
Active Storage Networks: Topology,

Routing and Application

Ajithkumar Thamarakuzhi, Ph.D.

University of Connecticut, 2011

High performance computing systems are often inhibited by the performance of

their storage systems and their ability to deliver data. Active Storage Networks (ASN)

provide an opportunity to optimize storage system and computational performance

by offloading some computation to' the network switch. An ASN is based around an

intelligent network switch that allows data processing to occur on data as it flows

through the storage area network from storage nodes to client nodes. A key design

element for an ASN is the switching topology. In this thesis, we present an ASN

switching topology named 2-Dilated flattened butterfly (2DFB) which is a nonblocking,

low latency, low cost network compared to other nonblocking interconnecting networks.

We have implemented this network topology using the NetFPGA as the basic building

block of the switching network. The ASN 2DFB architecture has been used in a variety

of applications including data sort, data search, data clustering, and min-max.

We have also developed an adaptive load balanced routing scheme (ALDFB) which

exploits the topological properties of 2DFB network. ALDFB always gives priority

to forwarding packets through the minimal path and therefore, for local and benign

traffic the performance of this routing scheme is equal to that of the minimal routing. In

adversarial traffic, ALDFB provides better load balance by one non minimal forwarding

in each dimension. ALDFB provides high throughput on adversarial traffic patterns and

provides better latency on benign traffic patterns. We have compared the performance

of ALDFB on a 2DFB network with non-minimal global adaptive routing (UGAL),

Minimal Adaptive and Adaptive Clos routing algorithm for different traffic patterns.

We observed that a 2DFB network with ALDFB routing provides high throughput

with reduced latency compared to other routing schemes for all the traffic patterns.

Finally, we show how a 2DFB-based ASN can be used to improve parallel file

system performance. We have done simulations of striping files and file writes using

file locking protocols in a parallel file system. In an ASN we offload some operations

from the end-terminals to the ASN switch. In the case of file striping, the splitting

of files and the parity calculations are done on the run inside ASN switch. In the file

locking case we offload the file locking protocol to the ASN switch. In both cases we

observe a significant reduction in traffic through the network and this helps an ASN

based parallel file system to offer significant performance improvement.

Active Storage Networks: Topology,

Routing and Application

Ajithkumar Thamarakuzhi

B.Tech., Rajiv Gandhi Institute of Technology, 1997

M.Tech., Regional Engineering College, Calicut, 2002

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Connecticut

2011

UMI Number: 3492082

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 3492082
Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

APPROVAL PAGE

Doctor of Philosophy Dissertation

Active Storage Networks: Topology,

Routing and Application

Presented by

Ajithkumar Thamarakuzhi, B.Tech., M.Tech.

Major Advisor

Associate Advisor

Associate Advisor

Associate Advisor

Associate Advisor

^'Ss*.
Dr John A. Chandy

Dr Mohammad H. Tehranipoor

Dr Yunsi Fei

VOhnf"
Dr Lei Wang

University of Connecticut

2011

To my family

in

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Professor John A. Chandy

for his continued support, understanding and patience during the past four years of my

Ph.D study. Without his great support, this work would not have been possible.

Secondly, my special gratitude goes to my fellow lab mates Janardhan Singaraju

and Sumit Narayan for the insightful discussions, lab assistance and their support. I

also thank Jianwei Dai, Juan Carlos and Ranjith Ramanathan for all their support

over the years and making my time at UConn a more enjoyable experience.

Last and most importantly, I would like to thank my parents, my dear wife and

coworker Anu, and my wonderful daughter Saathvika for their constant support and en

couragement in all my endeavors. I am forever grateful to their love and understanding

that has made this thesis happen.

