policy decisions to be made at a 

file-level granularity and at all levels of the storage stack, including file system and 

device managers. We propose to do this by using a file's extended attributes that will 

enable different defined tasks via plugins or functions implemented at various levels 

within the storage stack. The applications can set extended attributes for their files, 

or directories, and extract a complete content-aware storage functionality from the 

storage system stack. We present a stackable user-space file system which will make 

it easier to write and install these plugins. Using our stackable file system technique, 

these plugins can be programmed in user-space and mounted by non-privileged users. 

We also provide two scenarios where our framework can be used to provide an overall 

improved performance for a reliable clustered storage system. 
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Chapter 1 

Introduction 

A data storage device such as a hard-drive or a flash-based drive, that is directly 

connected to the computer is the most basic example of a storage system. However, 

these storage solutions are limited to a single machine and cannot be scaled. Im­

provement in network speeds and increasing demand for data sharing has brought 

several newer ideas forward by moving the data behind the network. Network file 

servers are machines that are attached to a network and allow its local file system to 

be visible to any number of client machines connected to the same network. Several 

file systems have emerged to distribute data over the network including NFS [113], 

CIFS [27], AFS [95], Sprite [101], and Coda [114]. These file systems provide users 

with complete network transparency in that the users are able to make changes to 

a file as if it is present on the user's local machine. These file systems are typically 

set by the system administrators who decide on storage policies such as redundancy, 

security, archiving, etc. All users on these file systems follow the same data storage 

policy that is set by the system administrator. These policies are based on either 

some priority, or simple user-based heuristics, or on the regulations put into practice 

by the institution where the data is stored. Further, these policies are typically set 

for an entire file system, logical volume or the storage pool. However, this granularity 

is too large and can sacrifice storage efficiency and performance - particularly since 
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different files have different storage requirements. 

1.1 Motivation 

As a motivator for this work, consider a shared network file system like NFS or 

CIFS accessed by multiple users for general purpose data storage. Some users may be 

using the file system as a scratch drive and do not really care if the data is lost because 

of a disk crash or system failure. Other users may expect the file system to retain 

multiple copies of the data either through versioning or snapshotting, and also to 

provide very high reliability. Some users may want their files encrypted automatically 

by the file system, while others may want their data to be verified with data integrity 

checks. The default choice for a system administrator is the most conservative choice 

- high reliability, continuous data protection, with data integrity checks and full 

encryption enabled. Overall performance may potentially suffer because of the need 

to be overly conservative. Consider another case where different scientific applications 

use parallel file systems like PVFS [21] or Lustre [15] to store different kinds of data. 

Some applications dump checkpoint data at frequent intervals without performing any 

reads from the drive, while others may use the file system for reading input data and 

writing several intermediate logs and result files. Not only that, some applications 

run for several days while some run only for a few hours. The system administrator 

must thus provide protection mechanisms such as data redundancy and data integrity 

checks in the file system to protect the data belonging to the applications which run 

for a longer time. This is necessary, despite the high overhead for providing such 

features, to avoid restarting the application from the beginning in case of a failure 

or corruption. On the other hand, providing such capabilities will also impact the 

storage system's throughput negatively for applications that have a short run-time 

and can be restarted without trouble or significant loss of time. These applications do 

not necessarily require strong data redundancy or data protection mechanisms and 
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the high throughput overheads incurred because of them. The system administrator 

thus has to decide to either enforce such expensive policies for all files on the storage 

system, or simply leave the data unprotected for all applications instead of having 

a mechanism to filter files with specific requirements and limit the feature overhead 

only to them. 

Apart from the variety of storage policy options available to an administrator, 

another motivator for this work is the presence of a wide range of storage devices 

with very different properties in the market and the choice of different system con­

figurations possible with them. New emerging technologies such as flash translation 

layers (FTLs) that allow random accesses several magnitudes faster than traditional 

magnetic drives are gaining popularity in large storage systems. Traditional RAID 

techniques like striping, mirroring, and parity are other ways where disk access times 

vary significantly and are preferred depending on the workload. These diverse stor­

age devices can all be collected and placed under a logical volume manager such as 

Linux's LVM [28, 68] and viewed as a single device. However, doing that also hides 

the ability of applications to take advantage of their individual features. For example, 

an application with a random-seek read-only workload can use flash drives to store 

the input data while storing the log files, checkpoint files, or intermediate output files 

on a magnetic disk. However, currently, there is no way to tell a volume manager 

to place the data blocks belonging to a particular file on a particular drive. To deal 

with this problem, we require a means for applications to transfer some knowledge 

about the data to the file system and the underlying devices. The approach should 

relay the requirements to all the layers in the storage stack, which may be present 

locally through a direct connected storage device, or, across the network in case of a 

network-based file system. 

We believe that selecting storage policies at a large granularity or hiding device 

properties by representing multiple storage devices as a single logical volume with 
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the help of device managers limits many optimizations that could be done to make 

more efficient use of the available storage. As storage size and administration costs 

go up, a single policy model to fit all users and file characteristics is not practical 

and a different approach is needed. In this work, we hope to motivate a case to 

consider storage polices at the file level and enable efficiencies at multiple levels of 

the storage hierarchy in a clustered storage system. Administrators can make global 

decisions about file storage policies based on file classes - for example for all . c files, 

all .o files or all .mp3 files. In addition, end users are given the capability to make 

file specific, or directory-based, storage policy management decisions based on their 

inherent understanding of file's characteristics. Thus, both system administrators 

and users have input into the storage policy decisions on a particular file or directory. 

This work will also present an extendable mechanism to enable what has been called 

application-aware storage [2] as a way to provide smarter storage and lead to reduction 

in administrative time and cost of ownership. 

In this thesis, we first study the I/O access patterns of applications that typically 

take advantage of clustered storage systems. The study is used to observe the appli­

cation's behavior and understand the requirements from storage systems. We then 

provide an attribute-based extendable storage framework called ATTEST for these 

clustered storage systems. This framework provides applications, or users, a way to 

communicate their data storage requirements in terms of performance, redundancy, 

security etc. to the storage system stack. This can be done by simply adding the re­

quirement in a file's extended attributes. The ATTEST framework also has provisions 

to introduce stackable plugins in the storage stack. The kernel-space plugins can be 

written using File System Translator language FiST [140], while the user-space plug­

ins can be written using FUSE-like stackable user-space file system sfuse (Chapter 5). 

These plugins can be added to the system, either on the client, or on the storage nodes 

which can then be enabled, or disabled based on the attributes set by the applica-
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tion. Applications can use this to take advantage of all available features within the 

storage system from a single mount point instead of having several mounted devices 

on the system. The ATTEST framework provides applications an attribute-based 

access and control of the storage system's internal functionalities. This framework 

fully leverages the capabilities of a parallel file system and allows using a variety of 

storage devices present in the system. As an example, we show how this framework 

can be used to provide fault tolerance or data integrity solutions for important files 

in the system without placing any significant overhead on the remaining files. 

1.2 Thesis Outline 

This thesis is organized as follows. Chapter 2 provides some background and ear­

lier work done in this area of research. Chapter 3 studies the I /O access patterns 

of applications using parallel file systems. Chapter 4 describes our attribute-based 

ATTEST framework in detail and Chapter 5 explains the stackable user-space plu-

gin architecture. Chapter 6 describes how ATTEST framework can be extended to 

clustered file systems. In Chapter 7, we provide examples to show how ATTEST 

framework can be used to provide redundancy and data integrity solutions in clus­

tered storage systems. We end with a chapter on conclusions and our plans for future 

work. 



Chapter 2 

Background and Related Work 

In this chapter, we provide some background on storage systems and also discuss 

related work done previously in this field. 

2.1 Storage Systems 

A data storage device is a device that is connected to a machine for storing user's 

data persistently. Some examples of storage devices include tapes, hard disk drives, 

CDROMs, flash drives etc. Of all the storage devices, hard disk drives are in most 

common use. A file system is an operating system layer that uses these storage 

devices to provide a persistent medium for applications to store its data. Various 

operating systems support many different types of file systems. Examples of file 

systems that can be installed on these devices include EXT2/3/4 [7, 91], JFS [74, 44], 

XFS [72, 124], ZFS [122], HFS [71], etc. These are single node file systems and are 

local to the machine. They cannot be shared with users who are not present on 

the system. Specific file systems known as network file systems or distributed file 

systems allows multiple users to access files from multiple hosts that share the same 

network. In these file systems, while the clients do not have direct access to the 

underlying storage device, an interface similar to a local file system and transparent 

to the user can be set up, irrespective of the kind of network or file system protocol 
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used. NFS [113] and CIFS [27] are examples of distributed file system protocols that 

can be used to share local file systems across the networks. 

2.2 Redundant Arrays of Inexpensive Disks (RAID) 

Hard disk, because of their mechanical nature, are usually the least reliable com­

ponent in a computer system. Redundant Arrays of Inexpensive Disks (RAID) is a 

technology that involves two or more disks to provide storage reliability through data 

redundancy [102]. RAID is based on the idea of dividing data across multiple low-cost 

disks instead of storing it on a single large expensive disk. These disks are seen as a 

single logical unit using a special hardware, or a software. RAID arrays are designed 

based on three key concepts: mirroring, striping, and parity-based error correction. 

Figure 2.1 shows some of the popular RAID organizations. 

In striping, the data is distributed across all the disks present in an array without 

any redundancy. This arrangement is also referred as RAID-0. It is typically used 

for improving the throughput of the system. All I/O operations can be performed in 

parallel across all the disks in the array. However, the failure of any disk in the array 

will result in the loss of all data. 

Mirroring, or RAID-1 refers to complete replication of the data across multiple 

disks. If one of the disk fails, the data can be recovered from the other disk which 

contains exactly the same copy of the data. The cost of recovering the data is very 

low since the data is already present in its complete form. However, the cost of 

maintaining such RAID arrays are very high due to the space utilization factor of 

only 0.5. 

Parity-based error correction codes are used to provide an intermediate reliability 

solution to redundancy and performance. Parity is generated for every stripe of data 

and stored on a separate disk. Thus, if any of the data disks fail, the data can 

be regenerated using the parity. There are many different configurations possible 
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Figure 2.1: RAID levels: Data blocks are striped or mirrored across different devices 
present in the RAID array. P0,P1,.. refer to the parity blocks. 
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depending on where the parity is stored. RAID-4 and RAID-5 are two formats that 

are frequently used. 

2 . 3 C l a s s i f i c a t i o n o f S t o r a g e S y s t e m s 

Depending on the way the storage devices are accessed from a system, they can 

be classified under three categories - Direct Attached Storage (DAS), Networked 

Attached Storage (NAS), or Storage Area Network (SAN). This section will touch 

briefly on each of them. 

2.3.1 Direct Attached Storage (DAS) 

Direct Attached Storage (DAS) is the simplest storage solution in which the stor­

age device is directly connected to a server or a workstation through host bus adapter 

(HBA). These devices typically include tape, hard drive, or a flash-based device. They 

do not have network present between the system and the data storage device. DAS 

connections are made through one of many popular protocols—ATA, SATA, eSATA, 

SCSI, or Fibre Channel. Direct attached storage are however limited to a single ma­

chine and thus cannot be scaled or shared with other servers without having interfaces 

that will allow multiple concurrent accesses present on the device. 

2.3.2 Storage Area Network (SAN) 

Storage Area Network (SAN) is an architecture where remote storage devices 

such as disks or tapes appear as locally attached devices to the operating system. 

Partitions on these devices are visible as virtual hard drives with a unique logical unit 

identification number (LUNs). Operating system usually connect to these devices 

using SAN protocols like SCSI, Fibre Channel, iSCSI, ATA over Ethernet (AoE), 

HyperSCSI etc. and install their own file system on these virtual drives. 
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2.3.3 Network-Attached Storage (NAS) 

Network-Attached Storage (NAS) is a file-level data storage connected to a net­

work and shared across clients present on the network. It provides both, storage 

and a file system. This is different from SAN which provides a block-based storage 

and allows the client to install its own file system. NAS servers are dedicated ma­

chines that only handle file system requests, thus provide very high throughput. This 

throughput however depends on the speed and traffic on the network. NAS servers 

typically provide a NFS or CIFS based file system interface. 

2.4 Clustered Storage Systems 

A clustered system is a group of independent compute nodes capable of distribut­

ing workload among itself and managing transfer of workloads between the nodes. 

For large clustering systems, a shared storage architecture such as storage-area net­

work (SAN) is necessary. These clustered storage solutions are distributed in na­

ture and typically allow several, in the order of thousands, simultaneous connections. 

Clustered storage is comprised of low-cost, low-performance and less-reliable storage 

servers which distribute data and work with appropriate redundancy and reliability 

algorithms among itself to provide a comprehensive solution to high-performance, 

high-reliability storage system. Each individual node is capable of maintaining its 

own form of data storage, such as RAID, SSDs, tapes, etc. These storage systems are 

also highly scalable. These systems are in contrast to the classic enterprise storage 

model which are monolithic and very expensive [30]. 

There are many parallel storage file systems which have been developed recently 

and are in common use [65, 46, 64, 125, 131]. Most of these file systems are based on 

the idea of separating the metadata from the data. Keeping the metadata separate 

removes the management overhead such as the file type, ownership, permissions and 

directory hierarchy, thus giving the user direct access to the data. In order to operate 
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Figure 2.2: Parallel file system architecture. 

on a file, the client must first obtain the file metadata from a metadata server. This 

metadata information will include the location of the file data, i.e. information about 

which storage servers stores which part of the file. These file systems can achieve high 

throughput by striping the data across many storage servers. Metadata is spread 

across one or more metadata servers and many clients, all of which are connected by 

a shared network, perform file system activities as shown in Figure 2.2. 

In most parallel file systems, the data organization unit on the storage nodes is in 

the form of an object. This is different from a local disk-based file system where the 

organization unit is a block. An object comprises the data (or subset of the data) of 

a file but its allocation is managed by the target device and a metadata server. Each 

target device can be considered as a smart disk, but the key differentiating feature of 

an object-based architecture is the metadata server that is separated from the data 

targets. 

Typical examples of file systems that are deployed to manage large clustered stor­

age systems include Parallel Virtual File System (PVFS) [21], Lustre [15], PanFS [125], 

IBM's GPFS [116], Google File System [64], etc. In this thesis, we primarily work 

with two file systems—PVFS and Lustre. 
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2.4.1 Parallel Virtual File System (PVFS) 

Parallel Virtual File System (PVFS) is an open source implementation of a parallel 

file system that has enabled clusters of high performance PCs to address applications 

with fast I /O requirements [21]. PVFS consist of three components - a compute/client 

node, a metadata server node and storage nodes. A compute node can serve as a 

metadata server, or a storage node, or both. It is based on a client/server architecture 

where the server daemon and client side libraries are all present in the user space. 

The files are striped across nodes based on the rules set by the user. PVFS maintains 

file metadata using a BerkeleyDB database and file data in a directory tree, both 

present on the node's local file system. This keeps the design of PVFS simple and 

provides easy portability across a variety of systems. 

PVFS provides multiple application programming interfaces including UNIX/-

POSIX and MPI-IO. MPI-IO is part of the standard programming interface for par­

allel applications, the message passing interface MPI [16]. The MPI layer calls PVFS's 

functions directly to access data. Using MPI-IO shows a great benefit in comparison 

to the POSIX interface, in that the applications can extract the underlying file sys­

tem parallelism which is usually concealed by the UNIX/POSIX-based file systems. 

MPICH2 [17], which is the most commonly used implementation of MPI can be eas­

ily configured to support PVFS using ROMIO [23], a high-performance input/output 

implementation for MPI. ROMIO libraries, which are linked with MPICH2 and run 

on a variety of parallel architectures, provide an abstract I /O device (ADIO) [1] layer 

for PVFS. This ADIO layer provides the link between MPI and parallel file systems 

like PVFS. All I /O requests made using MPI libraries are sent directly to the PVFS 

file system. PVFS also provides a kernel module for integration with Linux's VFS 

to run applications which require a POSIX interface to the file system. The kernel 

module, however, is dependent on the version of Linux kernel present on the system 

and requires loading the module before use. 



13 

2.4.2 Lustre File System 

The Lustre file system is another open source implementation of parallel file system 

available from Sun Microsystems [15]. It is comprised of three main components, 

all present as a loadable Linux kernel module - an object storage client (OSC), a 

metadata server (MDS), and an object storage target (OST). Similar to PVFS, a 

client, in order to operate on a file must first obtain the file's metadata from the 

MDS. This metadata information will include the location of the file's data, i.e. 

target information corresponding to each object, as well as the authorization token to 

access those objects. Once this information is acquired, the client need not approach 

MDS for any subsequent operations. Since all components of Lustre are present within 

the Linux kernel, it can take advantage of Linux kernel's VFS cache and other kernel 

optimizations. It uses a distributed locking mechanism to maintain concurrency of the 

data. With the metadata separated from the actual data, and with this data striped 

across several nodes, the Lustre file system can easily obtain very high throughput. 

