
An Analysis of Parallel Programming Techniques for Data
Intensive Computation

Anuradharthi Thiruvenkata Ramani and John A. Chandy
Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA

Abstract— Data intensive applications have too much data
to analyze quickly and in its entirety. The ability to extract
valuable information in real time remains a intimidating
challenge. Efficient distributed parallel programming tech-
niques are the key in achieving the performance requirements
for such computations. The most common cluster data par-
allel programming methodology is to use message passing
to communicate between computation nodes. Recently, the
MapReduce model has been introduced as a more efficient
mechanism to enable easy development of parallel applica-
tions to process large amounts of data on large clusters.
In this paper we analyze and compare the performance of
MapReduce and message passing in general and specifically
for two data intensive computations: (a) WordCount and (b)
Blast Like Alignment Tool (BLAT).

1. Introduction
Computer science today is rapidly moving towards par-

allelism as a means to prevail against increasing problem
sizes and the declining rate of clock speed improvements.
Parallel programming developed as a means of improving
performance and efficiency. In parallel programming, the
computation is divided into parts, each of which can be
executed concurrently. The instructions from each part have
the ability to run simultaneously on different CPUs that
can exist on a single machine, or they can be on a set of
computers connected through network.

In order to process large amounts of data, the com-
putations have to be distributed across multiple machines
in order to finish in a reasonable amount of time. The
issues parallelizing the computation, distribute the data and
handle failures collude to complicate the original simple
computation with large amounts of complex code to deal
with these issues. Not only are parallel programs faster,
they can also be used to solve problems on large datasets
using non-local resources. When you have a set of computers
connected on a network, you have a vast pool of CPUs, and
you often have the ability to read and write very large files
with a distributed file system. As a reaction of complexity,
choosing between different distributed parallel programming
techniques to accommodate exponentially growing data with
a finite amount of time to do the required analysis becomes
difficult. The major contribution of this work is to analyze
the two major distributed cluster parallel programming tech-

niques - namely MapReduce and message passing for data
intensive applications.

Section 2 describes in detail the two parallel computing
techniques with the architecture overview. Section 3 details
the data intensive applications. In Section 4, we describe
the distributed application programming analysis and par-
titioning techniques for the large data sets. Section 5 has
the performance measurements of MapReduce and Message
Passing for the chosen applications along with the timing
analysis between the two programming techniques.

2. Parallel Computing
The evolution of parallel computer architectures has re-

cently created new trends and challenges for both parallel
application developers and end users. Parallel computing is
a form of computation in which many calculations are per-
formed simultaneously, operating on the principle that large
problems can often be divided into smaller ones, which are
then solved concurrently (in parallel). Parallel Computing are
categorized by the level of parallelism employed with multi-
core and multi-processor comprised of many processing
units within a computer, while clusters, massively parallel
processors (MPP), and grids use multiple computers to work
on the same task.

Parallel computer programs are more difficult to write than
sequential ones, because the simultaneous executions intro-
duces several new potential hazards like data dependencies
which can lead to the race conditions and other software
bugs. Understanding data dependencies is fundamental in
implementing parallel algorithms. No program can run more
quickly than the longest chain of dependent calculations
(known as the critical path), since calculations that depend
upon prior calculations in the chain must be executed in
order. However, most algorithms do not consist of just
a long chain of dependent calculations; there are usually
opportunities to execute independent calculations in parallel.
Communication and synchronization between the different
subtasks is typically one of the greatest barriers to getting
good parallel program performance. The speed-up of a
program as a result of parallelization is given by Amdahl’s
law.

2.1 Message Passing
Message passing is the most commonly used paradigm for

cluster-based parallel programming. The Message Passing



Interface (MPI) [1], [2] is the standard used to code parallel
computing applications based on this paradigm. Derived
Datatypes, Dynamic process management, Point-to-point
and collective communication are supported by MPI. The
MPI interface was developed with the intent of compre-
hending all of the available message-passing constructs and
features of various MPP and networked clusters so that
programs would execute on any type of system. MPI’s porta-
bility feature supports copying, compiling and execution of
a program written for one architecture on another without
modification. MPI’s goals are high performance, scalability,
and portability. MPI remains the dominant model used in
high-performance computing today.

Single Program Multiple data(SPMD) is one of the ways
to achieve parallel computing where a single program is split
across a group of processes to execute concurrently with
localized data. MPI is designed to support SPMD model. So
when developing an application to be executed on a single
MPP, then MPI has the advantage of higher communication
performance and the ever desired ease of portability. MPI
has a much richer set of communication functions which
makes it advantageous to use on an application with special
communication mode requirements.