Ajithkumar Thamarakuzhi

University of Connecticut

August, 2011

TABLE OF CONTENTS

Chapter 1: Introduction 1

1.1 Overview 1

1.2 Thesis Contributions 6

1.3 Outline 7

Chapter 2: 2-Dilated Flattened Butterfly 8

2.1 Overview 8

2.2 Background 9

2.2.1 Flattened butterfly 10

2.2.2 Multiring 12

2.2.3 k-dilated k-way bristled hypercube 14

2.3 2-dilated flattened butterfly 15

2.3.1 Nonblocking property 16

2.3.2 Conflict-free static routing schedule 18

2.4 Comparison Results and Discussions 25

2.4.1 Network diameter 25

2.4.2 Switching element complexity of the network 26

2.4.3 Link complexity 28

2.4.4 Speed analysis 29

2.4.5 Cost Analysis 31

2.5 Simulation results 38

iv

Chapter 3: Hardware Implementation 45

3.1 Overview 45

3.2 Hardware implementation 46

3.2.1 Customizing Aurora core 48

3.2.2 Clock interface for Aurora 49

3.2.3 Aurora core and Interfacing modules 50

3.2.4 Implementation of 2DFB 55

3.3 Results 56

Chapter 4: Routing Scheme (ALDFB) 61

4.1 Overview 61

4.2 Routing Algorithm: ALDFB 63

4.2.1 Terminologies used in the algorithm 67

4.2.2 Deadlock and Livelock 68

4.2.3 Algorithms used for comparison 72

4.2.4 UGAL Vs. ALDFB 73

4.3 Simulation results 75

Chapter 5: 2DFB based On-Chip Networks 81

5.1 Overview 81

5.2 OCIN Networks 83

5.2.1 Mesh based OCIN 83

5.2.2 2DFB based OCIN 84

v

5.2.3 Mesh Vs 2DFB 84

5.3 Simulation results 87

5.3.1 Throughput comparison 88

5.3.2 End-to-end packet delay comparison 90

Chapter 6: A S N Applications 92

6.1 Overview 92

6.2 File striping with parity 93

6.2.1 Simulation results 96

6.3 File locking 98

6^3.1 Simulation results 103

Chapter 7: Conclusion and Future Work 106

7.1 Conclusions 106

7.2 Future Work 108

Bibliography 110

VI

LIST OF FIGURES

1 4-ary 2-dimensional flattened butterfly structure 11

2 Multiring of three rings and eight nodes 13

3 4-dilated 4-way bristled hypercube 15

4 4-ary 2-dilated flattened butterfly 15

5 Network diameter 26

6 Switching element complexity of the network 27

7 Link complexity 28

8 Speed comparison 30

9 Topology and packaging of 3-dimensional 16-ary 2-dilated flattened but

terfly 34

10 Cost comparison 37

11 Throughput comparison of 64-terminal networks 39

12 Packet loss of 64-terminal networks for different input load 40

13 Latency comparison for a 64-terminal network 41

14 Throughput comparison for different network size 42

15 Latency comparison for adversarial traffic 42

16 Latency comparison for benign traffic 43

17 NetFPGA switch architecture 47

18 Clocking for 2-Byte Aurora core 50

vn

19 Aurora Core Framing Interface [24] 51

20 Data transfer in Aurora transmitter [24] 53

21 SATA TX_Q module 54

22 Data transfer in Aurora receiver [24] 56

23 SATA RX_Q module 57

24 2-ary 2-dilated flattened butterfly structure 58

25 Throughput comparison 59

26 Packet loss for different load condition 59

27 Links associated to router R\2 67

28 Packet flow through virtual links 68

29 A traffic flow in UGAL which will cause overloaded channels 75

30 A worst case traffic flow for ALDFB 75

31 Throughput comparison for different routing schemes 76

32 End-to-end packet delay comparison for different routing schemes 77

33 Delay comparison for different routing schemes for reduced load 78

34 Throughput comparison for different network topologies 78

35 End-to-end packet delay comparison for different network topologies . . 79

36 Delay comparison for different network topologies for reduced load . . . 79

37 64-core CMP using mesh topology 83

38 64-core CMP using 2DFB topology 85

39 Throughput comparison for an injection rate of 2Gb/s 88

viii

40 Throughput comparison for an injection rate of IGb/s 88

41 Packet delay comparison for an injection rate of 2 Gb/s 90

42 Packet delay comparison for an injection rate of IGb/s 91

43 RAID 4-block-level striping with dedicated parity 94

44 4-ary, 16 terminal 2DFB network 95

45 File stripe (file size-192kB) 96

46 File stripe for lower write rates (file size-192kB) 97

47 File stripe (file size-768kB) 97

48 File stripe for lower write rates (file size-768kB) 98

49 File stripe (file size-768kB) 101

50 File stripe for lower write rates (file size-768kB) 102

51 File stripe for lower write rates (file size-768kB) 102

52 File stripe (file size-768kB) 103

53 File stripe for lower write rates (file size-768kB) 104

54 File stripe for lower write rates (file size-768kB) 104

IX

LIST OF TABLES

1 Diameter comparison:- where V is radix of the router, 'k' is ary and 'd'

is the diameter 26

2 Cost breakdown of an interconnection network 31

3 Resource comparison:- where 'P is the number of links with double band

width, 'n' is the number of routers and 'b' is the bandwidth of the router 36

4 Parameters and assumptions used for the cost comparison 36

5 LocalLink User I/O Ports (TX) 52

6 LocalLink User I/O Ports (RX) 55

7 8-terminal network traffic pattern 57

8 Parameters comparison for 64-core CMP networks 85

9 Resource comparison 86

x

Chapter 1

Introduction

1.1 Overview

The trend in computer system design over the past few decades has seen micro

processor performance increase by leaps and bounds. However, storage systems have