2.5 I /O Characterization 

With disks being the slowest component in the storage system, it is important to 

know and understand the nature of I/O requirements from high-performance appli­

cations. An application's I/O access pattern gives us an insight of how the storage 

nodes behave under real workload and how tuning certain file system's parameters 

can change the system's overall throughput. 

There has been significant early work on I/O analysis of parallel applications [90, 

107, 108, 93, 83, 54]. For the most part, these studies have been done on message 

passing distributed memory parallel systems such as the Intel Paragon, Intel iPSC 

and Thinking Machines' CM-5. Much of this work is several years old and may not 

represent recent usages of parallel systems as usage of MPI and MPI-IO has increased. 

In [52, 53] Corbett et al. provided mechanisms in their Vesta file system to dynamically 
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change the partitioning of data based on the intended access pattern to enhance the 

performance. Their work was based on access patterns of applications existing at that 

time and may not match with recent developments in the field. Smirni et al. in [120] 

studied the evolution of I/O access patterns of scientific applications and identified 

patterns that belonged to the application and not artifacts of optimizations made by 

the developers. 

Other recent works have looked at parallel I/O on the Cray XT [136]. Alain et 

al. in [33] characterized scientific workloads on multi-core processors, but without 

considering the effects of the file system. Their work evaluated the performance 

of the system based on the bandwidth and latency of the operation when run in 

different configurations. Kunkel and Ludwig [85] evaluated the performance of PVFS2 

architecture under synthetic workloads concentrating on software layers of PVFS2 

instead of disk I/Os. In 2007, Ahmad [32] published results which included disk I/O 

performance, block size and locality details, however they used synthetic workloads 

over ZFS and UFS file systems. 

Our work presented in Chapter 3 differs from the previous work in that we evaluate 

the workloads from the parallel file system point of view, specifically looking at the 

effect on individual I /O nodes under both synthetic and actual applications. We 

present details on how different configuration of servers on storage nodes effects the 

frequency of request on the file system, and how much variation we get on those 

parameters by changing the number of processors. 

2.6 File System Properties and Extensions 

On single node systems, logical volume managers such as Linux's LVM help ad­

ministrators manage disk drives and other similar storage devices as physical volumes 

under a single large volume. The volume could then be partitioned in different sizes 

for mounting as different file systems, or be used as a single partition under a single file 
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system. Although this technique of using several devices under a single volume sim­

plifies storage management, it hides the storage mechanism under it, thus preventing 

the file system or higher level applications from becoming aware of the characteristics 

of the underlying storage. Similarly, the underlying storage is also unaware of the 

characteristics or the nature of the data that it is storing. The ATTEST framework 

(Chapter 4) allows the data characteristics, using attributes, to be pushed all the 

way to the underlying storage layer so that the system can distribute or optimize the 

location of the data storage if it can, all under a single mount point. 

Sun's ZFS file system [122] subsumes much of the logical volume management 

functionality into the file system. This allows the file system to make striping and 

redundancy decisions at a higher level and on a file-by-file basis. However, the stor­

age system itself is not made aware of the file characteristics, and it is not possi­

ble to enable particular features such as compression or encryption through plugins. 

UnionFS [105] is a popular mechanism to merge different file systems. UnionFS allows 

a user to merge different directories across different file systems into a single mount 

point. The unification under a single file system is independent of the underlying 

file systems. UnionFS forms the back-end for Live CDs of variety of Linux's distros. 

UnionFS gives the user and applications extreme flexibility in managing files from a 

single mount point. However, the placement of files is based on the order of mounts, 

or access permissions of the underlying file systems. Thus, the user does not have the 

freedom to select the exact file system to place the file. 

Some of the other solutions that merge different file systems and also provide 

the ability to control the location of the data include RAIF (Redundant Array of 

Independent Filesystems) [78] and UmbrellaFS [63]. Under both mechanisms, the 

user has the ability to define rules to determine distribution policies. While RAIF 

provides users with redundancy characteristics over different file systems, UmbrellaFS 

gives user ability to select partitions based on rules, and each partition in itself could 
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have independent redundancy devices under it. These mechanisms however do not 

allow underlying storage systems to be aware of the rules or characteristics. Further, 

they do not propagate the rules across the network in case of network attached storage 

devices. 

Various researchers have investigated enabling storage management decisions on 

a file by file basis, but primarily for redundancy policy. For example, RAIF allows 

individual files to be spread across different file systems with each file having different 

distribution and redundancy characteristics [79]. Users are allowed to specify desired 

RAID levels through the use of ioctls [10]. Similarly, many clustered and object-based 

file systems have taken this approach to redundancy by allowing different files or ob­

jects to have different RAID levels [46, 48, 134]. In Lustre, these decisions are made 

by the user through the use of ioctls. Peer-to-peer file systems also use file based 

granularity to replicate files based on file popularity or node reliability [84, 112, 57]. 

Other aspects of storage policy management that have been done at the file level in­

clude distributed consistency using user plugins [128], dynamic compression through 

elastic quotas [141], and transparent encryption using extended attributes [92]. How­

ever, none of these methods allow user specified mechanisms across multiple storage 

policy dimensions as we have suggested. 

Application-aware storage has been suggested by Anderson and Griffioen [37]. 

Their work uses name-based hints to allow applications to specify persistence re­

quirements to the storage system. This approach is similar to ATTEST in that the 

hints are pushed down to the storage system but is not a general approach for a va­

riety of system policies. ATTEST allows applications to set storage policy attributes 

as required by the application. For example, in managing a database, the application 

may have a better understanding of files created by it and its storage requirements 

rather than the data administrator. 
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2.7 Redundancy and Failures 

Parallel file systems use several storage nodes to stripe data and take advantage 

of parallelism. However, using more nodes for storage also raises concerns for relia­

bility or failures. A higher number of independent components in the system reduces 

the system's overall mean time to failure (MTTF), thus increasing the down-time 

frequency. This makes designing a reliable storage system a complex problem. Very 

few file systems provide redundancy and data integrity checks and those which do, 

bear a high overhead. Most of the sites simply use the simpler but costly fail-over 

mechanism as a workaround to add reliability in the storage system. Similarly, disk 

backups are utilized in cases where one requires device-level data corruption recovery. 

Many commonly used high performance parallel file systems such as Lustre and 

PVFS have ignored reliability issues like storage node failures or data corruption. 

But as the cluster size increases, these failures will become more common and more 

important. Distributed storage systems that have used replication include Echo [123], 

Petal [86], Slice [35] and peer-to-peer file systems such as FarSite [45, 57], Freenet [50], 

PAST [58], CFS [56], Ivy [97] and Pangaea [112]. Xin et al. in [134] present reliability 

techniques to handle non-recoverable read errors and drive failures by replicating data. 

IBM's GPFS [116] provides support for software-based data replication along with on­

line fail-over. It uses client-based replication algorithm and hence requires distributed 

locking schemes. Lock-less mirroring techniques have been proposed by Settlemyer 

et al. in [117]. Ceph [131, 130] provides redundancy by replicating data between 

storage devices using primary-copy technique and splay replication. Arpaci Dusseau 

et al. in [40] proposed the River environment in which they used a modified version 

of chained declustering [73] to provide data mirroring. However, the problem with 

replication is the significant overhead costs in terms of storage space. OceanStore [84] 

uses erasure codes to reduce the storage overhead while providing better availability 

guarantees, but at the expense of significant computation overhead. 
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Using parity-based redundancy can reduce the storage overhead, but is expensive 

in terms of performance in a networked storage system. Among the earliest parallel 

storage systems to support parity based redundancy was the Swift/RAID system [89]. 

Swift/RAID used transfer plans that are specified at the application level to determine 

RAID levels and striping characteristics. In spite of using optimized data transfer 

plans they were able to achieve write performance that was only half of the non-RAID 

performance. Log-structured file systems such as Zebra [67] and xFS [36] can amortize 

the cost of parity calculation at the expense of garbage collection complications. Pillai 

et al. have designed a modification of PVFS called CSAR which uses a hybrid RAID 

scheme that mirrors partial stripe writes on the server [103]. These mirrored data 

blocks can incur significant storage overhead since they are not cleaned up and the 

scheme still incurs a 20-25% performance overhead for both large and small writes. 

Amiri et al. have discussed concurrency strategies when developing RAID protocols for 

shared storage [34]. One of the few works that discussed the availability of the system 

during failure was by Yu and Vahdat. In [135], they presented Om which can achieve 

high availability in peer-to-peer, wide-area storage system through online automatic 

regeneration techniques. Their work was however developed for files spread over a 

wide-area network and required considering network congestion and node overloads. 

Our work presented in Chapter 7 provides redundancy algorithms for parallel file 

systems present on local-area networks and do not have to take network latency into 

account. 

2.8 Data Integrity 

Significant work has also been done on identifying data corruption in large-scale 

storage environments [42, 41, 75], each of them concluding that silent data corruption 

is a real problem. Gopalan et al. in their paper [119] provided a detailed survey of 

different integrity assurance mechanisms that are in use today to tackle the problem. 
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However, little work has been done on studying the real cost of providing checks 

to verify integrity of the data, particularly in the context of a parallel file system. 

Single-node journaling file systems such as Ext4, JFS and XFS provide user-level 

tools such as fsck to check file system consistencies. These tools are provided to 

ensure proper system startup after unclean shutdown, by keeping the file system's 

metadata consistent, but they do not perform data integrity checks. ZFS [122] and 

Btrfs [4] are examples of file systems that provide both data and metadata verification 

by using checksums. The IRON file system is a prototype file system that provides in-

disk checksumming [104] to verify the integrity of the data. This work demonstrates 

that checksums can be applied to local file system without a large overhead; however, 

the work is limited to direct attached storage. 

Most distributed file systems provide integrity checks only for transmitted data. 

Lustre [46], for example, has provisions for checksum verification for all blocks trans­

mitted over the network. Any corrupt data detected by that mechanism can be 

requested again from the sender. However, it fails to provide integrity checks once 

the data is stored on the disk. Ceph [131] provides integrity checks by using Btrfs 

as its back-end file system. GPFS [116], PFS [121], PanFS [125] and GFS [64] are 

other popular distributed file systems that provide integrity checks, but only as an 

option during mount for persistent checks. None of these file systems provide any in­

sight into how expensive checksum computations are, mostly for commercial reasons. 

Moreover, most of these file systems provide integrity checks only as a mount option 

although all studies stress the need for having such a feature available by default. 

In our work, we use a parallel file system and provide redundancy and reliability 

for clustered storage system based on the rules set by the user. Our work also can 

be extended to support and take advantage of variety of emerging technologies like 

flash-based disks, or object-based storage devices. 



Chapter 3 

Application Characterization on a Parallel 

File System 

Rapidly increasing processor speeds and the ease with which they can be connected 

and converted to form a clustered computer environment has given rise to a new world 

of parallel computing. These parallel machines run applications which operate on the 

principle that large problems can always be divided into several smaller ones, and 

then each smaller problem can be solved concurrently [20]. 

However, disk I /O on these large machines continues to be a challenge. Ac­

cording to Amdahl's system balance rule [70], each MIPS (million instructions per 

second) must be accompanied by one megabit per second of I /O. However, today's 

disks are not able to meet this rule especially in light of the modern cluster com­

puting or supercomputing capabilities. To overcome this, parallel file systems such 

as PVFS [21, 49], Lustre [46] and GPFS [116, 77] are typically used. Scientific com­

puting often requires large applications doing several noncontiguous access of small 

regions of data [43, 54, 99, 126]. However, the frequency and size of requests vary 

across applications. Due to the diverse computational and data access patterns of 

different applications, it is essential that file system designers understand how an 

application accesses data. The standard approach of striping data in a parallel file 

systems can become a bottleneck if the file distribution parameters such as stripe size, 
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caching duration, or prefetch length do not fit the access patterns of the applications. 

Workload characterization, thus, plays an important role in systems design. It is one 

of the necessary and most important steps in recognizing the fundamentals of the 

parallel file system. It allows us to understand the state of the system under different 

applications. We ran a variety of parallel applications and have collected their I/O 

patterns on the parallel file system PVFS. In this chapter, we provide an analysis 

that can characterize these applications and their access patterns. 

The rest of this chapter is organized as follows. Section 3.1 provides details of 

the applications that were run on PVFS and in Section 3.2 we present details on our 

experiments and results. We provide the summary of our experiments in Section 3.3. 

3 .1 A p p l i c a t i o n s 

Input/output characterization of an application code ideally includes access pat­

terns and performance data from the application, its input/output libraries, file sys­

tem, and device drivers [54]. Some of these are handled by cache at different levels of 

the system. Physical disk access patterns provide the ultimate evaluation of system's 

response. Disk accesses made by the application generally depend on its input/output 

modules, size of data being handled, temporal spacing and spatial patterns generated 

from its computation libraries and certain file system's optimizations (eg. prefetching 

or caching). Monitoring the I/O access patterns gives us the real response of the 

system under that application and gives the file system designers an insight into the 

application's requirements. At the same time, it is also a good resource for application 

developers to maximize the use of file system policies. 

Most parallel applications use one of five major models of I /O as described below. 

• Single output file shared by multiple nodes by ranges 

• Large sequential read by single node at beginning of computation and large 
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sequential write by single node at end of computation 

• Checkpointing of state 

• Metadata and read intensive - small data I/O, frequent directory lookups for 

reads 

• Each node outputs to its own file 

There are other I /O access patterns, but most applications use one or more of these 

patterns for the majority of their I/O. In this study, we selected a sample of parallel 

applications that use one of these forms of I/O in order to represent a wide range of 

parallel I/O applications. The popular benchmarking tool NPB-BMI uses the single 

output file model. The scientific application OpenAtom is largely distinguished by its 

I/O on several input states files during the computation. FLASH, another common 

scientific application uses frequent checkpointing of state to an output file, and finally, 

web server usage is characterized by heavy metadata usage. 

We shall briefly discuss the properties of each of these applications in this section. 

3.1.1 N P B - B M I Benchmarking Tool 

The NAS Parallel Benchmark (NPB) (BMI version 3.3) is a parallel benchmarking 

tool developed by the NASA Advanced Supercomputing Division [76, 133, 18]. This 

tool was formerly known as BTIO. It presents a block-tridiagonal (BT) partitioning 

pattern on a three-dimensional array across a square number of compute nodes. Each 

processor is responsible for multiple Cartesian subsets of the entire data set, whose 

number increases with the square root of the number of processors participating in 

the computation. The I/O requirements and verification tests for the tools are as 

follows. After every five time steps, the entire solution field, consisting of five double-

precision words per mesh point, must be written to one or more files. After all time 

steps are finished, all data belonging to a single time step must be stored in the 



23 

same file, and must be sorted by vector component x-coordinate, y-coordinate and 

z-coordinate respectively. It uses MPI for communication and MPI-IO for I/Os. In 

our experiments, we ran NPB-BMI's ' C class of "full_mpio" application which uses 

collective I/O to combine data accesses of multiple processes into large, regular I/O 

requests. 

We chose this application because it provides an example of a parallel application 

in which each processor writes into a shared output file the data for which it is 

responsible, thus potentially contributing to file system fragmentation. 

3.1.2 O p e n A t o m 

OpenAtom is a highly scalable and portable parallel application for molecular dy­

namics simulations at the quantum level [19]. It is written in Charm++ [80] which 

is a parallel object-oriented programming language based on C + + and was designed 

with the goal of enhancing programmer productivity by giving a high-level abstrac­

tion of a parallel program to deliver good performance on the underlying system. 

OpenAtom attempts to solve important problems in material science and chemistry. 

Their approach uses Car-Parrinello ab initio molecular dynamics (CPAIMD) which 

involves a large number of inter-dependent phases with high-communication overhead 

including sparse 3D Fast Fourier Transforms (3D-FFTs), non-square matrix multiplies 

and dense 3D-FFTs. OpenAtom's I/O requirement consists of a large sequential read 

at the beginning of simulation to read the input data. At the end of simulation, the 

output is flushed as a large file thus initiating a sequential write. In addition, there 

are several intermediate checkpoint flushes which can be controlled using pre-defined 

parameters. OpenAtom requires POSIX access to file system and hence uses PVFS's 

virtual file system interface. 
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3.1.3 FLASH 

FLASH is a block-structured adaptive mesh hydrodynamics code that solves fully 

compressible, reactive hydrodynamic equations, developed mainly for the study of 

nuclear flashes on neutron stars and white dwarfs [62, 8]. The "Flash" problem is cen­

tered on simulating the accretion of matter onto a compact star, and the subsequent 

stellar evolution including nuclear burning either on the surface of compact star, or in 

its interior. The computational domain is divided into blocks which are distributed 

across the MPI processes. A block is a three dimensional array with an additional 

four elements as guard cells in each dimension on both sides to hold information from 

its neighbors. The I /O uses HDF5 [29], a higher level data abstraction which allows 

data to be stored along with its metadata in the same file. HDF5 is built on top 

of MPI-IO. FLASH flushes its data at checkpoint intervals over multiple checkpoint 

files and is a completely write-dominated workload. It hence provides us a different 

perspective of scientific applications. 