MPI’s [3], [4] implementation language in general is
different from the language it supports at runtime. Most MPI
implementations are a combination of C, C++ and assembly
language, and target C, C++, and Fortran programmers. MPI-
CH and MPI-Ram are libraries that have implemented MPI
functions in C and C++. However, Java programs cannot use
these libraries directly, for this reason mpiJava was designed
to bridge Java applications to the underlying MPI-CH or
MPI-Ram functions. To achieve the promised high commu-
nication performance, some of the notable forfeits were the
lack of interoperability between two MPI implementations,
and lack of ability to write a fault tolerant application. The
only guarantee MPI specification provides is ability to quit
the program on error. The mpiJava interface is designed
to provide essential virtual topology, synchronization, and
communication functionality between a set of computers in a
language-independent and language-specific way. To achieve
the desired maximum performance, each CPU is assigned
only a single process during runtime.

However, even mpiJava has not been able to handle
and recover faults automatically. mpiJava has static nature,
wherein, the processes are created during the initialization
and assigned process numbers, every process keeps details
of every other processes, new processes cannot be generated
during runtime. This static nature of mpiJava favors in
achieving the higher performance. The main features include
the checkpointing done at frequent intervals and restarting
a compute node on failure. This can be quite inefficient
when involving a larger system. When the mpiJava tasks
reside on the same data node, the communication can be
over the switch network or through shared memory concept.

But when there are large amounts of data that has to be com-
municated over the network it results in a significant amount
of I/O traffic sometimes leading to Network Contention.

2.2 MapReduce
MapReduce [5], [6] is a programming paradigm and

framework developed by Google for simplified, parallel data
processing on clusters built of commodity hardware. As its
name implies, it was inspired by the Lisp (list-processing)
functions reduce, also known as accumulate, and map.
However, the MapReduce model behaves slightly differently
when it comes to all of the input, output, and intermediate
data which are expressed as key/value pairs. The MapReduce
infrastructure is designed to handle partitioning and distribu-
tion of input key/value pair data across a cluster. The Model
also employs a namenode and jobtracker to distribute and
execute the task across all of the available nodes. Each of
the mapper function is assigned a input split it operates on
and produces the intermediate key/value pairs. The combiner
does the process of shuffling and sorting all the intermediate
results. Finally these sorted keys are assigned to the reducer,
which produces the output key/value pairs.

Figure 1: MapReduce Execution Overview

The advantage of MapReduce is the ability to distribute
and process map and reduce operations. The only concern
is that the MapReduce job should have the capability of
splitting the job and be executing them in parallel. There
might be some limitation to the map job arising due to data
availability and location of CPU’s near the data. Similarly,
the reduce job works on the results from the mapper stored
in intermediate local disks. This technique works well with
large data sets. In addition to parallelism it also provides
a fairly good failure recovery. Due to the replication of
available data, even if a worker node fails, the job could be
rescheduled to another node where the data is replicated. In
MapReduce [8], [7] model, each of the node has local hard
drives where the intermediate files are stored. These files



can be remotely read by the reducers. Thus MapReduce is
a shared-nothing architecture. But all the MapReduce jobs
read from and write data to HDFS [9] which is shared by all
the nodes. HDFS takes care of the replication placing them
on compute nodes around the cluster based on the specified
replication factor. Due to this shared-nothing architecture
scalability can be easily achieved, and the integrated HDFS
makes thousands of disks appear like one.

a) Execution Overview: Figure 1 illustrates the MapRe-
duce Execution Overview.

The major functions in MapReduce’s dataflow is detailed
below:

1) Input Reader : The Map/Reduce framework relies on
the InputFormat of the job to validate them, split the
input file(s) into logical InputSplit instances of size
16MB to 64MB, each of which is then assigned to
an individual Mapper, and provide RecordReader to
collect the input record from logical split and present
a record-oriented view to be processed by the Mapper.
Typically the input reader reads data from HDFS and
generates key/value pairs.

2) Mapper : Map function, specified by the user program,
takes an input split and produces a set of intermediate
key/value pairs. The intermediate key/value pairs are
stored on the local disks which are remotely read by
the Reducer function. The input and output types of
the Map function are often different.

3) Combiner : The Combiner function, specified by
the user program, remotely reads the intermediate
key/value pairs processed by different Map jobs lo-
cated on the local disks. It then shuffles and sorts the
key/value pairs based on the intermediate key.