not seen corresponding increases in performance. Recent developments in object-based

storage systems and other parallel I/O systems with separate data and control paths

have demonstrated an ability to scale aggregate throughput very well for large data

transfers. However, there are I/O patterns that do not exhibit strictly parallel char

acteristics. For example, HPC applications often use reduction operations that funnel

multiple data streams from many storage nodes to a single compute node. In addition,

many applications, particularly non-scientific applications, use small data transfers

that cannot take advantage of existing parallel I/O systems. Present techniques in

scalable file systems are approaching their limits because of the above issues. We sug

gest another approach called active storage networks - namely putting intelligence in

the network along with smart storage devices to enhance storage network performance.

1

These active storage networks can potentially improve not only storage capabilities but

also computational performance. In an active storage system, we are trying to provide

intelligence to the switching network which connects computing nodes and storage de

vices. The goal is to do packet processing in the switch to improve storage to network

data transfer efficiencies as well as improve computational efficiencies.

Because of the high aggregate throughputs required to build gigabit and multi-

gigabit switches, these designs are typically done in silicon. In designing hardware

systems, there are several choices for implementation, including coprocessors, FPGAs,

and ASICs. We have decided to target the hardware component of this project to re-

configurable FPGAs. Two reasons drive this decision: cost and rapid customizability.

ASIC designs are much too expensive from both a design and initial cost point of view.

Secondly, FPGAs offer the flexibility to try various options, a point that is key to our

research objectives. We have selected the NetFPGA as the basic block of a switching

network [1]. The NetFPGA is an experimental board that consists of four Ethernet

ports and two SATA ports. It allows us to experiment with new ways to process packets

at line rate. The Stanford NetFPGA group has provided designs to use the board as

a router or 4-port switch. In addition to that, we have developed an interface for the

SATA port to design switching topology for the active storage system.

ASNs are similar in concept to that of active disks. In active disks, computation

can be offloaded from the processor to the disk. Previous work has demonstrated the

effectiveness of this approach particularly with functions such as storage management,

data mining, and multimedia [42]. However, the drawback of active disks in a dis

tributed storage setting is that the data is striped across several storage nodes and

each processor at the storage node can only see data residing at that node. Thus,

any intelligence at the storage node cannot operate on the entire set of data spread

2

across storage nodes. For example, when doing a query in a database for the k items

closest to a particular key, each of the m storage nodes will return the k closest items

in its portion of the data. The requesting client must then sort through mk items to

determine the k closest items overall. The overall computation is O(n) + O(mk) where

n is the number of data items per storage node.

In an ASN, the goal is to move intelligence to the network which has a better view

of data than the individual storage node, thereby optimizing network performance.

Processing ability on the network also eases some of the computational workload at

the network client. Most of the applications that operate on large sets of data require

transforming the data from one form to another. Examples include file compression,

video editing and data encoding/decoding applications. Offloading data intensive parts

of these applications to the network could ease client computing resources. It could

also reduce network traffic as some of the data transfer operations that read and write

data from client to the storage can be avoided. This further provides the impetus to

embed intelligence in networks.

A critical choice in the design of an ASN switch is the topology of the switch.

Some of the important design parameters are the number of interconnects, number

of switching elements, overall latency, aggregate bandwidth, and whether it is non-

blocking. The number of interconnects/links per switching element and the number of

switching elements decide the total cost of the switch/topology network. Since we are

using the NetFPGA as the switching element, cost will be primarily decided by the

number of NetFPGA boards used. The nonblocking behavior is particularly important

to insure that the switch can always deliver the maximum throughput, i.e. with a NxN

switch with a per-port bandwidth equal to B, the aggregate throughput should be NB

regardless of the connections between ports. We propose a cost efficient nonblocking

3

switching topology, 2DFB, which is derived from a flattened butterfly network [7].

The 2DFB is a high radix network and the diameter of of this topology is significantly

less than other nonblocking topologies. A 2DFB network needs fewer hops for the

routing of worst case traffic and therefore it provides excellent performance in terms of

latency. We have compared the cost of 2DFB network with other popular nonblocking

networks using our cost model. From this cost comparison we verified the reduced

implementation cost of 2DFB network.