3.1.4 Web Server 

Since the metadata server is a prime component of a parallel file system such 

as PVFS, we chose a metadata heavy workload for our final application. We used 

the real web server traces of the 1998 Soccer World Cup web site [26]. The traces 

were collected on 33 different web servers at four geographic locations. The real 

measurement was done over a period of 88 days during which it received 1.35 billion 

requests [39]. However, for our experiments, we ran the trace of 4 peak hours on one 

of the busiest days observed by the web server. The access rate averaged roughly 800 

HTTP requests per second. Unlike the scientific applications that we have discussed 

above, the web server is very metadata intensive as it requires numerous directory 

lookups and file opens and closes. Thus, running these web server traces will give 

us an insight of the impact of real-world heavy metadata workloads on parallel file 
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Table 3.1: Basic Application Characteristics 

Application 

NPB-BMI 
OpenAtom 

FLASH 
Web Server 

Files 
Accessed 

1 
135 
10 

4,965 

Data 
Accesses 

30,736 
174 
480 

11,469,846 

Read 
% 
50 

91.8 
0 

100 

Metadata 
Accesses 

1 
135 
10 

2,433,391 

Run Time 
(sec) 

59 
297 
934 

14,524 

systems. 

3.2 Application I /O Characterization 

We conducted our experiments on 16 dual-core AMD Opteron dual-processor ma­

chines each with 2GB RAM and a 80GB SATA disk drive. EXT3 served as the base 

file system on each of these machines. 

We modified PVFS (version 2.7.0) to collect traces about each request sent by the 

client and received by the server. The information which was logged included time-

stamp, nature of request, size of request (in case of read/write), server number and 

file ID. This information which was added as a configurable option to PVFS would 

dump the trace to a separate log file, in a temporary directory. In our experiments, 

apart from tracing, PVFS was mounted with default options using the TCP protocol. 

For the Web server experiment, we took the World Cup trace and partitioned the 

trace so that the workload was load balanced across the available Apache servers. We 

configured from 2 to 16 Apache servers and split the requests among them. PVFS was 

configured with multiple metadata servers with each MDS colocated with an Apache 

server. 

We analyze our results based on three important parameters. They are inter-

arrival time, request size and long-range dependence of requests. Table 3.1 also shows 

other basic characteristics of the applications including number of files accessed, num-
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ber of data accesses, percentages of data accesses that are reads, number of metadata 

accesses, and run time for 16 processors using 16 I /O nodes configuration. 

3.2.1 Inter-arrival Time 

Inter-arrival time is defined as the time difference between successive I/O requests 

on a node. It is a useful measure to help identify the load on the storage nodes and 

determines the required service from them. It can be used to determine the intensity 

of traffic observed by the node and hence can help design and configure both hardware 

and software components of the node. 

Each application was run with 2 to 16 compute nodes and 2 to 16 I/O nodes, 

except for NPB-BMI where the number of compute nodes were 4, 9 and 16 since for 

NPB-BMI the number of processors must be a square. In the graphs in Figures 3.1-

3.4, we show the cumulative inter-arrival time distribution seen by all I/O nodes. 

As seen in Figure 3.1, NPB-BMI has very frequent accesses - more than 90% 

of the requests are within 2 milliseconds of the previous request in all cases. We 

see heavy load on storage nodes in case of 16 I/O nodes with over 90% of requests 

having inter-arrival time of less than a millisecond. However, increasing the number 

of storage nodes reduces the frequency of requests. This is because the data is shared 

between more nodes. It can also be seen that increasing the number of compute nodes 

increases the frequency of requests, which is because the new processors are sharing 

the I/Os and hence the storage node sees requests from more compute nodes. 

The FLASH application (Figure 3.3) and the web server (Figure 3.4) show similar 

characteristics to NPB-BMI. For FLASH and the web server, it can be seen that with 

fewer processors, the frequency is reduced, which is similar to what was seen with 

NPB-BMI. Thus, as we scale up in processors we must be careful to scale up I/O 

capacity to match with the increase in computation. But scaling up I/O does not 

simply mean increasing the number of I/O nodes. As seen in the figures, distributing 
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the I/O across more nodes does not decrease the inter-arrival times because the files 

are striped across all nodes which causes any read or write to access all nodes. If the 

latency is being affected because of the frequent accesses, it may be appropriate to 

change the striping so that files are distributed across only different subsets of the 

I/O nodes. 

OpenAtom, on the other hand, does not show any significant difference in the 

inter-arrival rates as we change the number of processors (Figure 3.2). Increasing the 

number of processors reduces the inter-arrival time only by a small factor. This is 

because OpenAtom does most of its I/O through a single compute node. Although 

OpenAtom dumps checkpoint data at regular intervals, it is also done through a single 

compute node. Thus, the number of processors does not change the frequency of the 

I/O. From Figure 3.2 it is also clear that increasing the number of I /O nodes lengthens 

the inter-arrival times. This is simply because the data is distributed sequentially 

across more I/O nodes. As a result, striping across all nodes is a preferred option 

to increase throughput at the start and end, and latency is not likely to be an issue 

during the actual run of the application. 

Figure 3.5 shows the average inter-arrival time of each metadata server using the 

web server application. For relatively few HTTP servers, the frequency of access to 

the metadata servers is not that great, but as we increase the number of HTTP servers 

the inter-arrival time decreases significantly. With 16 HTTP servers, the inter-arrival 

time distribution is nearly the same as the data I /O distribution. Even with the load 

distributed across 16 metadata servers, the each server can see significantly increased 

activity. 

3.2.2 R e q u e s t Size 

In this section, we examine the request size distribution, a measure of the number 

of blocks in each request sent to the disk (Table 3.2). The larger the request the 
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Figure 3.5: Inter-arrival time on MDS with 16 I/O nodes (Web server) 

more likely that the underlying file system can deliver the parallelism required for 

performance. 

In the case of NPB-BMI, we observed a fixed request size across different storage 

node counts. The request size however decreased as the processor count increased. 

This implies that the new processors are sharing the I/Os. 

The request size for the FLASH, OpenAtom and web server workloads were fixed 

at 4K in size. This could be easily explained since all three of them do sequential 

reads of data through a single processor, they do not do very large I/O. Further, 

OpenAtom and the web server submit requests using the POSIX interface which uses 

Linux kernel's VFS and thus limiting the request size to 4K. An increase in VFS's 

page size limit could possibly help storage nodes see larger requests and at a slightly 

lower frequency thereby improving overall I/O performance. 

3.2.3 Long Range Dependence 

Many analytical studies of I/O assume a Poisson model for I/O requests. Pois-

son models presume that there is no dependence between a request and subsequent 

requests. However, real I/O does exhibit some long range dependence - i.e. request 
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Table 3.2: Request Sizes for the NPB-BMI application 

Application 

NPB-BMI 

Number of 
Processors 

4 
9 
16 

I /O Nodes 
2 4 8 16 

15.4 MB 15.4 MB 15.4 MB 15.4 MB 
7.05 MB 7.05 MB 7.05 MB 7.05 MB 
3.34 MB 3.34 MB 3.34 MB 3.34 MB 

patterns that do not behave like the requests generated by a Poisson process. Markov 

I/O models that assume a probabilistic dependence also do not accurately reflect real 

I/O behavior. In our work, we calculate the Hurst parameter to describe self-similarity 

or long-range dependencies on the traffic generated by the workload as seen on the 

storage nodes. Self-similar traffic behaves the same when viewed at different degrees 

of traffic. This information could be used to understand the "burstiness" of requests. 

We draw on techniques to estimate the Hurst parameter as described in [51]. 

Let X = (Xt : t = 0 ,1 ,2 . . . ) be a covariance stationary stochastic process with 

mean fi, variance a2 and autocorrelation function r(k),k » 0. Assume r(k) of the 

form 

r(k) ~ k~® , k —> oo 

where 0 < 0 < 1. The process X is called (exactly) second-order self-similar if for 

all m = 1, 2 , 3 . . . , var(X^) = a2wrp and 

r(m\k)~r(k),k>0. 

and called (asymptotically) second-order self-similar if for k large enough, 

r(m)(fc) ->r ( fc ) ,77woo 

holds true. 
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Figure 3.6: Variance-time plot for 4 configurations on 16 I/O nodes for OpenAtom 

The Hurst parameter, H is characterization of long range dependence. To cal­

culate the Hurst parameter and determine self-similarity, we first plot var(X(-m^) as 

a function of m. The variance-time (variance vs. m) plot is made on log-log scale. 

The relationship between the Hurst parameter and (3 is given by H — 1 — (3/2, where 

(3 = —p from the equation of the line y = px + b for each processor configuration, p 

is the slope of the line. Any process characterized by a slope less than 0 and greater 

than the reference line exhibits long range dependency and has an H parameter value 

of 1/2 < H < 1. 

Figure 3.6 shows the variance-time plot for OpenAtom with 16 I/O nodes. The 

data for each processor configuration series is fitted to determine the y = px + b 

line. The graph shows the slowly decaying variance of a self-similar series. It can 

be observed that the slope for all processor configurations has a slope between 0 and 

— 1. Thus, for OpenAtom, the requests on the storage nodes exhibit Long Range 

Dependence. We found similar behavior for the other applications and the Hurst 

parameter for these applications is shown in Table 3.3. 

The Hurst parameter, H, takes on values from 0.5 to 1. A value of 0.5 indicates the 

data is uncorrected and purely random, while values closer to 1 indicate high degree of 
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Tab le 3.3: Hurst Parameter for different workloads 

Application 

NPB-BMI 
OpenAtom 

FLASH 
Web Server 

Processor Count 
2 4 8 9 16 

0.8850 - 0.8700 0.8245 
0.7831 0.7932 0.8628 - 0.8552 
0.6474 0.7660 0.7871 - 0.6013 
0.9439 0.9831 0.7707 - 0.9438 

persistence or long-range dependence. In our work, we obtained the Hurst parameter 

by calculating the slope of the best-fit line on each configuration. From this, it can 

be observed that all four applications have self-similar inter-arrival properties on the 

storage nodes. Thus, the traditional approach of using Poisson models to characterize 

I/O behavior is not adequate. NPB-BMI and Flash do I /O at regular intervals and 

OpenAtom does major I/O at the beginning and the end as well as checkpointing 

at regular intervals. Thus, these I /O accesses are clearly repetitively patterned and 

that is reflected in the high Hurst parameters. Web server I /O shows significant self-

similarity because of the popularity of groups of files. A Hurst parameter value closer 

to 1 for the web server workload indicates that significant performance benefit could 

be achieved by using additional memory or caching on the storage nodes. 

3 . 3 S u m m a r y 

In this chapter, we presented a survey of different parallel applications and their 

impact on I/Os as seen on storage nodes and metadata servers in a parallel file system. 

From our study on the inter-arrival times, we see that most parallel applications that 

do significant I /O during the run increase the I /O frequency as we increase the number 

of compute nodes. However, scaling I/O nodes alone will cause problems because the 

increased load is transferred to each I/O storage node in the common case of striping 

across all storage nodes. Thus, care must be taken with striping as you increase the 
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number of I/O nodes. Other applications which do significant sequential I/O can 

and should use striping across as many nodes as possible to increase throughput. 

Our study on self similarity shows that most parallel applications exhibit significant 

long range dependencies. This result shows that I /O access models that assume 

independence or randomness between requests are not valid. 



Chapter 4 

Attribute-based Extendable Storage 

Framework 

There has been an ever increasing need to store data, but managing this data 

has become a challenge for system administrators. Storage administrators spend a 

significant amount of time determining and enforcing storage policy and provisioning 

storage for these different and often conflicting policies. At the device layer, one 

has to decide what level of RAID to use to provide required levels of reliability and 

availability. At the logical volume level, the primary requirement is to allocate or 

provision sufficient storage capability from a pool of storage buckets for user and 

application demands. With modern SAN systems, these allocations can be made 

dynamically and the process is fairly routine to change the amount of storage available 

in a logical volume. In addition to provisioning and redundancy, file system decisions 

must be made with regards to quotas, how often to backup systems (daily, weekly, 

etc.), where to backup data to (tape, disk, off-site, etc.), whether to snapshot, whether 

to encrypt data, etc. 

The difficulty in assessing the different options is that the granularity of storage 

policy is too large - disk, logical volume, file system, etc. However, it is often the case 

that these policy decisions should be made on a file or directory basis. In this chapter, 

we present ATTEST (ATTributes-based Extendable STorage), an extendable storage 
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system stack architecture that is evolved from stackable file system [69, 139, 137, 140] 

and object-based storage technologies with attributes-based plugins in order to facil­

itate a file-based storage policy model. ATTEST is a rule-based architecture which 

allows the flow of attributes through every layer of the storage system. Availability 

of storage attributes at all layers of storage stack allows each layer to make its own 

decisions on the best way to enforce a particular policy. These attributes vary from 

selecting between different stackable file system modules [138, 38] to selecting between 

different redundancy levels at the device level. 

The remainder of this chapter is organized as follows. Section 4.1 discusses some 

aspects of storage policy and the inefficiencies of large grain policy administration. 

Section 4.2 describes ATTEST, the architecture for an extendable storage system 

stack driven by user-directed file attributes. Section 4.3 explains the design and 

Section 4.4 shows the results. We end with a section on summary. 

4.1 Storage Policy 

Every organization is required to have storage management policies and practices 

developed to ensure that the data is properly managed. Examples of these policies 

include data retention, data protection from both failure and external attack, etc. 

Storage system administrators are required to ensure that these are enabled with the 

best performance and minimum cost to the organization. In this section, we shall 

discuss how these policies impact today's storage systems and how ATTEST can 

provide a strong framework to help improve these systems. 

4.1.1 R e d u n d a n c y 

For several years, RAID [102] has been the most popular and effective solution for 

improving the reliability and availability of disk subsystems. However, the different 

levels of RAID require dedicated extra storage space for redundancy and can also 
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incur a performance penalty, particularly for RAID5. Often times, there are many 

files on a storage system that do not require strict guarantees on reliability, so it 

may be possible to reduce the amount of redundancy required in return for higher 

performance and less storage overhead. However, current storage systems do not 

allow these decisions to be made on a file-by-file basis. Consider, for example, the 

HP AFRAID system which improves the performance of RAID5 by delaying parity 

calculation, but at the risk of leaving the data unprotected for a small time frame [115]. 

Preferably, we would like to make this optimization on a file or directory basis, so 

that important files are not potentially compromised. Similarly, we may wish to turn 

off redundancy completely for temporary or unimportant files such as web browser 

caches or audio/video files. This is not possible with existing non-commercial storage 

architectures since all files in the same file system or disk subsystem must share the 

same reliability and availability requirements. 

4.1.2 Data Retention and Recovery 

Storage administrators must always worry about the retention of critical data 

and the recoverability of that data and, thus how to ensure proper backup mecha­

nisms. Sarbanes-Oxley [24], HIPAA [11], and other regulatory mandates have made 

data retention a costly and time-consuming endeavor for most storage administra­

tors. Among the different options are backup to tape, backup to disk, snapshotting, 

and continuous data protection (CDP). One of the primary deterrents to frequent 

backups is the time and space required for the backup regardless of the mechanism. 

This is particularly problematic with large file systems with terabytes of data and 

tape systems not getting appreciably faster in recent years. 

However, backup times could be improved significantly if "unimportant" files were 

not backed up. To give an idea of the number of "unimportant" files on a typical 

disk, according to a Sun Microsystems storage assessment, less than 41% of a disk 
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contains useful data [127]. Similarly, up to 40% of user data is regenerable, e.g. object 

files that can be recreated from source or old tar files [141]. This number probably 

underestimates the amount of regenerable data, since user data typically does not 

contain system and application files which can be reloaded from CD or downloaded 

from the Internet. On UNIX systems, system and application files may already be on 

a separate / or / u s r file systems. Unfortunately, most Windows or MacOS systems 

by default have a single partition for all files, both system and user. In such cases 

where we have vast amounts of useless or regenerable data, we can eliminate backup 

for these files or reduce the recovery guarantees. For example, if 40% of a storage 

system does not need to be backed up, it can cut the backup time and space by 

nearly half. Similarly, turning off snapshots or CDP for unessential data can also 

reduce storage overhead significantly. 