4) Reducer : The Reduce function, also specified by the
user program, accepts an intermediate key and a set of
values for that key from the combiner function. It then
merges the set of values in to a smaller set of values.
A reducer always receives key/value pairs as input and
produces key/value pairs as output. For large datasets,
the reducer may perform the reduce action in multiple
steps.

5) Output Writer : The Output Writer writes the output
of the reduce to stable storage, usually the Hadoop
distributed file system.

6) HDFS: The Hadoop Distributed File System
(HDFS) [9], [10] is a distributed file system designed
to run on commodity hardware. Figure 2 depicts the
architecture. There are many similarities with the
existing distributes file system whereas the notable
differences include high fault tolerance and ability to
be built from commodity hardware. HDFS is designed
to support large datasets, provide high data bandwidth
and scale to thousands to nodes.

Figure 2: HDFS Architecture [9]

HDFS applications are designed to fall under the
model of write-once-read-many. So a files that are
written once and are accessed multiple times result in
high throughput data access. So the parallel computing
on large data sets could be one among them. Also
when the computation is carried out near data the
network congestion could be reduced resulting in
increased throughput of the system. HDFS provides
interface to move application close to data. HDFS is
designed to be portable on different platforms. HDFS
uses the master/slave architecture. HDFS has a single
master, NameNode, which keeps track of all the slaves,
and manages the namespace. There are many slaves,
the DataNode which carry out the process instructed
by the master node. The input file(s) is usually split
across the available datanodes. The mapping of the
blocks on the DataNodes is taken care of by the Na-
meNode. NameNode creates, deletes and renames the
file blocks on the DataNode. DataNode also performs
these operations when instructed by the NameNode.

3. Data Intensive Computation
Data Intensive Computing [11], [12], [13] is acquiring, an-

alyzing, and processing volumes of data. The ever advancing
technology provides the ability to handle these large data sets
with economical storage, and faster bandwidth. These data
sets evolve from a variety of applications ranging from scien-
tific research(e.g., bioinformatics, climate change), transac-
tional data (e.g., payroll, accounting) and environment(e.g.,
ozone layer, water acoustics). The challenge of these large
amount of data is to extract valuable information in real-
time. This problem could be

1) accommodate ever-increasing data
2) process and obtain valuable information
3) convert information into human readable data

Data intensive computing requires a well structured set of
principles. Many data-intensive applications can be paral-
lelized to achieve the required output specification. The data-



intensive applications demand reliability, high fault toler-
ance, real-time response and availability.

In this paper, we analyze two data intensive applications
- the simple Word Count application and the much more
complicated BLAT application. Word count is derived from
a Hadoop application and has been ported to MPI and
BLAT was an initial MPI application that has been ported
to Hadoop.

3.1 Word Count
WordCount is an application that counts how often a word

occurs, the total number of words, lines and characters in
a text file. Knowing the numbers of words is sometime
important, for instance when we are required to stay certain
minimum or maximum bounds. The input is text files and
the output is text files, each line of which contains a word
and the count of how often it occurred, separated by a tab.

3.2 BLAT
The second data intensive application to be considered

is BLAT (BLAST Like Alignment Tool) [14], [15]. BLAT
is one of the most widely used bioinformatics tool. This is
commonly used to look up the location of a sequence in
the genome or determine the exon structure of an mRNA.
BLAT is an alignment tool like BLAST, but it is structured
differently. On DNA, BLAT works by keeping an index of an
entire genome in memory. Thus, the target database of BLAT
is not a set of GenBank sequences, but instead an index
derived from the assembly of the entire genome. The index
– which uses less than a gigabyte of RAM – consists of all
non-overlapping 11-mers except for those heavily involved
in repeats. This smaller size means that BLAT is far more
easily mirrored. BLAT of DNA is designed to quickly find
sequences of 95% and greater similarity of length 40 bases
or more. It may miss more divergent or short sequence
alignments. BLAT on proteins finds sequences of 80% and
greater similarity of length 20 amino acids or more.