Another important factor which decides the performance of an ASN switch is the

routing protocol. A routing algorithm can be considered as optimal if it provides low

latency on local traffic and high throughput on adversarial traffic. Most algorithms

must compromise one goal in order to achieve the other. Minimal routing, which

always chooses the shortest path for each packet, provides minimum latency for local

and benign traffic. However, it provides non acceptable throughput for adversarial

traffic due to load imbalance. In order to improve the throughput in adversarial traffic,

the routing algorithm should balance the load by sending some fraction of packets over

non-minimal paths.

Researchers have been trying to address the issue of providing high worst-case

performance while preserving locality. Valiant's randomized algorithm [2] gives good

performance in worst case traffic but very poor performance for local traffic in terms

of latency. Minimal adaptive routing [3] [4] suffers from global load imbalance. UGAL

is an adaptive routing algorithm and it balances the load by doing a proper selection

between minimal and non-minimal routing [5]. This selection is done based on the

status of the packet queue. In UGAL if channel corresponding to the minimal path

is busy, a random intermediate node is selected and packet is routed to and from the

intermediate node minimally. Even though the random selection of intermediate node

4

helps to improve the load balancing it cannot fully avoid channel congestion in a 2DFB.

We propose ALDFB, an adaptive load balanced routing scheme designed for 2DFB. It

balances the load efficiently by allowing one non-minimal forwarding in each dimension

in case of traffic congestion. It senses the traffic congestion from the packet queue. We

observed the performance of ALDFB in 2DFB for both local (benign) and adversarial

traffic patterns and observed that it outperforms other routing scheme in terms of

latency and throughput.

An ASN can provide performance improvements in a vast variety of applications.

Any application involving transformation or reduction data operations can be efficiently

mapped in to ASN. The operations that we have selected to evaluate on an ASN

implementation are file striping and file locking. Large scale data processing is heavily

I/O dependent. Data must be retrieved from slow mechanical hard drives and then

distributed across faster but still relatively slow (as compared to processors) networks.

Parallel file systems provide a way to improve the I/O bandwidth. In this case, large

files will be striped across multiple storage servers. In normal file striping, the whole

file to be transferred is split and copied to a number of buffers in the client side. Then,

the parity is calculated and the content of these buffers and the parity are written to

the servers. In ASN based file striping the splitting of the file and parity calculations

are performed on the fly inside the ASN switch. In parallel file systems maintaining

atomicity is very important because the regions of data in a file are shared by multiple

processes. Most of the solutions used for maintaining atomicity use some form of file

locking. The usage of a scalable distributed lock manager (DLM) architecture [6] can

be considered as an efficient way to maintain the atomicity. However, these locking

protocols introduce additional traffic in the network and this can affect the overall

performance. We propose offloading these file locking protocols from the lock servers

5

to the ASN switch. In both of the selected applications, we can reduce much of the

traffic in the network, thereby improving the overall performance of the parallel file

system.

1.2 Thesis Contributions

The contributions of this dissertation can be split in to three parts.

• Design and implementation of an ASN switching topology

We have designed a non-blocking version of a k-way bristled k-ary generalized hy-

percube which is named 2DFB. In addition, we have derived the equations to determine

the dilation factor and number of channels required in the last dimension and presented

a cost model and compared the cost of different non-blocking topologies with 2DFB. We

have developed a static conflict free routing schedule for 2DFB. We have implemented

an 8-port 2DFB network using the NetFPGA hardware platform

• Design and implementation of a new routing scheme (ALDFB) for an ASN

We have introduced a deadlock free, adaptive, load balanced routing algorithm

called ALDFB for a 2DFB switching network. ALDFB is designed to exploit all positive

topological properties of a 2DFB network. The algorithm takes full advantage of the

reduced diameter and improved path diversity of 2DFB network. It provides better load

balancing by allowing one non-minimal forwarding in each single dimension of 2DFB

network. We have observed that ALDFB provides better throughput and reduced

latency compared to other well-known routing schemes for all the traffic patterns that

we used for the simulation.

• Implementation of two applications over ASN network

We have implemented two applications-file striping with parity and file locking-

in a 2DFB based ASN network and compared its performance with existing parallel

6

file system counterparts. These implementations are done using the Omnet++ sim

ulation platform. We observe that in both the applications ASN provides significant

performance improvement.

1.3 Outline

This dissertation is organized as follows. In Chapter 2 we describe about the pro

posed ASN switching topology which is named as 2 dilated flattened butterfly (2DFB).