With single user PCs, backup software allows users to selectively mark files for 

periodic backup thus reducing the amount of data being backed up. Most current 

backup systems do support the capability to do selective backups, but since enterprise 

backup processes are controlled by central storage administrators, they are not aware 

of the necessity of specific files, and as a result they are overly conservative and backup 

everything. The ability to do selective backups is not used since the end user can not 

contribute the information needed to activate the feature. Some Enterprise storage 

management software such as Tivoli do allow for user selective backup, but these 

features are accessed through complex tools distinct from the file system. ATTEST 

allows these attributes to be set in the normal file system using the same rules to set 

other storage policies. If users are able to specify in a simple format the important 

files that require backup as well as frequency of backup and the recovery objectives, 

storage management tools can then enable tape backup, snapshot, or CDP as required 

on a per-file basis. 
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4.1.3 Pe r fo rmance 

We have given some examples of how loosening redundancy requirements on cer­

tain files can improve storage system performance. In addition to redundancy opti­

mizations, other opportunities for performance tuning are available to storage admin­

istrators. At a high level, this tuning involves identifying bottlenecks and introducing 

load balancing or provisioning more devices. At a lower level, storage administra­

tors can also choose caching/persistence policies, striping sizes for parallelism, block 

transfer sizes, amongst others. Once again these decisions are highly influenced by 

the type of file and type of access. For example, temporary files do not have to persist 

to disk but database files do. User input on the type of file can assist storage systems 

in determining optimal performance strategies. 

Nearline storage provides administrators another option while deciding on policies 

for managing data. It is used to store data which does not change over time as often, 

but is not ready to archived to a tape. Nearline storage architectures provide near-

primary storage performance at a significantly lower cost by utilizing disk drives 

and removable storage (tapes, CDs etc.) in a hierarchy for storing data. A typical 

example includes large software development repositories which are compiled every 

night. While the software trees are large, they do not see much change across daily 

builds [6]. Storage administrators could use knowledge of these properties of data to 

allocate resources for storing data in a more cost-effective manner. 

4.1.4 Secur i ty 

With modern enterprise systems and broader network connectivity, the security 

of sensitive data is a major concern. Protecting this data is usually done through 

authorization mechanisms such as file permissions and access control lists. Typically, 

the data is stored in the clear on the raw disk, so any one with direct access to the disk, 

through theft or root privileges, can inspect the data. For users, there are a variety 
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of tools available to encrypt and decrypt data including the standard UNIX crypt 

and products such as PGP. However, these methods do not scale to large systems 

and are not transparent to applications. In response, there has been work in volume 

and file system level encryption so that the decryption is invisible to the application. 

However, the encryption granularity is so large that significant computation is wasted 

on the encryption of files that don't need to be encrypted. 

We performed an analysis of a subset of the University of Connecticut's engineering 

server's user directories and found that only 19% of the user files had user-only read 

permissions. Moreover, those files only comprised 10.7% of the storage space. If these 

files serve as an upper bound approximation of files that users would want encrypted, 

we can reduce the encryption costs by roughly 90% with user input. Microsoft's 

Encrypting File System (EFS) provides the capability to encrypt on file-by-file basis 

such that the process is application transparent. 

4.1.5 P r o v e n a n c e 

Provenance-aware storage systems (PASS) [96] can also benefit from the ATTEST 

architecture. In PASS systems, the lineage or complete history of a file is automat­

ically stored and managed. This includes data such as environment variables of the 

system during compile, macros defined in compiler, etc. While it is important to 

have provenance available for some files, not all files may require provenance. Pre­

serving provenance information for all files requires large amounts of storage space 

which is unnecessary and wasteful. The ATTEST system can enable PASS for just 

the necessary files. 

4.2 ATTEST Architecture 

In the previous section, we gave examples of improved redundancy cost in terms 

of storage overhead and performance but to the detriment of availability or reliability 
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in a particular aspect. One can use static means to determine the importance of 

availability or reliability for different files, but ideally we would like to determine 

them more dynamically. The AutoRAID system from HP uses this concept as it 

dynamically moves blocks from high performance mirroring to lower performance 

parity storage and vice versa [132]. As a side effect, it ends up moving blocks from 

higher reliability to lower reliability and vice versa. 

The difficulty with dynamic mechanisms is that the only hint with respect to 

the importance of a file is the frequency of access - in the sense that files that are 

frequently accessed are presumed to require higher performance and in the case of 

AutoRAID also higher levels of redundancy. In practice, this is not often true. For 

example, application files are accessed frequently and require high performance but 

they do not require high levels of data protection in a non 24x7 environment, since 

they can easily be re-installed. Thus, instead of mirroring we may want to put 

these files on a RAIDO system. An analysis of a large scale network file system in a 

corporate environment showed that the majority of opened files were of an unknown 

type [87]. The study also revealed that most file types did not have any common 

access patterns. This implies that the administrator cannot make decision simply 

based on file types. The only reliable source for importance of files is the user who is 

able to make judgments of cost in terms of disk space and performance vs. availability, 

reliability, and recovery guarantees. 

4.2.1 Extended Attributes 

The natural mode of expression of a system administrator or user's wishes to the 

file system is by setting attributes for a file or directory. Modern file systems support 

extended attributes which can convey features other than standard file metadata. We 

propose that these extended attributes be used to specify storage policy decisions such 

as reliability and availability levels, recovery times, backup intervals, performance 
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characteristics, etc. However, since many of these decisions are implemented at layers 

of the storage system that are far removed from the file system, it is necessary to push 

this attribute information down the storage system stack. With current virtualized 

storage systems which abstract away much of the underlying storage architecture, 

this may be difficult, but it is absolutely necessary in order to fully expose to the user 

the costs and benefits of each reliability choice. 

With these per-file attributes, it becomes possible to implement storage polices on 

a much smaller granularity. Some files could thus be encrypted with high reliability 

while other files may have no redundancy guarantees at all. The key is that the 

tradeoffs are made visible to the user so that the user can control the choice. Using 

extended attributes gives user the freedom of moving files within and across systems 

using ATTEST without worrying about the policies, since these extended attributes 

become part of the file's metadata. 

4.2.2 Extendable Plugin Architecture 

Currently, operating systems do not expose the attribute information at all levels 

of the storage stack. The ATTEST architecture sets up a flow of plugins along 

the storage stack so that the user defined policies are available from the file system 

layer to all storage layers of the kernel, including the logical volume manager, device 

drivers, and the disk layer. These policies are then used by the lower layers to make 

intelligent decisions such as defining appropriate redundancy and availability policies. 

These attributes could either be set by the user individually or by rules based on file 

name, uid, or other metadata. By doing so, the user has more flexibility to decide on 

the best match of reliability and performance that the file might require. 

With object-based disks and intelligent disks potentially appearing commercially 

in the near future, these policy attributes can be passed all the way to the disk layer 

as object attributes. In active storage systems or object-based storage systems the 
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plugin stack can be expanded to the object store layer as well. OSD architectures 

easily support expanded metadata that could contain policy information at the object 

level. With the use of intelligent object storage targets, the policy decisions can then 

be pushed to the object store as well. We have begun work with the PVFS [49] file 

system to support such policy management. 

The basis of the ATTEST architecture is to use plugins to implement the various 

policy functions if the underlying storage does not provide the feature. The plugins 

are arranged at the top level of the stack as shown in Figure 4.1. The plugins are 

enabled or disabled based on the extended attributes for a file or directory. The 

extended attributes also include options that can parameterize the plugin policies on 

a per-file basis. As discussed earlier, different files on a single file system requires 

different levels of redundancy, backup policies, performance etc., and this can be 

achieved through use of stacked arrangement of plugins of different policies within 

the file system. Each plugin functions independent of other plugins and the flow of 

operation would be determined dynamically based on the attributes set for the file 

(by the user/application). 

For example, a file that has been marked for retention may enable the compression, 

backup, and encryption plugins assuming the underlying storage system does not 

support these features. Setting respective attributes on the file can guide the backup 

plugin to choose the backup policy that is to be enforced - tape or disk backup, daily or 

weekly, etc. Performance critical files could be cached by a cache plugin and saved on 

a high-performance storage device. RAID at different levels, or single large-capacity 

disk storage could be chosen based on the importance and size of file. Exposure to so 

many combinations of policies using attributes and plugins gives administrators and 

also application designers several benefits to make use of. 

The preliminary implementation of ATTEST draws on the FiST [140] stackable 

file system technology to provide the plugin stack. As the file is operated on, control 
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User Process 

Virtual File System 

Cache 

Encryption 

Compression 

Backup 

User space 

Kernel space 

The plugins are enabled 
and disabled depending 

on attributes set by the user. 

A user can by-pass any 
of these plugins on a 

per-file basis by setting 
extended attributes on 

the file. 

File System (Ext2/Ext3/JFS/Reiserfs/XFS) 

Device Mapper (LVM) 

Regular 
Disk 

( Tapes ) 

Figure 4.1: ATTributes-based Extendable STorage (ATTEST) Architecture. The different 
plugins shown inside dotted box can be enabled or disabled dynamically based 

on information passed through file's extended attribute. 
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and data flow passes through each plugin but the plugin processes the data only if it 

is enabled for the file. The key difference with stackable file systems is that the stack 

is dynamically configured on a per-file basis. 

A key aspect of the ATTEST architecture is its flexibility and extendibility. The 

use of plugins allows a variety of storage policies to be defined at all levels of the 

storage stack. In addition, the parameterization of modules allows optional features 

to be enabled or ignored as desired. 

4.2.3 Metadata Handling 

Metadata is the most important component of a file system. For any file system 

to be accessible by the user, it is very important that a complete and consistent copy 

of metadata is available. Since ATTEST is capable of handling different levels of 

redundancy under a single file system, it becomes mandatory that a file's metadata is 

available at all times. ATTEST allows users to modify the redundancy level of the file 

during the lifetime of the file. In order to avoid moving metadata across different disk 

volumes, we designed ATTEST to always place the metadata (superblock, inodes, 

etc.) on the volume with the highest redundancy level. 

4.2.4 Migration 

ATTEST also allows users to modify their file's attributes. This permits the 

user to have control of their data not only during the creation of the file, but also 

throughout the existence of the file. However, this feature comes at the cost of delay 

due to migration. When the attributes are modified for a file, all blocks of the file 

are re-read from the disk and written to disk again, to pass through the stacks and 

device layer again, based on the new attributes. 

In the case of directories, if the rules attribute, user, attest, rules, is updated, the 

new rules are applied on all new files created in the directory. In case a new stack is 
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added to the directory, the metadata in the directory passes through the stack, while 

the data within the directory is left unchanged. For example, if encryption is added 

to a directory's stack, its inode table and dentrys' are encrypted, while the files that 

were already present in the directory are not encrypted. All new files created after 

this will however be encrypted. We chose to not apply the new directory rules to 

existing files because of the potential cost to migrate these files. If the user's intent 

is to apply rule changes to all files in a directory, it is easy enough to apply the rules 

through a find . I xargs s e t a t t r XXX type call. 

4.3 Design 

As discussed before, ATTEST provides the user with the capability to control their 

data at a finer granularity in terms of storage policies. ATTEST allows users to set 

rules for files in the file system through two methods. A rules attribute on a directory 

defines attributes for files created in that directory and the rules propagate to all sub­

directories as well. The user also could manually override the default rules by setting 

attributes on each file or directory. Section 4.3.1 provides a detailed explanation on 

the format of rules and attributes and how to set them. 

ATTEST is currently implemented using Linux 2.6.24 as a configurable option dur­

ing compile. To give ATTEST portability across variety of file systems, the changes 

were restricted to the VFS layer and the device mapper layer of the kernel. Thus, 

ATTEST is not limited to any particular file system and can support all devices 

including SCSI and IDE as long as the Logical Volume Manager (LVM) can create 

physical volumes on them. 

4.3.1 Attributes and Rules 

Attributes are set on each file and each directory to convey storage policy de­

cisions to the storage system. These attributes are set using the setfattr or attr 
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user.attest.redundancy^''10'' 

user.attest.compress=''1'' 

Figure 4.2: File's Extended Attributes 

commands. Figure 4.2 shows how the extended attributes are used to define policies 

- in this example, the user has requested compression and high redundancy. Since 

the devices present under LVM are hidden from the user for the most part, the user 

only provides an abstract storage policy without regard to implementation. For ex­

ample, the redundancy rating on a file is given as a numerical value in the range of 

0-10. This scale, from the user's view ranges between not important (lowest value) to 

medium availability (mid-value) to highest-availability and high performance (high 

value). The LVM layer based on its knowledge of underlying devices, will decide how 

to map a redundancy rating to the actual storage devices. The number however is 

not a definite indication of the underlying devices. The LVM uses this number only 

to get information on how important the block is, and which is the best available 

device for that block in the system. For example, a system need not always contain a 

RAIDO, or mirrored (RAID1) devices to provide high availability. In the absence of 

RAID1, all blocks with redundancy value 10 could be placed on RAID5. This way, 

the user need not be aware of the complexities of underlying hardware. 

Since it may be impractical to expect users to set attributes for each individual 

file, the user and system administrator can set rules that define the default attributes 

for a file at creation. An example set of rules is shown in Figure 4.3. 

The rules follow the format of < pattern >:< attributes >. Rules allow users 

to set attributes for newly created files based on regular expression matching on the 

filename. Thus, in the example given, all .c files in /home/user l /pr j_code will be 

given policy attributes that indicate highest redundancy, while all .mp3 files on the 

system will have backup enabled. When the user creates a new file, it is checked in 
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Form: <pattern>:<attributes> 

/home/userl/prj_code/*.c:redundancy=10 

/tmp/*:redundancy=0 

*.c:compress=l,redundancy=10 

*.o:redundancy=5 

*.mp3:backup=l 

Figure 4.3: Rules format 

VFS with all the rules set by the user for a match. The attributes of the file are decided 

based on rules with which a match was found. In case there is a conflict due to different 

rules matching on the same file, ATTEST uses the most conservative interpretation, 

i.e. the rule with highest redundancy is chosen. The attributes generated based on the 

rules can be overridden by manually setting the extended attribute directly. These 

manually set rules will always override the rules, thus giving users a simple way to 

have more control on their data. Although the rules are currently name based, with 

minor implementation changes one could also set rules based on other file metadata 

such as size, ownership, permissions, etc. Attributes specifies the storage policies for 

a file, and ATTEST uses this information to implement the policy either through 

stack plugins or through underlying storage functionality. 

user.attest.redundancy=''10'' 

user.attest.compress=''1'' 
user.attest.rules='' 

*.c:compress=l,redundancy=10; 

*.o:redundancy=5; 

*.mp3:backup=1,redundancy=2; 

*:redundancy=0'' 

Figure 4.4: Directory's Extended Attributes 

Rules are defined in two ways: either through a system administrator defined set 

of rules or directory-specific rules. The system administrator can create a global rules 
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file that overrides all rules on a system. This file is read by the kernel when a ATTEST 

system is mounted. The rules file is read only once and is cached in the kernel to reduce 

repeated disk access. A reload of this rules file after modifications can be forced by 

simply setting a /p roc parameter. Directories, along with regular policy attributes, 

also hold the rules which are applicable to all files created in it (Figure 4.4). Any 

new file in the directory will automatically inherit the rules from the parent directory, 

unless manually overridden. Similarly, sub-directories will propagate the rules, unless 

modified. In addition, a user could set his own rules apart from administrator's 

rules. These rules, as per rules and priority set by the administrator, could supersede 

the admin's rules or be ignored by the system. ATTEST gains from this multiple 

rules setup in that it provides the administrator control of files for which rules are 

not defined by the user. The user, on the other hand, is empowered with more 

control on how his data is saved on the system. Even if the administrator picks 

default conservative rules which give importance to reliability over performance for 

all files on the system, the user could apply relaxed rules on his files to get higher 

I/O bandwidth out of the system. 

4.3.2 Device Tags 

While we would ideally like to see the system identify the devices and redundancy 

level provided by them automatically, it is not possible without tagging. Since it is 

important for ATTEST to know the kind of devices available in LVM, we use tags 

to convey this information. Before ATTEST is set up, the physical volumes added 

to the LVM are tagged to represent their capabilities. This can be accomplished by 

using the existing tagging feature of LVM. All the volumes are then placed under a 

single volume group tagged 'ATTEST'. These tags are read on boot using a script 

and passed to the device mapper layer using /proc . This information can be read 

from ATTEST's folder created by the kernel module. 
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An example of device tags is shown in Figure 4.5. 