The protein index requires slightly more than 2 gigabytes
of RAM. In practice – due to sequence divergence rates
over evolutionary time – DNA BLAT works well within
humans and primates, while protein BLAT continues to find
good matches within terrestrial vertebrates and even earlier
organisms for conserved proteins. Within humans, protein
BLAT gives a much better picture of gene families (paralogs)
than DNA BLAT. The genome itself is not kept in memory,
allowing BLAT to deliver high performance on a reasonably
priced Linux box. The index is used to find areas of probable
homology, which are then loaded into memory for a detailed
alignment. Protein BLAT works in a similar manner, except
with 4-mers rather than 11-mers. The protein index takes a
little more than 2 gigabytes. The output of BLAT is flexible.
By default it is a simple tab-delimited file which describes
the alignment, but which does not include the sequence

of the alignment itself. Building an index of the genome
typically takes 10 to 15 minutes.

The input file format for the BLAT application is the
FASTA format. In bioinformatics, the FASTA format is
a text-based format for representing either nucleic acid
sequences or peptide sequences, in which base pairs or
amino acids are represented using single-letter codes. The
format also allows for sequence names and comments to
precede the sequences. The simplicity of FASTA format
makes it easy to manipulate and parse sequences using text-
processing tools. Both the database and query input files
are FASTA format. When BLAT is run on a genome set, it
is analogous to a database being queried. The working of
the application is similar to the grep application which does
the query matching on the available database. The resulting
output would be the sequences names, matched sequence
position, and matching length from the database FASTA file.

3.3 Other Examples
As parallel computing become larger and faster, it be-

comes feasible to solve problems that previously took too
long to run. Parallel computing is used in a wide range
of fields, from bioinformatics (to do protein folding) to
economics (to do simulation in mathematical finance). Some
common examples that can be considered applicable to
the distributed parallel programming techniques are Count
of URL Access Frequency, Matrix Multiplication, Inverted
Index, Distributed Sort, and Graph traversal.

4. Distributed Application Programming
Analysis

The criteria to choose among the available data-intensive
computing technique are the amount of data involved, the
computing capabilities and the underlying storage. The dis-
tributed parallel programming techniques should have high-
level parallelism, easier programming, high reliability, higher
performance, and economical.

Table 1 summarizes the basic characteristics comparison
between MPI and MapReduce.

Table 1: Comparison of MPI and MapReduce characteristics

Characteristics MPI MapReduce
Synchronization Message passing and Map jobs followed

barrier options by Reduce jobs
Communication Fine-Grained Coarse-grained
Partitioning Performed by developer By HDFS and specified

partitioning technique
Fault Tolerance Sensitive to failing Reschedules the job

components and relies on a node failure
on applications to
tolerate failure

Prog. Languages Supports C, C++, Java Supports Java, Hadoop
and Fortran Streaming supports C++



4.1 Comparison of MapReduce and Message
Passing programming

This section analyzes the data intensive applications which
we implemented using Hadoop-MapReduce and mpiJava.
It also describes the challenges we faced in implementing
them.

4.1.1 Programming Styles
Although MapReduce supports streaming and pipes, cur-

rently there is no support for using applications written in C
language. BLAT is a bioinformatics genome tool written in
C. So in order to use this application under the MapReduce
model, the solution we came up with this is to write a
SWIG wrapper functions for the map and reduce tasks in
Java, and use these wrapper functions to execute the BLAT
genome searching. The input to the map function, database
and the query files were placed in the HDFS. The map
wrapper function reads the database file, and according to
the specified fileinput format creates the input split and
stores them in the specified list of datanodes. Each map
task will process one of these input splits and the resulting
intermediate output will have the query matching done at
the inputsplit received by the map function.

This intermediate output is saved in the HDFS. Hadoop’s
runtime collects these locations and sends them to the
appropriate reduce tasks. The reduce tasks now have the
partial output. The reduce tasks performs the operation of
sorting the received output and merging them. The merged
output file is then stored in HDFS and the location is
passed to the user program, which then performs a similar
operation to merge all of them in to a single output file.
When programming for MapReduce the main concentration
was on to getting the core application done rather than data
partitioning, memory management, communication between
jobs, synchronization parallelizing the code. All of these was
taken care of by the Hadoop framework.

The technique adopted to implement the mpiJava version
was the similar master/slave model. Message passing is well-
suited to handling computations where a task is divided up
into subtasks, with most of the processes used to compute
the subtasks and a few processes (often just one process)
managing the tasks. The manager is called the “master" and
the others the “workers" or the “slaves". When implementing
using mpiJava programming required careful tuning. There
was a considerable time that has to be spent for synchro-
nization, data partitioning and parallelizing the code. But by
considering parallel libraries in different parallel threads and
avoiding overlapping of communication and computation,
we could obtain maximum performance-oriented standard,
trading off hardware latency and hardware bandwidth.