In Chapter 3, we provide the details of implementing 2DFB using NetFPGA. The pro

posed deadlock free load balanced routing scheme for the 2DFB network (ALDFB) is

explained in chapter 4. In Chapter 5 we analyze 2DFB based on-chip network. The se

lected ASN applications and its performance on an ASN network are given in Chapter

6. Finally Chapter 7 concludes this dissertation.

7

Chapter 2

2-Dilated Flattened Butterfly (2DFB)

2.1 Overview

High performance computing on distributed memory parallel processing systems

such as clusters are very dependent on communications between processing nodes. As

a result, the interconnection network that connects these nodes is a critical part of

the performance of the system. For the past few decades, we have seen improving

performance of processors and memory systems. In order to keep up with these gains,

the network switch performance must also improve. The study of interconnection

networks has a long history and a large number of network topologies have been studied

by researchers. Among these networks, hypercube [8] and Clos [9] (or its derivatives)

are the most popular networks.

The technological progress in modern ASICs has led to the availability of routers

with high bandwidth in the range of Tb/s. This is achieved because of the increase in

the signaling rate as well as the increase in the number of signals available to a router

chip. The radix of a router is denned as the number of terminals connected to the

8

router. The use of high radix (and thus high bandwidth) routers reduces the hop count

and leads to lower latency and lower cost. The Cray BlackWidow vector multiprocessor,

which uses a radix-64 router, is an example of such a system [11]. It is estimated that by

the end of 2011, the optimal radix will be approximately 256 [12]. To take full advantage

of these high radix routers, a cost-efficient topology known as flattened butterfly [7]

has been proposed. A flattened butterfly is derived from a butterfly network [13], and

is generated by combining or flattening the routers in each row of a fc-ary butterfly into

a single router. Attractive features of this topology are its inherent path diversity and

reduced number of links compared to other networks which have the same bisection

bandwidth. The inherent path diversity of the flattened butterfly is utilized to achieve

comparable throughput performance with the Clos network in adversarial traffic and

the reduced number of links reduces the cost of the network.

Even though the flattened butterfly has good path diversity, the reduced number of

links prevents it from being nonblocking if all the terminals offer full load to the network.

A nonblocking network is a topology in which all nodes will achieve full bandwidth

regardless of the traffic. Like the butterfly, the flattened butterfly is also a blocking

network. This blocking behavior can cause an unacceptable switching delay or packet

loss in some applications. The 2DFB can be considered as the nonblocking version

of the flattened butterfly network. We observe that a 2DFB network outperforms

other nonblocking topologies like folded-Clos and hypercube in terms of speed and

implementation cost.

2.2 Background

The interconnection network and network topology play an important role in decid

ing the overall performance of any networking system. Some of the important design

9

parameters of a network topology are the number of interconnects, overall latency,

aggregate bandwidth, and whether it is non-blocking. The latter is particularly impor

tant to insure that the switch can always deliver the maximum throughput, i.e. with a

NxN switch with a per port bandwidth equal to B, the aggregate throughput should

be NB regardless of the connections between ports. The simplest choice for building

the switch is a shared bus architecture where each of the nodes are connected to a bus.

Current generation PCI buses have a throughput of roughly 8 Gb/s which can barely

handle a small 8x8 gigabit cluster. Thus, the bus solution is not scalable, and more

over, it is not non-blocking since only transaction can take place at a time on the bus.

The simplest non-blocking interconnection network is the matrix or crossbar where all

nodes are connected to all other nodes. However, the cost in terms of connections grows

by n2 making it impractical for large networks. Torus networks are another approach

to interconnect nodes in a high performance network. Multistage switching networks

such as the Benes network and their derivatives are attractive because of their limited

switch points [10]. As you build larger and larger switches these switches become more

complex, and a simple hierarchical set of smaller switches is no longer non-blocking. In

stead of the hierarchical approach, most larger switches are built from smaller switches

using variations of the fat-tree or Clos network [9]. In this section we describe three

closely related topologies flattened butterfly [7], multiring [16] and bristled hypercube

[29].

2.2.1 Flattened butterfly

A flattened butterfly is derived from a k-axy ri-Hy butterfly structure by flattening

the routers in each row of the network into a single router [7]. A flattened butterfly

10

is composed of N/k routers of radix k'—n{k — 1) + 1 where N is the number of end-

terminals in the network, k is the number of end-terminals connected to each router

and the radix is the number of external ports associated with each router.

Figure 1: 4-ary 2-dimensional flattened butterfly structure

The routers are connected by channels in n' = n — 1 dimensions, corresponding to

the n — 1 columns of inter-rank wiring in the butterfly. In each dimension d, from 1 to

n', router i is connected to each router j given by

j = i + [m_(|__i-Tj mod/c)]^-1 (1)

for m from 0 to k — 1, where the connection from i to itself is omitted. For example, a

4-ary 2-dimensional flattened butterfly for iV=64 is shown in Figure 1. Each switching

element is connected to k end-terminals (here k=A). All terminals are not shown in

Figure 1. Only the interconnections between the routers in the first column and bottom

row are shown. The interconnections between the routers in the rest of the columns

are similar to the first column and the rest of the rows are similar to the bottom row.