# cat /proc 

/dev/sdb 

/dev/sdc 

/dev/sdal 

/attest/devices 

RAID5 

RAIDO 

DEFAULT 

Figure 4.5: Device Tags 

4.3.3 Mapping Table 

At the LVM layer, we map all requests from the file system to blocks on the 

devices according to the device type requested through tags. To do this, we have 

added a mapping table to the LVM. This mapping table maps the blocks visible to 

the file system to the real blocks on the lower disk drives. Since the file system is 

not aware of the underlying devices present in the system, it conveys information 

regarding the desired redundancy level to the LVM through tags. LVM, being aware 

of the connected devices, can simply map the blocks to the device that fits the re­

quired policy/functionality. For example, if Filel in Figure 4.6 requires the highest 

redundancy level, blocks from those files will be mapped to the highest redundancy 

volume available in the system; in this case, RAID5. Each shaded block in the figure 

refers to the allocated blocks in the file system, and each of them are mapped to lower 

volumes based on their tags. 

Adding this new mapping table to the LVM layer brings some level of complexity 

to the system. Since this re-mapping information is not sent back to the file system, 

a permanent mapping is required at the LVM layer. Further, the LVM does not have 

any information about which block is being used by the file system and which is not. 

Hence, a persistent copy of mapping of both, in-use blocks and free-blocks needs to 

be maintained in LVM. This mapping table is read during file system mount and 

cached in the kernel. The table is also flushed to the disk at regular intervals. 
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File 3 - High redundancy 
File 4 - High performance & 

High redundancy 

^~ 

_RAID_1 .Single Disk, 

Logical Volume Manager 

Figure 4.6: File system's block to logical volume mapping 

struct att. 

sector_t 

sector_t 

>; 

.extents { 

start_block; 

length; 

Figure 4.7: Extent-based mapping 

To minimize the size of this mapping table, we save the maps as extents. Extents 

are contiguous area of file system mapped to contiguous area on the device. Thus, 

instead of saving information regarding mapping of each and every block, we only save 

the starting block number and the length of buffer. Shaded blocks present together 

in the file system view as shown in Figure 4.7 is an example of extent. This reduces 

the number of elements in the red-black search tree, and thus reducing search time 

and memory overhead on the system. If the file system at any later point frees a 

block which is part of the extent, the extent is resized, or split, depending on where 

the free block is present in the extent. 

4.3.4 Plugins 

Different stackable file systems are loaded as plugins in the ATTEST architecture 

as explained in previous sections. These plugins are enabled or disabled depending 

II iii 
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on the attributes set by user. We currently use FiST modules to provide plugin 

functionality. We have modified the source code generator in FiST (fistgen 0.2) to 

support our controllable stack/plugin architecture and include checking of attributes. 

If the attribute for a particular plugin was not set, the request is allowed to directly 

flow to the next level of the stack. 

4.3.5 Migration 

One of the major challenges in rule-based allocation policy is how to provide users 

the flexibility to modify attributes at any time during the life of the file. Modifying 

attributes such as backup, and snapshot may be easy to control or change; however, 

redundancy levels are not since a change to the redundancy level of a file necessitates 

a migration of the data to a different redundancy device. We can do this by moving 

the file from one redundancy volume to a volume with another redundancy. This 

practice can also be seen as a move of file across partitions with different redundancy 

levels. However, this move brings with it some complications. A file which requires 

high redundancy also demands that all its parent directories are protected at least 

at same level. To solve this problem, we place all metadata of the file system on a 

volume with the highest redundancy from the beginning. This way, we will never 

have to worry about moving or protecting the path in which an important file exists. 

4.4 Results 

4.4.1 Experimental Setup 

We conducted our experiments on dual-core AMD Opteron 1.8 MHz dual-processor 

machines with 2 GB RAM, five 80 GB, 7200 RPM SATA disk drives and an Areca 

RAID controller. Four drives were set up as RAID-5, providing a 240 GB volume 

capacity while one drive was used as regular volume. RAID-5 was set up with a 

64 KB stripe size. We used the EXT2 file system throughout our experiments as the 



55 
1 ! 1 1 ! ! f 

Regular RAID-5 ATTEST RAIF-5 Regular Disk RAID-5 ATTEST ATTEST 
Disk (Rules) (Rules) (encrypt) (encrypt) (encrypt) (enoypt+rules) 

Figure 4.8: Time to compile am-utils (shorter bars are better) 

underlying file system. The following experiments evaluate the impact of ATTEST 

on the performance of the system. All results are the average of five runs. 

In all experiments, we compared the performance of ATTEST with a base single 

disk EXT2 file system and with a four disk RAID5 EXT2 file system We also com­

pare ATTEST with RAIF [79, 78] which also uses rules to perform file level volume 

allocation. RAIF differs from ATTEST in that rules are used to determine placement 

of files on different file systems that are unioned to appear as a single file system. 

The RAIF rules do not allow for low-level storage optimizations. For our experiments 

with RAIF, we modified its release version 1.1 to run on Linux's kernel 2.6.24. 

4.4.2 am-utils 

A potential use-case of ATTEST is in software build environments where . c files 

require high redundancy and binary files do not. As a measure of this environment, 

we tested ATTEST by compiling Berkeley's Automounter utilities [3]. The am-utils 

package contains over 500 files with roughly 50,000 lines of C code in several dozen 

small files. Upon compilation, eight binaries are built. 

We measured performance of the system in eight different scenarios. First, by 
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compiling am-utils on a logical volume comprising a single disk and then again on 

a logical volume comprising a 4-disk hardware RAID5 system. Subsequently, we 

ran it under ATTEST with rules where all the source code files were given high 

redundancy and placed on the RAID-5 volume and binary files (generated as a result 

of compilation) were placed with low redundancy on the single disk volume. RAIF 

was set up with 5 file systems. Four of them were combined to simulate RAIF-5 

(RAID level 5) and the fifth disk was used as a single volume to place binary files. 

From Figure 4.8, it is clear that ATTEST does not have any significant performance 

penalty. Our experiments also show that RAIF has a slightly better performance, 

mainly because RAIF can benefit from caching available in the virtual file system 

layer. 

We also repeated the experiments with cryptfs - an open source, computation 

heavy, encryption-based stackable file system available with the FiST package[138, 

140]. On ATTEST, we ran the experiment with two different conditions, one where 

all files were encrypted while passing through the stack, and the other where only . c 

files were encrypted. The . c files comprise about 22% of the files in the am-utils build. 

We were not able to use RAIF with cryptfs. From Figure 4.8 it can be seen that using 

rules with ATTEST provides a performance gain when compared to both regular disk 

and RAID with encryption. This clearly demonstrates the benefit of having file-based 

storage policy rather than using the same policy for the entire volume. 

4.4.3 IOZone 

We also tested a similar set up using the file system benchmarking tool IOZone[14], 

which performs synthetic read/write tests to determine the throughput of the system. 

We ran IOZone experiments on a freshly formatted file system with default set up 

and without rules or placement policies. We ran the experiments with a file size 

of 2GB and a record size of 64KB. The graphs in Figures 4.9 and 4.10 show the 
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Figure 4.9: IOZone - Read (longer bars are better) 

throughput of the system in megabytes per second. It was again seen that ATTEST's 

performance was on par with RAID controller for reads. For writes, we observed a 

slight hit on performance primarily because of the mapping table at the LVM layer. 

Since ATTEST remaps the file allocation at the LVM layer, optimizations that the file 

system makes to keep file metadata and data near each other is lost. As a result, inode 

metadata ends up at the beginning of the disk and data is interspersed throughout 

the disk, and hence, every write requires head movement to the beginning of the 

disk before writing data, thus resulting in slightly poorer performance. The data 

retains spatial and temporal locality and as a result does not suffer in reads. We are 

investigating methods to allow the file system to make the LVM and storage layers 

aware of the optimizations that it is trying to perform when doing block allocation. 

4.4.4 File creation 

A potential issue with the ATTEST architecture is its effect on metadata perfor­

mance. We are primarily concerned with file creation as rules must be evaluated at 

multiple levels of the stack. In order to measure the stress of the creation of large 

numbers of files within a directory, similar to a large shared file system, we timed a 
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Figure 4.10: IOZone - Write (longer bars are better) 

simple application which created 10,000 files in a single directory. The rules were set 

such that half of the files go to a RAID5 volume and the other half go to a single disk 

volume. Table 4.1 shows that ATTEST's performance was almost the same as that 

of regular disk and RAID controllers while RAIF was very expensive. The reason 

that RAIF suffers is that it has to deal with metadata management on multiple file 

systems, on RAIF and on the underlying file systems. In contrast, ATTEST deals 

with only a single file system metadata management. 

Further, to test if ATTEST's performance varied with an increase in the number 

of rules, we ran the same create experiment with over 650 rules. However, we did not 

see any change in performance from those reported in Table 4.1. 

4.5 S u m m a r y 

In this chapter, we presented our motivation for extending storage system policy 

administration to the file level thereby providing opportunities for efficiencies in terms 

of storage overhead and performance at several levels of the storage hierarchy. User-

directed storage policy through the use of extended attributes can assist storage 

administrators in determining optimal storage usage and allocation. We have also 
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Table 4 . 1 : Time to create 10,000 files 

Setup 

Regular Disk 
RAID 

ATTEST 
RAIF 

Time 
(in seconds) 

7.259 
6.902 
6.914 

28.718 

outlined ATTEST, an extendable storage technology that can enable this file based 

storage policy model. As storage administration costs go up, we believe the one size 

fits all policy model no longer works and extendable policy models such as what 

we have presented are required. These file based storage policy rules can be set by 

applications, administrators or end users allowing flexibility in decision making. 



Chapter 5 

User Space Storage System Stack Modules 

with File Level Control 

The file system is often seen as one of the most critical parts of an operating 

system. It handles the task of storing and organizing user files and their data on 

the underlying storage devices. It is comprised of very complex C kernel code which 

takes several months to develop and stabilize and is usually written for a particular 

operating system platform. The file system code must interact with the operating 

system's virtual file system manager to receive system calls from the user-space, with 

virtual memory manager for page allocation and memory management within the 

kernel and with the virtual device layer to communicate with the storage devices 

and store data. This makes the file system code remarkably complex to understand 

and very hard to develop. An average modern file system is comprised of around 

50,000-60,000 lines of code and supports a variety of features, such as B-tree based 

search, flexible data extents, access control lists, extended attributes, etc. [142]. This 

low-level kernel code is very difficult to program and is often the origin of bugs in 

a storage system [66, 104]. To add any new feature in a file system, a programmer 

needs to have a thorough understanding and working of the file system. Apart from 

programming, providing support and maintenance for such large and complex file 

systems with several features and diverse mount options is also very hard. Thus, 



61 

file system development and maintenance is always considered to be the work of the 

select few who have a very deep knowledge of the file system and also the operating 

system. 

Several techniques have been suggested to simplify the process of file system de­

velopment. To address the need to quickly develop and incorporate new features in 

an existing file system, the Linux kernel has provisions for implementing stackable file 

systems. Stackable file systems [111, 69] give developers a quicker way to add new 

features to a file system through an extensible file system interface. It reduces the 

complexity of developing a newer file system, in that it allows features to be added 

incrementally in steps instead of creating a new file system from scratch, or modi­

fying an existing one. However, to obtain the best performance, these file systems 

are tightly integrated into the Linux kernel or are designed and developed to run as 

a kernel module, thus requiring the uphill task of understanding the kernel before 

starting to develop a file system. 

File System Translator (FiST) [140] is a file system generation tool that simplifies 

the task of creating stackable file systems by generating most of the code from a 

standard file system template. The programmer is required to provide code only for 

the main functionality of the file system, which is then fed to the FiST file system 

generation tool. The resulting code can then be inserted into a live system as a 

loadable kernel module. However, this simplified coding requires learning a new file 

system template language. 

Developing kernel-space file systems is very difficult and suffers from several draw­

backs. They cannot be ported across different platforms and they also do not provide 

any options for non-privileged users to mount a file system. File system in User Space 

(FUSE) is another solution to simplify writing a file system and can be ported across 

different operating system platforms. It has been integrated into the Linux kernel 

tree and has ports available for other major operating systems. FUSE exports all file 
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system calls within the kernel to the user-space through a simple application program­

ming interface (API) by connecting to a daemon that is running in the user-space. 

FUSE provides an easy way to write virtual file systems, in that the file systems do 

not store any data themselves. Writing a file system in user-space is much easier 

than compared to writing a kernel-space file system. FUSE also has provisions to 

permit non-privileged users to mount FUSE-based file systems. These user-space file 

systems however come with a small overhead due to context switches and memory 

copies made during the data transfer operations [138, 139]. 

UserFS [61] was an idea proposed in 1993 which exported file system requests to 

the user-space through a file descriptor, puffs is an export of FUSE-like library on the 

NetBSD operating system [22]. However, these solutions lack in their allow multiple 

file systems to be stacked on top of one another in the user-space. Our work differs 

from all previous work done in that we provide stackability for file systems that are 

present in the user-space. This approach has a major advantages, in that it can be 

mounted by any user on the system and does not require learning any new language. 

As discussed above, FiST and FUSE are two very common solutions to simplify the 

process of writing file systems. However, with these existing systems, performance, 

portability and availability to non-privileged users, cannot be achieved together. In 

this work we propose a stackable FUSE architecture that will allow the development 

of stackable file systems in user-space. In order to limit the overhead due to con­

text switching between the kernel space and user-space, we propose to combine this 

stackable FUSE design with ATTEST, attribute-based storage framework discussed 

in Chapter 4. 

The remainder of this chapter is organized as follows. Section 5.1 discusses the 

stackable file system model, while Section 5.2 describes the FUSE architecture. In 

Section 5.3, we provide details of our design for stackable FUSE module, Section 5.4 

gives a brief description of our implementation approach and Section 5.5 shows the 
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performance results. We end the chapter with a section on summary of this work. 

5.1 Stackable File Systems 

The idea of stackable or layered file systems was adapted from the vnode interface 

first implemented on SunOS in 1984 [82]. Stackable file systems [110, 111, 137,118] are 

stand-alone file systems that can be mounted on top of an existing file system mount 

point. Figure 5.1 shows the typical arrangement of a stackable file system present 

between the Virtual File System (VFS) and a lower-level file system, which may or 

may not be a device-based file system. The advantage of developing a stackable file 

systems is that they can be used to extend the functionality of an existing file system 

without changing the code of the original file system. A stackable file system creates 

a vnode with its own operations that is inserted on top of the vnode belonging to the 

underlying file system. This allows a stackable file system to perform operations in 

between the VFS and the lower file system calls. For example, an encryption process 

can take place before the data is written on the lower file system, or, a decryption 

function can be run after the data is read from the lower file system. Stackable file 

systems can be used to add many functionalities such as compression, encryption, 
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caching, etc. to an existing file system. Other examples of stackable file systems 

include WrapFS [139], UnionFS [105], RAIF [78], AVFS [94], etc. 

fistgen is a tool that allows a developer to create a stackable file system by only 

describing the core functionalities of the file system using the File System Translator 

(FiST) language [140]. The file system generator tool, generates the code for a file 

system that can be directly loaded as a kernel module into a live Linux system. To 

add some of the functionalities in FiST, however, requires learning a new language. 

Since loading a kernel module in a system is restricted to privileged users only, file 

systems generated using FiST can only be used if inserted into the system previously 

by an administrator or a privileged user. 

5 .2 F i l e s y s t e m i n U s e r s p a c e ( F U S E ) 

Filesystem in Userspace (FUSE) is a combination of a user-space library and a ker­

nel module for Unix-like operating systems that allows non-privileged users to create 

their own file systems without editing the kernel code [9]. This is achieved by running 

the file system code in user-space, while the FUSE module only provides a bridge to 

the actual kernel interfaces through a set of APIs. FUSE's kernel module simply 

redirects the Virtual File System (VFS) calls to the user-space daemon. Figure 5.2 

shows the internal architecture of FUSE. Several FUSE-based file systems are already 

in common use. FUSE can be particularly useful in providing a POSIX interface for 

files which are accessible over the network through different network protocols. Some 

of the file systems based on such a design are sshfs [25], httpfs [12], CurlFtpFs [5], 

etc. FUSE file systems are easier to maintain since they run in user-space. They 

are also easier to code and debug compared to the kernel file systems. Running file 

system in user-space also implies access to more libraries. Thus, FUSE file systems 

can be written in any language that has a binding to the FUSE libraries, including 

Ruby and Python. 
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Figure 5.2: FUSE architecture showing kernel module and user-space library. 
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However, file systems created using FUSE are always the lowest file system in the 

storage stack. This means that all FUSE requests must return from the FUSE layer 

to the user-space applications without going to the lower-level file system within the 

kernel, similar to a stackable file system. Thus, FUSE, in its current form is not a 

solution for developing a stackable user-space file system. 

5.3 Stackable FUSE 

As already mentioned, FiST and FUSE are techniques to design new file systems 

with a lower learning curve as compared to writing a standard kernel-level file system 

from scratch. FiST helps by extending the capabilities of an existing file system while 

FUSE allows easy programming and maintenance of a file system in the user-space. 