4.2 Partitioning Techniques
An important step in testing the programming is de-

veloping useful and comprehensive test data. Traditionally,

we rely on partitioning to get parallelism in I/O, and to
reduce network traffic. Partitioning is a way to divide a
large data sets into separately divided chunks; the contents of
each chunk being determined by the partitioning technique.
The multiple pieces of a large data sets give the data
administrator a lot of flexibility and manageability in dealing
with them. This also can boost performance.

4.2.1 Load Balancing
Load balancing partitions the data as near to equal size

as possible, ensuring an even load across your all the
processors. The boundaries are identified by determining the
total size of the data and the actual number of the resulting
partitions. This is the most common type of partitioning and
is often useful for applications that manage historical data,
especially data warehouses.

4.2.2 Intelligent Partitioning
For the WordCount application, Load Balancing would

suite to be best for consideration. As each of the worker
would have nearly equal sized input file to work on. But
when considering the BLAT query computation, this might
not be work well. The large data set when partitioned
equally may sometime result in splitting the existing query
match sequence. When this happens we might not get this
existing match in the output due to the improper partitioning
employed. So for this type of critical conditions we came up
with a solution where we would determine the boundary of
the equal split. And from the succeeding partition replicate
the beginning of the partition equal to the query length and
append to the previous partition. Thus the resulting partitions
size would be split length plus the query length.

5. Quantitative Analysis
Once the distributed parallel programming technique,

data-intensive application and partitioning techniques has
been chosen the next step is to evaluate the performance.

5.1 WordCount
For the WordCount application, we evaluate the overall

performance of MapReduce and mpiJava implementations
by measuring the total execution time as the number of
computing nodes increases. For the WordCount application,
the input file sizes were chosen to be 90MB and 5.4GB. The
result is tabulated in Table 2. From Figure 3 we observe that
MapReduce performs fairly well for large input data sets,
but when we evaluate the performance of MapReduce and
mpiJava for the smaller data file we observe that there is
a considerable overhead in MapReduce. Startup overhead
is caused by the propagation of program to all worker
nodes. This also involves the formatting of namespace in the
NameNode, copying of the input data file to the HDFS and
to notify the map nodes about the job assigned. When we



analyzed how the actual time was spent during a WordCount
application run on a single compute node using MapReduce
technique, it turned out that the startup overhead took about
10 sec of the total computation time. The actual Map job
took about 49 sec and the shuffling, sorting and reducing
took 2.9 sec. However, when the same job was carried out
on increased compute nodes, the overhead startup time was
dominated by the reduced MapReduce computation, thus
resulting in a performance similar to that of the mpiJava.
Thus the startup overhead was nearly eliminated when we
had 8 compute nodes.

Figure 3: WordCount - execution time vs. number of
compute nodes - 90MB and 5.4GB input file

Table 2: WordCount execution time for MapReduce and
mpiJava for different input file sizes

90MB Filesize 5.4GB Filesize
Compute Nodes MapReduce mpiJava MapReduce mpiJava

1 62.8 52.1 436.9 431.2
2 33.7 27.6 219.5 218.5
4 15.8 13.2 109.2 108.7
8 7.91 7.21 54.6 54.1

5.2 BLAT
To evaluate the MapReduce and mpiJava technique for

BLAT we first measured the total execution time it takes to
process data by increasing the amount of data. The number
of compute nodes were fixed at 8. This shows that as the
data grows the total execution time it takes with MapReduce
seems to be getting better than the mpiJava. Figure 4 depicts
the result.

We performed another benchmark to see how MapReduce
and mpiJava implementations scale as the number of com-
puting nodes increases. For the BLAT application, the input
file sizes were fixed as 938 MB and 1.9 GB. This was run on
a cluster of 8 computing nodes, increasing in order of 1, 2,
4 and 8. The results are tabulated in Table 3. As we increase
the nodes, the number of map tasks were also increased so

Figure 4: BLAT, Execution time vs. Volume of data on 8
compute nodes

that each of the map tasks processes almost equal amount
of data in every run.

Table 3: BLAT execution time for MapReduce and mpiJava
for different input file sizes

938MB Filesize 1.9GB File size
Compute Nodes MapReduce mpiJava MapReduce mpiJava

1 102.31 100.3 844.4 842.7
2 53.80 49.30 329.2 326.1
4 26.08 26.01 214.1 213.6
8 13.10 12.98 106.3 106.1

MapReduce and mpiJava both show similar performance.
The overhead induced by the MapReduce implementations
has negligible effect on the overall computation as the
amount of data accessed in each analysis is large. Figure 5
highlights the scalability of the MapReduce technique. This
also indicates how the speedup is achieved with the increase
in number of compute nodes.