We now consider a worst case traffic load for this network. Assume that all the

end-terminals connected to the routers of first two columns are transmitting data to the

end-terminals connected to the routers in the last two columns, and all the transmitting

11

terminals are transmitting data at their full bandwidth. The total data rate in one

direction is 326 Gb/s where b Gb/s is the full bandwidth of each end-terminal. Assume

that the bandwidth of all the channels are the same (b Gb/s). Nonblocking data flow

is achieved when no channel is loaded with a data rate greater than b Gb/s. This type

of overloading occurs if data from two input channels are directed to a single output

channel. Since the bisection bandwidth of the flattened butterfly network in Figure 1

is 166 Gb/s, there is no routing schedule that can avoid overloading a single channel in

worst case traffic. Therefore, it is clear that like the butterfly, the flattened butterfly

is also a blocking structure.

2.2.2 Multiring

The multiring is a well-studied switching topology [17-21]. This network consists

of m > 2 ring channels with different sequential connections of nodes. Each node which

represents a switching element is connected to a single end-terminal and these nodes

are numbered as 0,l,...,(iV — 1) where N is the total number of nodes. The sequence of

connections of nodes in a unidirectional ring along the direction of transfer is defined

by the numbers X^ G [0,N - l],i = 0,1,.. . ; 1 < j < m, and xQ = {x[3) + 5 (j))

mod N,l < S^ < N - 1;0 < X{
0

3) < S^ - 1, where S& is called the step of the j th

ring. A multiring structure of three rings and eight nodes is shown in Figure 2. The

steps of these three rings are 1, 2 and 4 respectively.

A multiring with a set of rings Sm = {S^}k=i„m is s a id to be a simple p-ring if

g(k) _ ipj ^ w n e r e k = i + (p— l)j,p >2,l<i<p — l,0<j< [logp N\. For example,

the network shown in Figure 2 is a simple p-ring where m = 3 and p — 2. Packets can

be routed from any source node to any destination node through these set of rings of

12

Figure 2: Multiring of three rings and eight nodes

different step size. The length d of any route can be decomposed in base p as

mo —1

i=0

(2)

where 0 < \dz\ < p — 1, mo < Rogp -W]

A multiring structure and flattened butterfly structure are closely related. If r is

the dimension of a A;-ary flattened butterfly, then there will be kr nodes (switching

elements) in the system and each node can be represented using a r-digit number,

i.e. any node x = xr-\...xl...xo where x% G [0,k — 1] and x = YZ=oxikl- ^n a

flattened butterfly, any two nodes, whose numbers differ only in the zth digit, are

joined by a duplex channel and it is known as the ith dimension channel. Every

node contains (k — 1) channels in each dimension and each of them are assigned with

formal length jkl(l < j < k - 1,1 < i < r). Thus, like a multiring, a flattened

butterfly also can be characterized by a set of channel lengths Sm — {S^}k=ittm, where

SW < S(2) < ... < S^ and5^+(f c-1W = jkl(l < j < k - 1,0 < i < r),m = r(k - 1)

and the length of any route can be decomposed in base k as

r - l

d = J 2 d ^ (3)
i = 0

13

An ith. dimension channel of length dxk
x is said to join nodes with numbers containing

the values yl and x% at the zth digit if (xt+di) mod k — yt. The main difference between

a multiring and a flattened butterfly is that in a multiring, each switching element is

connected to a single end-terminal whereas in a fc-ary flattened butterfly each switching

element is connected to k end-terminals. Thus, like a hypercube, multiring also need

low-radix routers for implementation and it have all the drawbacks (higher diameter,

higher hop count etc.) of a low-radix network.

2.2.3 k-dilated k-way bristled hypercube

Hypercube networks have been used extensively in parallel computing systems. Re

searchers have already developed oblivious routing algorithms for conflict-free routing

in a hypercube using minimal distance (log2 N) [30]. Therefore, a hypercube can be

considered as a nonblocking switching network. Since only one end-terminal is con

nected to each switching element, a hypercube cannot take advantage of a high-radix

network and the cost will become prohibitively large for larger network size. Bristling

is the solution for this, where k end-terminals are connected to each switching element

in a k-way bristled hypercube [29], On the other hand, a k-way bristled hypercube

loses its nonblocking nature, because its bisection bandwidth will be decreased by a

factor k. A k-way bristled hypercube will show nonblocking behavior if we dilate each

interconnection link by a factor k, which can be called a dilated bristled hypercube

(DBHC). The bisection bandwidth of a DBHC will be equal to that of a hypercube.