FUSE also provides the ability for non-privileged users to mount file systems and use 

it. 

In this work, we propose a new stackable file system module called sfuse that will 

provide users with a FUSE-like interface in user-space to write their own file system in 

the user-space. The added advantage of sfuse and the difference compared to FUSE 

is that it will provide stackability similar to that available using FiST. Thus, data 

in all I /O operations will be sent to the user-space, copied or modified, and returned 

to kernel-space to be pushed to the lower-level file system. Since a FUSE-based file 

system has a cost due to context switching and memory copies, we also extend the 

idea of ATTEST and limit the overhead only to files that require the user-space 

functionality implemented in the file system. 

There are several advantages of porting file system stackability to the user-space. 

One of the main advantages is that such a scheme would allow any user on the machine 

to mount a stackable file system without the need of administrator privileges. Along 

with stackability, per-file control on the files will allow the user more control on how 

the files are treated, sfuse also avoids the need for the user to understand the FiST 
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language in developing a stackable file system. Figure 5.3 shows the operation flow 

with a sfuse-based file system present in the user-space. In case of READ, the data 

would flow away from the lower file system, while during WRITE operation, the data 

would flow towards the lower-level file system. Section 5.4 provides more detail on 

the internals of the sfuse file system module. 

5.4 Implementation 

We implemented our stackable FUSE-like file system sfuse on Linux kernel version 

2.6.24. We started by first creating a stackable base file system basefs using FiST. 

We used a patched source of FiST version 0.2.1 to create the stackable file systems 

which was compatible with the Linux kernel version present on our machine, sfuse 

is designed to export all file system operations to the user-space daemon, similar 

to the default FUSE module. To export I/O functions to the user-space daemon, 

we modified the user-space FUSE library to receive requests from the kernel even 

without any previous file OPEN operation. All I/O requests are forwarded to the 

user-space file system, irrespective of whether an OPEN operation was performed on 

that file. This is in contrast to FUSE, where an I/O operation can be performed only 

after an OPEN call is made. This step is required in FUSE to open the actual file 

on the ported file system and obtain a file handle in the user-space. The file handle 

information is later used in identifying the file on which I/O needs to be performed. In 

sfuse, the file is actually opened within the sfuse's Linux kernel module and multiple 

operations on the same file are handled within the kernel module. 

A user may, however, also opt to also use the exported OPEN function in the 

user space, depending on the requirements of the stacked file system. As an example, 

for a simple encryption file system, encode and decode functions can be implemented 

without having a file handle to hold state. In another case, if the stackable file system 

is designed to count number of times a file is opened, an OPEN function will have 
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to be implemented in the user-space in order to create a file handle to hold the file 

count. 

To implement stackability in FUSE, we also require the user-space FUSE library to 

return the request data buffer back to the kernel after performing the stack function. 

This is done in the same way as any write operation would be performed in FUSE 

module. One can force the user-space function to be called, both, before and after 

calling the lower-level file system operations. For example, a user can implement a 

file system where during a READ operation, the user controls if the READ should 

succeed by allowing the READ operation to fail or succeed from the user-space before 

it goes to the lower-file system. A failure from the user-space will return the data 

flow immediately, thus resulting in a failed read. 

File systems developed based on sfuse are mounted in the same way as a FUSE-

based file system. The mount binary file requires two parameters - the mount point 

directory and the directory which needs to have the stacked functionality on top of it. 

In the kernel, data structures for storing the file system's private information must 

include information regarding the lower-level file system along with the connection 

pointers of the user-space FUSE daemon. 

The user can control the files which must be exported to the user-space by using 

ATTEST. The user can lay rules or set policies for each file by directly setting the 

file's extended attributes, or by including the rules in the ATTEST config file. More 

details on how to set the rules and policy in an ATTEST framework is explained 

in [98]. Stackable FUSE also allows attributes set by the ATTEST framework to be 

passed from the kernel-space to the user-space as tags along with any I/O request. 

This will allow the user to perform dynamic ordering of multiple stacked functions in 

the user-space without going back into the kernel-space. 

Our current implementation only supports synchronous operations. This means 

that all operations can return to the kernel space only after the user-space functions 
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have returned. As part of our future work, we plan to support asynchronous opera­

tions in sfuse library, which will allow the requests to be appended to a queue in the 

user-space file system. This queue will be cleaned by a thread running continuously 

on the system. One place where such a mechanism can be very useful is in performing 

lazy data backup and deduplication on a per-file or a per-directory basis. With the 

assistance of ATTEST rules, the user can also define policies, such as, if the files need 

to backed up after compression, or encryption, or neither. 

5.5 Results 

We evaluated the performance of sfuse by running IOZone [14], a popular bench­

marking tool that performs synthetic read/write tests to determine the throughput of 

the system over a variety of file system configurations. We conducted our experiments 

on a 1.8 GHz dual-core dual processor AMD Opteron machine with 2 GB RAM and 

two 40 GB hard disk drives running Linux kernel 2.6.24. The experiment was run for 

a file size of 2GB with record size set to 128KB. Figure 5.4 shows the results with 

overhead of using sfuse compared to other file system configurations. 

We first ran IOZone on a default EXT3 formatted non-root partition to obtain 
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the base performance of the system without any stacks. Next, we ran IOZone on 

basefs, a stackable file system generated by FiST. basefs is an empty file system in 

that it simply forwards all calls to the lower-level file system. By running IOZone 

on basefs, we evaluate the overhead of including a stackable file system between VFS 

and disk-based file system such as EXT3. basefs is available along with the source 

code of fistgen. From Figure 5.4, we can see that including an empty stackable file 

system has a very negligible overhead. 

Our third experiment was run on a fusexmp file system mount, fusexmp is a FUSE-

based file system that simply mounts the root directory of the system on the given 

directory. It is available freely along with the FUSE source code [9]. Our experiments 

confirm the overhead that is expected to be present on any FUSE-based file system 

due to memory copies between user-space and the kernel-space. We observed almost 

10% overhead for writes and slightly less than 15% for reads in this test. Our fourth 

setup was an empty file system similar to basefs, but set up in sfuse. This file system 

simply returned the request back to the kernel space without doing anything to the 

transferred data. We conducted this experiment to observe the real overhead of 

context switching and memory copy operations. In our experiments, we observed an 

overhead of around 8% for writes and around 5% for reads when compared to the 

local file system. 

Our fifth experiment was done on a slightly modified version of cryptfs stackable 

file system available with the fistgen source code. We disabled the encryption of 

file names in cryptfs and only allowed data block encryption. We implemented the 

same encryption algorithm in user-space and implemented a sfuse file system for it. 

We observed almost 26% overhead for writes and around 39% overhead for reads by 

porting the code to the user-space. The overhead in this case is primarily because of 

context switching between the user-space and kernel space. The data buffer memory 

is copied two times in each I/O operation for each direction of the data flow, i.e., once 
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from the kernel to the user-space, and then, from the user-space back to the kernel 

space. This overhead also comes from several other aspects within the operating 

system like processor registers that need to be saved and restored, cache entries that 

need to be evicted and reloaded for the incoming processes, etc. [88, 106]. 

We also tested sfuse when integrated with the ATTEST framework. In Figure 5.5, 

we compiled am-utils on a local disk without any encryption and compared it with 

encryption done by using the cryptfs. We compared the time to compile am-utils with 

encryption in user-space and also under ATTEST framework with rules to enable 

encryption only on . c files. From the figure, we can see the overhead due to sfuse 

when compared to kernel-based stackable encryption, however, this can be reduced 

by applying ATTEST-based rules. 

While the overhead in our experiments are certainly non-negligible and casts doubt 

over the need to port file systems into the user-space, we remind the reader the ben­

efits such as the ability for non-administrator accounts to control their data, simpler 

programming and debugging in user-space with FUSE bindings available in many 

programming languages other than C and per-file granularity control sufficient to 

make this a useful solution. Further, our sfuse code has not been highly optimized 
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and could be improved significantly to lower this overhead. 

5.6 Summary 

In this chapter, we have presented a stackable user-based file system model which 

can be controlled based on user defined rules. Most of the existing file systems 

make compromise on adding costly functionalities because there is no way to make 

policy decisions at a finer granularity. In this work, we reinforce our commitment 

to providing users more control over policy decisions on the files by using ATTEST. 

Stackable file systems in user-space opens up a variety of opportunities to design 

file systems. However, the stackability of these file systems are expensive due to 

context switching. By using the ATTEST framework, we can select files and enable 

stackability and absorb the overheads only for files that require the stackable functions 

enabled. 



Chapter 6 

Extendable Storage Framework for 

Clustered Storage Systems 

In earlier chapters, we have described the ATTribute-based Extendable STor-

age (ATTEST) architecture which allows users to set a variety of rules at the file-

level granularity [98]. In this chapter, we extend the existing ATTEST framework 

to clustered file systems by implementing it into the Parallel Virtual File System 

(PVFS) [49, 21]. Clustered file systems not only allow the data to be stored over the 

network, but also allow it to be shared with others. In large organization, this forms 

the typical setup for sharing data. Such a framework on distributed file system can 

be used to provide a comprehensive storage system with a variety of options that all 

applications and all users can take advantage of. 

For our work, we implemented ATTEST within PVFS to forward a file's attributes 

to the storage servers, which further push it down to the local file system that already 

supports ATTEST. Message passing interface (MPI) already has provisions to for­

ward I/O hints provided by the application to the file system, but only some of them 

can really be useful for PVFS. PVFS stores all the file's data on storage node's local 

file system. Still, practically, none of those hints is forwarded further down the stack 

on the storage node, that can be of any use to the local file system. This is because 

there is no provision in the operating system, or the local file system for making any 
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use of it. In our work, we use ATTEST and PVFS together to provide applications a 

way to forward a file's attributes to the storage nodes where the data is stored, to be 

used by the node's local file system with several plugins and variety of devices. We 

do this by making use of hints in PVFS which are typically used for carrying MPI 

hints to the storage nodes. 

6.1 I m p l e m e n t a t i o n 

In PVFS, a directory's metadata, including the extended attributes, is stored on 

the metadata server. Therefore, for every open system call on a file, a request is sent 

to the metadata server to obtain the file's attributes. The metadata reply, however, 

only includes the file's attributes along with information about the storage nodes 

on which the data is placed. To support ATTEST, we require that the metadata 

server also return the client's extended attributes with the parent directory's extended 

attributes. While on a single machine running ATTEST, this can be easily done by 

making another system call to read the extended attributes, on networked file systems, 

it is not as straight forward. This is because the request will be sent across the 

network to the metadata server and the client will have to spend extra time waiting 

for the metadata server to respond. This process can be very expensive and can bring 

significant overhead to the system. PVFS, however, has integrated support for file 

system related hints that can be included in every network communication that takes 

place between the nodes. For our work, we modified PVFS version 2.8.1 to use these 

hints to attach requests to receive the extended attributes from the metadata server, 

and send any new or updated attributes to the metadata server. 

Once we have the file's extended attributes, we transfer the attributes to the 

storage nodes, to be saved as extended attributes of the data files on the each storage 

nodes. We again use I /O hints in PVFS as a carrier for the extended attributes. On 

storage nodes, PVFS caches file descriptors of all open data files until a high threshold 
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Figure 6.1: File's Extended Attributes on Clustered ATTEST. 

is reached, or the node runs out of memory. If the I/O request is on a file which is 

being opened for the first time, we set the attributes on the file during the create 

system call. We also cache the attributes along with the descriptors. If the attributes 

is changed in any subsequent requests, we simply update the attributes on the file 

system and also in the cache. We support this to handle the case where the file is 

created without any data in it (eg. touch), and the user wishes to modify its attributes 

after creating. We however currently do not allow any online migration of data from 

one device to another. This behavior is similar to PVFS's own data distribution 

limitations, in that it does not allow a user to modify the striping mechanism once 

the files have been created. If the user still requires a change in the properties, for 

example, a change in redundancy level or need to include a new plugin, the data will 

have to be copied into a new file with the new attributes. 

Attributes are set on each file, or a directory in the same way as explained in 

Section 4.3.1. The only difference in defining rules is the way to distinguish the 

location where the rules are to be checked. As shown in Figure 6.1, u s e r . a t t e s t 

rules are checked on the client side while user .pvf s . a t t e s t rules are checked on the 

storage nodes. 

Figure 6.2 shows the block diagram of our framework with ATTEST included 

on both, the client and the storage targets. Applications running on PVFS can 

take advantage of various plugins available through the POSIX interface on both 

the client, as well as on the storage node. The applications can also opt for the 

kind of storage device that they prefer the data to be stored on the target node. 
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While application-aware storage could provide for some of this work, we distinguish 

ourselves by providing file-based policies with plugins and access control to variety 

of storage devices. The ATTEST framework on clustered file systems will provide 

the applications a way to assign particular device based on the rules set by the user 

storing data on the storage system. The storage stack on its part will try its best 

to match the requirements based on the available storage devices connected to the 

system. 

6.2 Results 

We evaluated our ATTEST implementation in PVFS by configuring the parallel 

file system with three metadata server and three storage nodes. Each node is a dual-

core AMD Opteron 1.8 MHz dual-processor machines with 2 GB RAM, five 80 GB, 

7200rpm SATA disk drives and an Areca RAID controller. Three out of the five drives 

were set up as RAID-5, providing a 160 GB volume capacity while the other two drives 

were used as a regular disk volumes, also forming the system's root partition. RAID-5 

was set up with a 64KB stripe size. We used the EXT3 file system throughout our 
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experiments as the underlying file system on storage nodes. All results presented here 

are the average of five runs. 

Figure 6.3 shows the results for PVFS write throughput with ATTEST compared 

to the default PVFS setup under IOZone. We ran the benchmarking tool for a 4 GB 

file size with record size set to 1 MB. We can see from the figure that ATTEST incurs 

a very minor overhead when compared to the default PVFS. To test plugins, we 

also ran the experiment with encryption enabled, for both, PVFS and PVFS with 

ATTEST. We again see no major impact of including ATTEST. However, when 

we ran the same test with two files, we could clearly see the advantage of using 

ATTEST. We ran IOZone simultaneously on two nodes inside a parallel shell to 

observe their throughput. The last bar in Figure 6.3 shows the throughput for files, 

when only one file was set using attributes to go through the encrypt plugin. We can 

see the performance for both files improved compared to having both pass through 

the encrypt plugin. Read throughput performance for the IOZone provided similar 

results. 

We also evaluated our framework using IOR, another file system benchmark de-

File with encryption 
plugin disabled. 
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veloped at Lawrence Livermore National Lab (LLNL) used to measure the aggregate 

I/O throughput by focusing on parallel/sequential read/write operations. Figure 6.4 

shows the read throughput for PVFS with and without ATTEST along with encrypt 

plugins. From the figure, it is clear that the behavior is similar to what we have seen 

previously. The overhead due to ATTEST is very minimal and we can clearly benefit 

from only selecting files that require any cpu-intensive plugins and leaving the other 

files for a much higher throughput. 

6 .3 S u m m a r y 

In this chapter, we have presented a framework for extending storage system pol­

icy administration to the file level on a clustered file system. The system provides 

opportunities for efficiencies in terms of storage overhead and performance at sev­

eral levels of the storage hierarchy. User-directed storage policy through the use of 

extended attributes can assist storage administrators in determining optimal storage 

usage and allocation. The framework is an extension of the ATTEST extendable 

storage technology that enables this file based storage policy model. As storage ad­

ministration costs go up, we believe the one size fits all policy model no longer works 

and extendable policy models such as what we have presented are required. These 

file based storage policy rules can be set by applications, administrators or end users 

allowing flexibility in decision making. 



Chapter 7 

Improving Reliability in Clustered Storage 

Systems using ATTEST 

For increased reliability, a key requirement of parallel file systems must be the abil­

ity to deal with failures. These failures may be in the form of either data corruption 

on a disk on a storage node, or complete loss of the node itself. Disk drives are com­

plex electro-mechanical systems with several moving parts, making them unreliable in 

terms of availability and integrity of the data. They could suffer from potential data 

loss or complete drive failure. Similarly, a node failure can be because of any reason 

at any level from network interface, to processor, to disk. With multiple nodes in the 

cluster, and multiple disk drives present on each of them, the likelihood of failures on 

a single node increases. This makes designing a storage system a complex problem. 

The system must not only be efficient but also fault tolerant. Further, in cases of 

node failures, the algorithm must not only be able to handle reads, but also address 

write requests. A simple and frequently used approach to provide data redundancy in 

single node systems is to stripe the data across several disks using RAID [102] tech­

niques such as parity protection or mirroring. However, applying RAID techniques to 

a clustered storage system introduces several new challenges particularly with regards 

to performance. Further, they can at best only be used for handling node failures. 