6. Conclusion
In this paper, we have presented our analysis of distributed

parallel programming techniques MapReduce and mpiJava
for data intensive computing applications. BLAT represents
a data intensive computation that can be implemented in
MapReduce to gain scalability and efficiency. We have used
our implementations to analyze up to 2GB of data. Word-
Count illustrates that MapReduce can be slower due to the
introduced startup overhead for smaller datasets. However,
this overhead becomes negligible as the input data size
grows. We analyzed the distributed programming techniques
with 5.4GB of data.

Comparing the performance of the two data intensive
applications using MapReduce and mpiJava led to the fol-
lowing observations:



Figure 5: BLAT - execution time vs. number of compute
nodes - 1.9GB and 938MB input file

• Most data-intensive computations can benefit from the
MapReduce technique to achieve speedup and scalabil-
ity.

• As the amount of data and computation increases the
startup overhead induced by MapReduce diminishes.

• MapReduce provides valuable fault tolerance. Even if
a data node fails, due to the replication feature, the
computation could be successfully completed. However,
in mpiJava when a link is broken the whole computation
will have to be rerun again.

• MapReduce provides coarse-grained parallelism. There-
fore, the I/O or network access does not create a
bottleneck.

• MPI is very sensitive to failing components - thus,
programming requires careful tuning.

Our experience shows that mpiJava could be used di-
rectly for data intensive computations. However, we strongly
believe that some features such as fault tolerance, ease
of parallelization, usage of known programming languages,
easier scalability, great flexibility in placement, and schedul-
ing exhibited by MapReduce could be effectively used by
most of data intensive computations which fall under the
MapReduce model.

7. Acknowledgment
This work was supported in part by the National Science

Foundation High End Computing University Research Ac-
tivity program under award number CCF-0621448.

References
[1] Message Passing Interface Forum. MPI: A Message Passing Interface

Standard, June 1995. http://www-unix.mcs.anl.gov/mpi/.
[2] Message Passing Interface Forum. MPI-2: Extensions to the Message

Passing Interface, July 1997. http://www.mpi-forum.org.
[3] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack

J. Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur,
Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel,
Richard L. Graham, Timothy S. Woodall, “Open MPI: Goals, Concept,
and Design of a Next Generation MPI Implementation", Proceedings,
11th European PVM/MPI Users’ Group Meeting, pp. 97–104, Septem-
ber.

[4] I. Foster, N. Karonis, “A Grid-Enabled MPI: Message Passing in
Heterogeneous Distributed Computing Systems", Proc. 1998 SC Con-
ference, November, 1998.

[5] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters," Communications of the ACM, vol. 51,
pp. 107-113, January 2008.

[6] Apache Hadoop http://hadoop.apache.org/core/.
[7] C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski, and C.

Kozyrakis, “Evaluating MapReduce for Multi-core and Multiprocessor
Systems," Proc. International Symposium on High-Performance Com-
puter Architecture (HPCA), pp. 13-24, 2007.

[8] Matei Zaharia and Andy Konwinski and Anthony D. Joseph and
Randy Katz and Ion Stoica, “Improving MapReduce Performance in
Heterogeneous Environments", Proceedings of the Tenth Symposium on
Operating System Design and Implementation, 2008.

[9] HDFS Architecture, http://hadoop.apache.org/core/
docs/current/hdfs_design.html.

[10] Sanjay Ghemawat and Howard Gobioff and Shun-Tak Leung, “The
Google file system", Proceedings of the 19th ACM Symposium on
Operating System Principles, pp. 29-43, October 2003.

[11] Pacific NorthWest National Laboratory, Data Intensive Computing.
http://dicomputing.pnl.gov/.

[12] Randy E Bryant, Carnegie Mellon University, Data-Intensive
Scalable Computing. http://research.yahoo.com/files/
BryantDISC.pdf.

[13] Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox, “MapRe-
duce for Data Intensive Scientific Analyses," 4th IEEE International
Conference on e-Science, pp.277-284, 2008.

[14] W. James Kent, BLAT Source code. http://www.soe.ucsc.
edu/~kent/src/.

[15] W. James Kent, “BLAT - The BLAST-Like Alignment Tool," Genome
Research 2002, vol. 12, pp. 656-664, March 2002.