The structure of a 32-terminal DBHC is shown in Figure 3. DBHC has reduced hop

count, improved latency and reduced implementation cost compared to a normal hy

percube while maintaining the nonblocking property.

14

Figure 3: 4-dilated 4-way bristled hypercube

2.3 2-dilated flattened butterfly

A 2-dilated flattened butterfly (2DFB) is derived from a flattened butterfly by

either duplicating all the interconnecting links between the switching elements in the

flattened butterfly or replacing it with links of double bandwidth. Links between the

end-terminals and switching elements remain the same. Figure 4 shows a 4-ary one-

dimensional 2DFB structure where the total number of end-terminals N = 16. In the

figure, a full duplex link is shown as two directed links with opposite direction.

Figure 4: 4-ary 2-dilated flattened butterfly

15

There will be two separate channels for each channel length which can be rep

resented as S]l and Sg . The set of channel lengths can be represented as Sm =

{S^, SB
1], S%], S^,..., S{™], S^}. In other words we can say that for a switching

element there will be 2(k — 1) links in each dimension if the network size (N) is a power

of k. The total number of links associated with each switching element (radix) of a

A;-ary 2DFB is k + (2(fc - l)(logfc N - 1)). If we analyze a flattened butterfly (Figure 1)

we can see that it is a fc-way bristled generalized hypercube with a base k [8]. Thus,

a 2DFB is simply a 2-dilated fc-way bristled generalized hypercube with a base k. In

a 2DFB, instead of physically duplicating each interconnecting channel, we can double

the bandwidth of each channel which gives the same performance. So in our 2DFB

hardware implementation we will be using interconnecting channels having double the

bandwidth than that of the channels which are connected to the end-terminals.

2.3.1 Nonblocking property

A multiring shows nonblocking nature if it has 2{yN — 1) ring channels. In this

case, there exists a conflict-free routing schedule which need only 2 hops to perform any

routing permutation [17]. The total number of channel length elements in Sm of a fc-ary

1-dimensional 2DFB structure with N end-terminals is 2(k — 1) where k — A//V (see

Figure 4). From this it is clear that 1-dimensional 2DFB is nonblocking for any value

of k and any routing permutation can be performed by making use of a maximum of 2

hops. Higher dimensional 2DFB systems are constructed by combining one dimensional

systems as done in a hypercube system. Nonblocking behavior of a hypercube network

of any size and any dimension is shown in [30]. This nonblocking property is achieved

because of the inherent bisection bandwidth of hypercube network. The bisection

bandwidth of hypercube network is N/2, irrespective of its size or dimension. Let us

16

consider a k-ary 1-dimensional 2DFB with maximum number of end-terminals (JV =

k2). The bisection bandwidth of this network is 2 x ik/2) x (fc/2). That is the bisection

bandwidth of a fc-ary 1-dimensional 2DFB with maximum number of end-terminals

is N/2. A 2-dimensional 2DFB system with a network size N = k3 is implemented

by interconnecting k number of 1-dimensional 2DFB system. That is the bisection

bandwidth of a 2-dimensional 2DFB system is k x (k2/2). So the bisection bandwidth of

a 2-dimensional 2DFB system is N/2. For a k-a,ry d-dimensional (d=(logfe AT) —1) 2DFB

system with a network size N of power of k, the bisection bandwidth is {{k2/2){kd~1))

which is equal to A /̂2 where N — k^d+1^ (same as that of a hypercube network).

Therefore, a properly designed routing algorithm can route any permutation without

conflict by making use of a maximum of 2d hops (2 hops in each dimension).

A flattened butterfly with a dilation factor of 2 can show nonblocking nature only

when the network size is a power of k. Now, consider a 2DFB network with a network

size which is not a power of k but a multiple of k^logkN^. In this case, the number of

switching elements in the last dimension will be less than k and the bisection bandwidth

will be less than N/2. This network cannot be nonblocking. In order to make it

nonblocking, we must increase the dilation factor to the links in the last dimension

while maintaining the dilation factor of other links as 2. Let Ns be the number of

subsystems with dimension d — 1 in a N end-terminal d-dimensional 2DFB system

where N is not a power of k.

Ns = N/(k\-lozxNi) (4)

Let Nid be the number of links crossing the bisection of the last dimension,

Nld = ((Ns/2)2)xk^N^ (5)

17

Let DFd be the dilation factor of the links in the last dimension. Consider the bisection

bandwidth along the last dimension (BWd),

BWd = Nu x DFd (6)

For nonblocking BWd should be equal to N/2 and by using this condition we can find

the dilation factor required to the links in the last dimension DFd.