RAID techniques, by themselves, do not guarantee the integrity of the data. The 
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reason is that RAID does not have a notion of what is "correct" data from the user's 

point of view. In terms of availability, the most common solution implemented in 

several clustered storage systems is the use of failover systems which allow the func­

tionality to transparently move from a failed node to a backup node, both connected 

to the same storage array [46]. On the other hand, to handle data corruption and 

test the integrity of the data, hash functions such as cyclic redundancy checks (CRCs) 

or checksums are frequently used. But all these fault tolerant mechanisms are very 

expensive, both in terms of performance and cost. As a result, the reality is that most 

of the time, in large clusters, the systems are maintained without any protection. 

In this chapter, we present algorithms for distributing data reliably and main­

taining scalability in a clustered file system. We describe new techniques used to 

ensure a functioning system in the face of failures. We implemented our algorithms 

on two popular parallel file systems - Lustre [46] and Parallel Virtual File System 

(PVFS) [49] and show how with minimal overhead we were able to achieve both data 

redundancy and data integrity in our system. This chapter is organized as follows. 

Section 7.1 explains our failure model. Section 7.2 describes our algorithm to preserve 

consistency and data availability and Section 7.3 describes our algorithm to protect 

against data protection. Our performance results are presented in Section 7.4. 

7.1 Failure Modes in Clustered Storage 

Parallel file systems gain high throughput by striping the large chunks of data 

known as objects across multiple storage nodes as shown in Figure 7.1. During any 

I/O operation, the client simply reads these blocks in parallel from all the nodes. 

However, with this striping of data comes the challenge of keeping the data available. 

A failure of any node could compromise the entire file system. In this chapter, we work 

on two popular open-source parallel file system - PVFS and Lustre to demonstrate 

our reliability algorithms. 
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Figure 7.1: Parallel file system architecture. 

Providing fault tolerance in a parallel file systems is a complex problem. With 

data spread across several nodes, special techniques are required to tackle coherency 

and consistency issues of the file system. PVFS and Lustre, both behave differently in 

a node failure scenario. Lustre keeps the system available for all I /O operation under 

any node failure. Instead of throwing admin alarms during failure, it complains only 

when a failed node is encountered during the I/O operation by returning a failure 

message. It spreads all writes during the failure on the remaining available nodes. 

Even if the failed node returns, it is not used for I/O on files that were created during 

its absence. This means that for those files, the system is being under-utilized because 

of a short failure of access to a node. While this could be acceptable in cases where 

not many failures occur, in large clusters where there are over 1000 nodes and where 

chances of failures are much higher, it is important to have the system utilization to 

the best. 

PVFS, on the other hand, has no failure handling capabilities. In case of a failure, 

no I/O operation can be performed on the file system. The file system is unavailable 

for all operations, including the creation of new files, until the failed node returns. 

This is because PVFS by default stripes the file system's root directory information 

across all storage nodes. 
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7.1.1 Single-node Failure Model 

Before discussing our algorithms for maintaining data availability, it is useful to 

explain the failure model assumed. We expect that the file system should suffer no loss 

of data under any single failure condition and provide continuous response to client 

nodes. The potential failures in the system that we consider are transient failures to a 

single machine which could be because of a network failure or a temporary hardware 

failure. We define these faults as clean errors. Our algorithms are completely clean-

error tolerant. We ideally assume that only one machine will fail during any defined 

period. Because the failures may be intermittent, the protocols must handle machines 

temporarily disappearing from the network which may be caused due to disconnection 

or failure of a network cable. A disk failure can mean a variety of errors in the low 

level disk subsystem. 

As for unclean errors, we mention here the possibility of incorrect data. Examples 

include network cards flipping bits inadvertently, memory getting corrupted, proces­

sors performing erroneous calculations or silent data corruption occurring on disks. 

7.1.2 Data Corruption 

Data corruption refers to unintended modification of data during its transmis­

sion, storage, or retrieval. These changes go undetected or unreported to the storage 

system. They result in incorrect data being flushed to the drive or sent to the ap­

plication, depending on the flow of data operation. These kind of errors could occur 

for several reasons. Misdirected writes, torn writes, data path corruption, and bit-rot 

are some of the ways in which data corruption can occur, resulting in incorrect data 

being stored on the block. Even if the data was stored correctly, a bug in the firmware 

code could cause incorrect data to be read from the disk resulting in an error. 

Several methods are available for detecting data modification or silent corruption. 

Data integrity guarantees the users that once their data is stored, it is persistent and 
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perpetually available in the same condition as it was when submitted. A variety of 

checksum algorithms are available for detecting data corruption. These algorithms 

convert strings of different lengths of data to short, fixed-size results. Since they are 

designed to avoid collisions, finding two strings with the same hash result is almost im­

possible. CRCs, Adler32, and Fletcher's checksum are examples of non-cryptographic 

hash algorithms for detecting unintentional modification of data. Other examples of 

hash algorithms capable of detecting intentional modification include secure hash 

algorithms (SHAO, SHA1, SHA2) and message digest algorithm (MD5). They use 

cryptographic hash functions that are usually complex and computationally expen­

sive. Such algorithms are typically used to encrypt data or to provide digital signa­

tures for files that are transferred over hostile networks. This study concentrates on 

identifying unnoticed unintentional data corruption which occurs primarily because 

of hardware faults present in the storage medium or bugs in the software controlling 

them. In our work, we use the CRC algorithm for evaluating data integrity because 

of its easier implementation. 

Several corruption detection mechanisms exist for handling disk-related errors 

within the hardware itself. For example, most near-line disks provide a 64-byte data 

integrity segment after every block of 4KB for storing checksums [41]. Hard drives 

also set aside extra space for storing error correction code (ECC) for each sector that 

can be used to detect and correct misreads or corrupted data. However, studies have 

shown that not all of these errors are always detected by the system [42, 41, 75]. 

CRCs and checksums provide check codes that help uncover such errors. These data 

verification codes are calculated inline with a write request and written to disk for 

validation at a later time. For every change to the data, its verification code is 

also updated accordingly. During a read operation, the hash code is regenerated for 

the data read from the disk and verified with the code saved during write. If they 

match then the data is complete and verified; otherwise, a read error is sent to the 
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application. 

In this chapter, we study the cost of providing integrity checks that might occur 

on faulty storage hardware in context of a parallel file system. Similar bit-flip errors 

could occur on faulty network cards or interconnects. Detection of such faults during 

network transmission would be better handled at PVFS's BMI abstraction layer, a 

study of which is beyond the scope of this thesis. 

7.2 Reliable Clustered Storage 

To provide complete availability of the system during a single-node failure scenario, 

the file system must be able to regenerate the data from the remaining nodes. This 

can be done using long existing RAID techniques. Parity blocks are extra bits of 

information calculated by performing XOR of all data blocks in the strip. Later, if 

any of those data blocks are missing, it can be regenerated using the calculated parity 

block. In our work, we have developed a RAID strategy for generating parity object 

on the client for both parallel file systems mentioned earlier. Our implementation 

is based on the RAID4 algorithm and can be easily modified to RAID5 using minor 

additional programming effort. 

In a naive implementation, one can generate the parity object in line with the 

write operations handled by the client. Object-based parallel file systems like Lustre 

and PVFS operate on larger blocks of data compared to a single-node file system. On 

single-node systems, parity calculation is usually offloaded to the RAID adapter which 

manages all the disks attached to it. RAID adapters have direct block-level access to 

the disks and since all I /O operations flowing through it are in smaller block sizes, a 

small memory is enough to cache all the data blocks and generate parity. However, in 

parallel file systems, large object sizes make the process of generating parity a little 

different from that on RAID adapters. Instead of caching all the objects of a strip 

sent for write in the node's local memory, we generate parity with each object only 
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when they pass through the I/O module and preserve it until the last object has 

been submitted to the node for I/O. At that point, the parity object is flushed to the 

parity node for write. This method is however very costly, particularly during the 

re-write operation. To maintain consistency during re-write, we will have to perform 

two reads to read the old data and parity and two writes to commit the new data and 

the parity. This behavior was concurred by our experiments and will be discussed 

later in Section 7.4. 

To avoid the costly step of doing the extra two reads and two writes during the re­

write operation, we have implemented another strategy with the idea of using a thread 

to handle the operation independently. On the client, we introduce a thread in the file 

system which would identify and perform the reads and writes required to generate 

the parity. Since the extra reads are required only when we are updating a part of 

the strip, only the requests operating on partial strips are handled by this thread. 

The file system writes the partial strip's data on the temporary space available on the 

client's local disk. The new thread will then assume the task of generating the parity 

and updating the nodes. The partial data must be written to the local disk to ensure 

successful recovery of the data in case the target holding the primary copy of the data 

fails before the thread could complete generating the parity. Information regarding 

this partial data is also added to the file's metadata so that any reads occurring before 

before the thread completes the parity update can be directed to the local disk of 

the writing client. The thread decides how to generate parity for the new data based 

on the length of the strip being modified. For changes limited to only one node, the 

thread sends the new data to the storage node in charge. The node, upon receiving 

the data, reads the old data and generates the intermediate parity object. This parity 

object is then sent back to the thread on the client which then sends it to the parity 

target. The parity target updates the parity object by calculating the new parity for 

the strip. By doing this, we save one network data transfer operation. Two read and 
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two write transfers are reduced to just one read and two write data transfers. We also 

offloaded the expensive parity calculation to the storage nodes. The read of old data 

is now done locally on the data target node, and the parity is also generated on the 

parity target node. For changes spanning beyond a single node, the thread reads the 

data from the unchanged parts of the strip, calculates the parity on the client and 

updates the storage nodes and the parity node with the new data. 

7.2.1 Writes Under Failure 

In the context of a distributed system, writes are more interesting than the reads, 

particularly with parity striped writes. In this section, we discuss methods to ensure 

that the write operations will succeed even under a single node failure. In most 

distributed or clustered file systems, if a failure occurs during a write or an update 

operation, the request is either blocked and kept waiting for the failed node to return, 

or is terminated immediately. Even in the case of Lustre, it is only the new files that 

can be created successfully with the file's data striped across the remaining nodes. 

Any write to update any existing file waits until a timeout occurs. In our work, we 

changed this behavior in Lustre and PVFS to continue to create files with its data 

striped across all listed nodes, irrespective of the node's current status. 

To handle the failure case and to ensure that the system returns to its full capacity 

upon return of the failed node, even for the writes which were missed during the node 

failure, we introduce a database within the file system called the dirty region database 

(DRD). This idea is similar to the "fact server" defined by Bright et al. in [47]. The 

DRD contains the information about the data which could not be written to the 

target during the write operation, but had its parity calculated and stored on the 

parity node. DRD is stored on the first and last node of the strip across which the 

file is spread. We store two copies of DRD to handle the case where one of the 

nodes containing the DRD fails. A failure of both the DRD nodes would result in 
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Figure 7.2: Handling of I/O operation using dirty region database (DRD). 
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a two-node failure scenario, the handling of which is beyond the scope of this work. 

The DRD also contains information regarding the incomplete strips which are being 

written to the local disk and will be transferred to the dedicated node by the new 

file system thread. We refer to these regions of the file as the dirty regions. For 

any file, information regarding the existence of the DRD is present as a flag in the 

file's metadata structure and is also updated on the MDS. The DRD is stored as a 

regular file on the storage node. Since this file is already mirrored on another node, 

local redundancy to protect this file is not required. Under a multi-user scenario, a 

lock would have to be set on the database to keep it consistent across different client 

accesses. 

Before starting any reads or writes, the file system checks if a DRD entry exists for 

that file. If it does, then the client will have to read the DRD from the storage node 

into the client's local memory. This needs to be done only once for that operation, 

as the DRD entry is locked to that particular process and cannot be modified by any 

other file I/O thread on the client machine. The DRD will let the client know about 

the dirty regions present in the file and it will automatically change read requests for 

the file's dirty regions to be sent to the parity node to regenerate the data using parity. 

Even if the failed node returns to operation, the DRD will let the client know that 

read requests must be satisfied by regeneration because the data present on the failed 

node is old and inconsistent. Along with it, an update request for that region is posted 

on the request queue in the thread, which updates the storage nodes containing dirty 

data with the new data. A flow chart showing the handling of read/write operation 

when using the DRD is shown in Figure 7.2. 

7.2.2 Reads under failure 

In our algorithm, reads under failure is very similar to the handling of reads during 

a disk failure in a single node RAID system. While doing a read, if the client notices 
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that a node has failed, it will regenerate the data by reading the contents of the 

remaining nodes and the parity. This operation is done from within the file system 

and is not visible to the user or the application. The client issues the read requests to 

the remaining nodes in the stripe, including parity node, for data belonging to that 

offset within the object of that particular stripe. When all the data is available, the 

client can simply XOR them to regenerate the original data. However, if this object 

had recently been re-written and was currently being used by the thread to generate 

the parity, the system would simply read the data from the local disk without going 

to the target. The system can easily check if this data is available on the local file 

system by checking the DRD. 

It could be contended that this scenario under large clusters could cause the DRD 

to grow to very large sizes, and hence could affect the performance due to long search 

times. However, since the thread is running constantly to clear the DRD, the DRD 

size does not typically grow large. 

7.3 D e t e c t i n g D a t a C o r r u p t i o n 

Adding checksum capability to a parallel file system brings its own challenges. 

With data spread across several servers, constantly updating CRCs and verifying 

reads with the latest CRC values becomes a challenge. Further, all of these tasks 

must be done with minimum impact on performance of the parallel file system. File 

systems such as Btrfs [4] provide both data and metadata integrity checks and could 

be used as the underlying file system for PVFS. However, Btrfs is currently under 

heavy development and not yet ready to be deployed with PVFS. Such a setup also 

ties PVFS with other file systems and limits its portability. On the other hand, 

providing CRC checks within PVFS allows taking advantage of user space caching 

on servers. It also gives PVFS the flexibility of setting its own CRCs buffer size. 

This design can also be extended to handle verification only for critical files, without 
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affecting performance for others. Using MPI hints or POSIX extended attributes, 

applications could provide PVFS information as to which files require validation. 

The hash code for each file can be stored either on an MDS along with the file's 

metadata or on a storage node along with the file's data. Storing the CRC on the 

MDS allows us to use the client's usually higher processing power compared to storage 

nodes for calculation of the hash code. Storing the CRC on the MDS also gives us 

a single point of contact for all data integrity checks. However, this also means 

that the CRCs will have to be updated atomically with every change of data. In 

large environments with multiple clients, doing frequent updates creates a single node 

bottleneck. Although the checksums are small in size even for a very large file and 

can be easily cached in the client's memory, in a multiple-client environment with 

multiple writers of the same file it is necessary to always have the latest copy of the 

CRC code, making the metadata server a major bottleneck. 

Alternatively, placing the hash code on storage nodes along with the data allows us 

to take advantage of distributing the CRC computation across several nodes. It also 

allows us to take advantage of the node's local cache by placing the CRCs in memory 

after writes and avoiding CRC reads for subsequent read requests. The I/O overhead 

of providing integrity checks will thus be visible to the user only during writes. Any 

following reads will require only obtaining the CRC from the local memory and val­

idating the data. For these reasons, in our work, we chose to place the check codes 

on storage nodes. We modified the DBPF Trove implementation in PVFS (version 

2.8.1) to create a cksum file for every bstream file that is saved on the storage server 

to store the CRC codes. CRCs are calculated for every fixed chunk size of a bstream 

file, also referred to as CRC buffer size. The size of this chunk can be changed during 

the configuration of PVFS. All CRC codes for the data file are saved sequentially in 

the same order in the cksum file as shown in Figure 7.3. 

In our implementation, we used multiple threads to achieve maximum performance 
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Figure 7.3: CRCs are stored in a cksum file in the same order of data chunks appearing 
in the bstream file. 

for calculating the CRC code. During reads, we use the threads to read-ahead the 

cksum block if it is not already available in memory. This process is done in 4 KB 

block sizes even if only one CRC code is required. The remaining codes are stored in 

PVFS's CRC cache instead of being discarded. They remain in the cache until a CRC 

watermark, another configurable parameter, is reached, after which it is discarded 

based on a simple LRU algorithm. Once the read is complete, the thread simply 

checks for correctness of the data using the hash code. For writes, we use the threads 

to calculate the CRC code in parallel to the write operation. The CRC is updated on 

disk after the write is complete but before the handle is returned to the client. Any 

failure between results in a failed write and an error is reported to the application. 

Variations in request size and offset create a huge challenge in handling I/O on 

servers. Nodes can receive requests that may or may not be aligned to the CRC chunk 

offsets. The offset of the request plays an important role in how expensive the CRC 

computation will be. The reason for the variation in computation of the hash code 

for each each of them is explained in detail below. 

7.3.1 Aligned requests 

Since the CRCs are always calculated for the complete CRC buffer length, having 

request offsets aligned to the buffer offsets translates into doing a single I/O of full 
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CRC buffer length on bstream and a single I/O on cksum. Requests on a cksum file 

will not be necessary if the hash code is already available in the node's cache. Data 

read from the disk can be verified with the hash code read from cksum, while data 

written will have its corresponding CRC updated on disk and also preserved in cache. 

7.3.2 Unaligned requests 

Because of an offset to the CRC data buffer, unaligned requests need to be handled 

in a special way. In order to check the integrity of the data during reads, the complete 

CRC buffer has to be read from disk and verified, although only a part of it is returned 

to the client. Unaligned writes require a more complex operation. The partial blocks 

of the request will have to be read and verified before being updated with new data. 

The CRC will then have to be calculated for the updated block and flushed to the 

disk. If we do not verify the blocks with partial offsets and simply overwrite them, we 

may fail to detect any corruption that might already exist in the region with old data. 

This could place an extra overhead on calculating CRCs. The idea of appending the 

CRC code for updated data to the end of the CRC file is used by the Google file 

system [64], but it requires keeping track of each updated region and cleaning the 

CRC file for inactive chunks during the server's idle time. 

7.4 Results - Single Node Failures 

In this section, we discuss the results of our implementation for both file systems 

under single client and multiple client scenarios. For our implementation, we modified 

the Lustre file system version 1.4.9 and PVFS version 2.8.1. Since Lustre provides 

a POSIX interface, we tested the throughput of the system using the popular file 

system benchmarking tool IOZone [14] by varying file sizes. We tested the through­

put of PVFS with our algorithm using another benchmarking tool IOR developed 

at Lawrence Livermore National Laboratory (LLNL) to measure the aggregate I/O 
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throughput [13]. IOR is a benchmarking tool for parallel file systems that allows I/O 

through a variety of interfaces including POSIX and MPI-IO. In our experiments, 

we conducted the tests using the MPI-IO library with unaligned requests for transfer 

sizes of 64KB. 

7.4.1 Single Client 

For single client tests, we conducted our experiments on 7 dual-core AMD Opteron 

dual-processor machines with 2 GB RAM and a 80 GB SATA disk drive connected 

over a gigabit Ethernet port. Five nodes were used as storage targets, one as the 

metadata server and one as the client. The original file system was tested with 

5 storage node and for testing our algorithms using RAID mechanisms, we had 4 

storage nodes and 1 parity node. For both file systems, we used the same object 

size of 64KB, thus setting the total strip size to 320KB for the default file system 

installation and 256KB for the RAID setup. 

7.4.1.1 Lustre File System 

From Figure 7.4 we can see that, as expected, calculating the parity inline with 

the write operation by buffering the full strip is very expensive. This is due to 

the reads involved to generate the parity. We see that throughput for large file 

sizes at best reaches up to 18% of Lustre without parity. For smaller file sizes, the 

performance was even worse. However, if we use a separate thread to perform the 

partial I/O as proposed in this work, the performance improves significantly. The 

parity performance with the thread technique ranges from 68-97% of normal Lustre. 

The thread which handles the writing of partial stripes and updating the parity, 

flushes out data continuously. Since this is done using an independent thread, the 

impact of the parity update is not visible on the write throughput. On average, the 

degradation in performance due to using parity is about 15%. The overall load on 
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the system due to the thread was minimal because the parity was mostly generated 

on the storage node. We see a drop in performance for very large files because the 

size is most likely overwhelming the memory on the storage nodes. 

For testing under a failure scenario for read and for write, we modeled the failure 

condition of a target by modifying the time-out interval and forcing the client to 

view a random target as a failed node. Figure 7.4 also shows the performance of 

writes under a single node failure scenario compared to the normal Lustre file system 

performance. It can be seen that under failure, the writes do not differ much from 

no failure condition. It can also be observed that the use of the thread does improve 

reconstruction time significantly. The little loss of performance is due to writing 

of the DRD which is done only under failure cases. For testing read throughput, 

we conducted our experiments with direct I/O enabled to avoid Lustre reading the 

data from the Linux kernel's VFS cache on the client. In terms of the read under 

failure condition, we observe regenerating data using parity could incur a performance 

penalty in the range of 40-65% of reads when there is no failure, as can be seen 

in Figure 7.5. Considering that we were able to maintain the availability of the 

system despite failure of one node, a 40-65% performance hit during reconstruction 

is not significant. We can improve this number further by implementing advance 

reconstruction algorithms and read-ahead of the parity data and is part of our future 

work. 

7.4.1.2 Parallel Virtual File System (PVFS) 

Figure 7.6 shows the write performance for PVFS with our algorithm's imple­

mentation for both with and without failures. The graphs seems to follow the same 

pattern as with the Lustre file system. We observe that under normal working condi­

tion, with threads, we achieved redundancy with about a 20% hit for 1GB files. For 

smaller file sizes, the performance was noticeably poorer because of extra overhead 
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in communication. Without using threads, we can clearly see the poor performance, 

reaching at best of 18% of regular PVFS, again only for larger file sizes. By using 

threads, we obtained performance as high as 81% of regular PVFS for 1GB file sizes. 

Under failure, we observed an almost constant degradation of 60% for all file sizes. 

Again, as was the case with Lustre, this is an acceptable performance loss as the 

system was still available throughout the downtime of the failed node. Similarly, we 

see a drop in performance for very large file due to cache effects. 

Figure 7.7 shows the read performance under failure condition. Unlike Lustre, 

for PVFS, we see very little variation in read performance under failure. The results 

show a leveled degradation of around 50% for all file sizes. 

7.4.2 Multiple Clients 

We conducted another test to monitor the performance of the system with 8 clients 

doing simultaneous I/Os on the same set of target nodes. All machines used for the 

test were dual core AMD Opteron dual-processor with 2GB RAM. Eight servers were 

used as clients, one as the metadata server and five as storage nodes. 

Figure 7.8 shows the write performance of our algorithm as compared to the origi­

nal Lustre performance when put under stress by 8 clients simultaneously on different 

files. We ran the benchmarking tool IOZone on each client for different files. From 

Figure 7.8, we can observe that with multiple clients, write performance is not as good 

as the single client results. This is because each client is operating on separate files, 

thus putting more load on each storage server. Without threads, we observed very 

poor performance reaching at best 17% for 1GB file writes. With threads however, 

we managed to get a performance of about 70% for small file sizes and a little over 

50% for larger file writes. This is in contrast to the 3% best performance hit seen on 

single client experiments. This is because more I /O is handled by the storage nodes. 

A similar trend can be seen under PVFS in Figure 7.9. We observe a performance 
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loss of about 30% compared to regular PVFS setup when using threads for larger 

file sizes. Without threads, we could only get 35% performance of the default PVFS 

install. Using RAID5 instead of RAID4 as we have done may improve these num­

bers because RAID5 will help distribute the parity calculation load equally across the 

storage servers. 

7.5 Results — Silent Data Corruption 

We ran our experiments on a Linux cluster with 8 PVFS I/O nodes serving both as 

storage servers and as metadata servers. Each node has two dual-core AMD Opteron 

2.8 GHz processors with 4 GB RAM. Each PVFS server was configured to use an XFS 

file system on RAID5 with four 80 GB disks for local storage. We set the CRC buffer 

size to 64KB. To test the performance of our system, we used the IOR benchmark 

developed at LLNL to measure the aggregate I/O throughput [13]. IOR is a bench­

marking tool for parallel file systems that allows I/O through a variety of interfaces 

including POSIX and MPI-IO. The tests were run for single client and multiple client 

scenarios doing I /O on a 8 GB file using the MPI-IO library. The results shown here 

are an average of 10 runs with the error bars indicating the maximum and minimum 

measurements for each setup. The CRC cache was available in all cases. 

We tested the performance of our implementation in two different scenarios and 

compared it with results from the production release of PVFS. Figure 7.10 shows 

the write throughput for a single client writing to an 8 GB file without data sync for 

different transfer sizes. We observed that for aligned requests, with an overhead of 

36% for 4 KB transfer sizes and an overhead of 40% for 4 MB transfer sizes, we were 

able to provide integrity checks on the data stored. Contrary to our assumption of 

higher overhead for unaligned requests, we observed only a little extra overhead of 

about 6% over aligned requests for 4 MB transfer sizes. 

Figures 7.11 and 7.12 show the read and write bandwidth for 8 clients with the 



400 

350 

S 300 
m 
5 
£ 250 

200 

150 

100 

50 

0 

Without CRC 
With CRC. aligned requests 
With CRC, unaligned requests 

256KB 
Transfer Size 

Figure 7.10: IOR aggregate Write bandwidth with 8 GB file using MPI-IO. (with sync, 
single client) 

Without CRC 
With CRC, aligned requests 
With CRC, unaligned requests 

256KB 
Transfer Size 

Figure 7.11: IOR aggregate Read bandwidth with 8 GB file using MPI-IO (without sync 
8 clients) 



m 300 

Without CRC 
With CRC, aligned requests 
With CRC, unaligned requests 

Figure 7.12: IOR aggregate Write bandwidth with 8 GB file using MPI-IO. (without 
sync, 8 clients) 

$ 150 

I >00 

Without CRC 
With CRC, aligned requests 
With CRC, unaligned requests 

Figure 7.13: IOR aggregate Write bandwidth with 8 GB file using MPI-IO. (with sync, 8 
clients) 



104 

data synchronization turned off and I/O being done asynchronously. We observed a 

read overhead of 22% for 4 KB transfer sizes and a 30% overhead for 4 MB transfer 

sizes. For writes, the overhead varied between 24% for 4KB transfer sizes to 5% 

for 4 MB transfer sizes. Most of this overhead was due to the computation time of 

the CRCs. We observed that for reads, the threads would almost always complete 

the read-ahead of CRCs before the data was read from the bstream and for writes, 

the threads would wait for CRC calculation. Having a separate file for storing CRC 

codes thus had little to almost no impact on performance. In our experiments, reads 

took a larger hit compared to writes because for reads we compute the CRC after 

the data is read, while for writes we do the computation in parallel. For unaligned 

write requests, we observed a larger overhead of 57% for 4 KB transfer sizes and 52% 

for 4 MB transfer sizes. This overhead is because of reading the old data with partial 

requests from the disk and calculating the CRC to verify the existing data before 

updating it with the new data. This overhead was not visible in the case of a single 

client because fewer requests were being handled by the I /O nodes. 

Figure 7.13 shows the performance when I/O on bstream was done synchronously 

by 8 clients. Writes followed almost the same pattern as in the case of requests without 

sync. Aligned write overhead varied from 5% for 4KB transfer sizes to 12% for 4MB 

transfer sizes. Although writes for aligned requests gave throughput almost as good as 

the default PVFS, unaligned requests took a large hit. Again, this difference is caused 

by the read-verify-write steps required for unaligned write requests. For unaligned 

writes, the overhead changed from 9% for 4 KB to 73% for 4 MB transfer sizes. For 

reads (results not shown here), we observed very little variation in the throughput 

between aligned and unaligned requests. In our experiments, we observed an overhead 

of 43% for aligned requests of 4 MB transfer sizes and 45% for unaligned requests of 

4 MB transfer sizes. 
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7.6 Results - Reliable Storage using ATTEST 

One of the main aim of ATTEST framework was to allow expensive reliability 

algorithms to be enabled selectively on important files, while leaving the regenerable, 

or unimportant files with default access. To see the real advantage of using ATTEST 

framework to selectively enable reliability algorithms, we noted the time to compile 

am-utils utilities suite on a PVFS mount under three different scenarios. Figure 7.14 

shows the comparison of the time taken to compile the source code when no integrity 

checks were enabled, when integrity checks were enabled on all files and when the 

integrity checks were done only on .c files present in the source code. From the 

figure, we observe a significant gain by using rules on ATTEST in contrast to having 

the integrity checks enabled on all the files. By using rules, we were able to reduce 

the compile time by almost 36%. 
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7.7 Summary 

In this chapter, we have presented a series of algorithms for a fault-tolerant dis­

tributed storage system. The algorithms preserve data and file system integrity and 

consistency in the presence of concurrent reads and writes. We have shown how these 

protocols are designed to be tolerant of single-fault transient failures. The protocols 

are designed with fault-tolerance as a principal design commitment rather than as an 

afterthought. The main contribution is the notion of storing data locally to a client as 

well as to the cluster storage nodes in order to reduce the impact of parity generation 

on writes. We have shown that this improves the performance significantly. 

We also gave an overview of the cost of providing data integrity in a parallel file 

system. We showed that integrity errors exist and can lead to unexpected results with 

data loss if not identified immediately. We provided a prototype implementation for 

integrity checks in PVFS and demonstrated that, with an overhead of around 5% for 

writes and 22% for reads, we can ensure that the data is free from any errors. 

New emerging technologies such as flash translation layers (FTLs) that allow ar­

rays of NAND flashes to be addressed in logical sectors are finding their way into 

the HPC domain because of their ability to do random data access at several order 

of magnitude faster than traditional drives. Despite having wear-leveling algorithms 

and efficient bad-blocks management, however, they are not free from data errors. 

Flash-based storage has a limited number of write cycles before it wears out and 

stops storing correct data. This situation emphasizes the need for having a mecha­

nism for data integrity checks for them in place. Our work also shows that the biggest 

issue of providing such verification checks lies with the cost of computing check codes 

and not in storing them on disks. We plan to modify the way we calculate the CRCs 

by establishing a read/write request pipeline, thus using each individual component 

of the system more efficiently. We are also studying ways in which we could make use 

of highly parallel general-purpose Graphical Processing Units (GPGPUs) to compute 
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integrity checks. These devices suffer from memory transfer overheads. However, re­

cent studies have shown that using a pipelined architecture to keep the GPU buffers 

busy, several magnitudes of performance improvement could be achieved [55]. 



Chapter 8 

Conclusions 

In this thesis, we have presented the motivation for extending storage system 

policy administration to the file level thereby providing opportunities for efficiencies 

in terms of storage overhead and performance at several levels of the storage hierarchy. 

User-directed storage policy through the use of extended attributes can assist storage 

administrators in determining efficient storage usage and server allocation. We have 

outlined an attribute-based extendable storage framework that allows users to set 

file-specific, or directory specific rules which can enable, or disable functionalities 

present within the storage system. These rules are pushed to all layers of the storage 

stack, including device manager layer, thus also enabling transfer of throughput or 

redundancy requirements of the device from the user to the storage system. We 

provide a user-space stackable file system design which allows non-privileged users to 

develop their own file system in user-space. These file systems are stacked on top of 

existing file systems, thus eliminating the need to depend on system administrator to 

enable support for a particular feature. 

We also presented algorithms to protect loss of data due to failures, or detect 

data corruption due to hardware faults. These algorithms although computationally 

expensive, improve the reliability of storage systems. Since all files stored on a storage 

server do not require such high reliability, using ATTEST, we limit the functionality 
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overhead to only important files. 

As storage size and administration costs go up, we believe that one size fits all 

model no longer provides the most efficient solution to storage management. User-

directed policy models such as what is presented in this thesis is required. File-level 

granularity on storage policy rules and allowing user-space stackable plugins provide 

the users, as well as administrators with flexibility in decision making. ATTEST 

framework has the potential to reduce the burden on system administrators at sites 

where such extendable clustered storage systems are deployed. 

As future work, we hope to improve the way the communication occurs between 

the application and the storage device. The current approach to storage has always 

been a one-way communication with applications providing the storage system with 

the data to store. We hope that this work forms the foundation for a two-way commu­

nication and help design storage-aware applications. In such a system, an application 

could query as to which plugins are available, and what features an application can 

take advantage of. The applications could request the file system for all available 

options that can improve the quality-of-service of the storage system. ATTEST can 

be designed to dynamically predict properties of files based on its attributes so that 

more intelligent decisions could be made on placement of data blocks [59]. Properties 

such as file size and file growth could be used to help system administrators gain more 

control on user's files. 

We also hope our work helps design and development of future active storage. 

Active disks [109, 81, 31, 60] are used in environments where the processing power of 

the drive controller can be used to solve parallel problems by operating on a subset of 

data. ATTEST framework can be used to communicate the type of function already 

present on the disk to be executed on the data. 

We are also looking into the use of object storage to interpret ATTEST attributes. 

OSD attributes present in object-based storage device commands present in T10 
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standard could be modified to implement ATTEST framework. 

Apart from the ATTEST framework, the user-space stackable file system design 

can be extended to the device manager layer that will send data blocks available at 

the disk level to the user-space daemon in a manner similar to that done at the file 

system level. This can be used to write user-spaced disk block manipulation functions 

such as data deduplication or snapshotting. A block mapping function in the user-

space can also allow users to write their own disk layout algorithms [129, 100] from 

the user space without the need to understand the operating systems internals or 

working of device drivers. 
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