DFd = {N/2)/{Nld) (7)

After substituting the value of Nid in Equation 7,

DFd = {2k^°^N^)/N (8)

The number of ports required for the connections in the last dimension,

Portsd = (Ns - 1) x \DFd\ (9)

The number of ports required for the connections in all other dimensions remain the

same (2{k — 1)). For example consider a 4-ary 2DFB network with a network size of

32. Using Equation 8 the dilation factor is 4 and using Equation 9 the number of ports

in the second dimension is 4. Thus, we can see that in this case two switching, elements

in the second dimension will be connected with four links.

2.3.2 Conflict-free static routing schedule

In this section we propose a procedure to construct a nonblocking static routing

schedule for one dimensional and higher dimensional 2DFB networks. A static schedule

can be represented by a matrix with N rows and n columns, where N is the network

size and n is the number of cycles required to complete the routing. One cycle is

considered as the total time required to pass one packet from one node to its neighbor

18

node. Each row of the matrix is a routing schedule Td for a routing length d which

can be represented as (td,i, ••,td,j,--,tdtTl) in which the j th element defines the length

covered by the step in the j t h cycle, i.e., tdt3 G Sm and td,3 £ (dok°,..., dr-ik
r~l) where

r is the dimension of the network and the schedule satisfies the conditions X^=i ^d,j —

d, tdl3 G Sm U {0} for 1 < j < n, and if td,3 ^ 0 and 5 ^ is the corresponding channel

length element, then Sdt3 ^ Sd,% for 1 < i < n and i ^ j .

In a /c-ary 2DFB, since A; end-terminals are connected to each switching node, there

can be at most k routing requests for the same routing length. Therefore, there will be

k routing schedules for each routing length d. The routing schedule is represented as

T, where d is the routing length and p can vary between 1 to £;. The static schedule

matrix can be represented as

/ mm \

T(P, m, n) =

%

,(2)

-(*)

T; (1)
P - l

r(2)
p - i

(10)

where P = N/k, m is the total number of elements in Sm and n is the number of cycles

required to complete the routing.

It is shown that for a multiring structure, if there exists a static schedule T(P, m, n)

where from the equality of the nonzero elements of any route schedules t^tJ and td2,3

19

in any cycle j and tdx,3 J^ 0 and if the initial or final parts of these schedules are equal,

then it follows that this schedule is conflictless [16]. If we construct a schedule with

equality in the initial part, then that schedule is called the initial schedule B(P, m, n)

and if equality is only in the final part then it is called the final schedule F(P,m,n).

In an initial schedule if there exists two rows (schedules) with equal nonzero elements

in the same cycle, then the initial part of both the rows will be same. Conflictless

schedules for a 2DFB also should satisfy the above constraint. Along with this we have

to make sure that in all k schedules for the same routing distance any channel length

element should not appear more than once. For a 2DFB if there exists a schedule

which satisfies the above two constraints it will be a conflictless schedule. With static

scheduling of a multiring, the total routing distance is decomposed in base p and each

step size is traversed in each cycle. From the equivalence of Equations 2 and 3, it is

clear that with a 2DFB the routing can be also scheduled exactly the same way as with

a multiring. Therefore, a conflict-free schedule for a multiring can also provide conflict

freedom for a 2DFB. An example of a conflictless schedule for a 4-ary one dimensional

2DFB with N = 16 (Figure 4) is shown below.

20

T(4,6,2) =

' T{x)\

T (2)

T (3)

r (4)

T (l) i 2

T (2)

T (3)
J 2

T (4)
J 2

T (l) J 3

r (2)
J 3

T (3)
J 3

T (4) 1

^ B

o(2)

o(3)
^B

o(2)

o(2)

^ B

o(3)

o(3)
^A

o(3)

s?>
^ >

° 1
0

o(3)

c(2)
^B

0

0

c(l)
^A

o(3)
aB

0

0

c(2)

9 (1) ,
^B /

(11)

Consider that end-terminals 0, 1, 2 and 3 in Figure 4 are sending messages to end-

terminals 4, 5, 6 and 7 respectively. In this case the routing distance is 1 for all the

routing and schedules T[, T± , Xf and T-} ' are assigned to each end-terminal. If

Tj is assigned to end-terminal 0, then the step size selected is SA and all the packets

(3)

are directed to the first channel between VQ and V\. Assume Tj is assigned to end-

terminal 2, then the step sizes selected are SA and SA. In this case all the packets

from end-terminal 2 are directed to the first channel between VQ and V2 and then from

V2 all are directed to the first channel between V2 and V\.

All the elements corresponding to the routing length 0 will be 0. Therefore, they are

not shown in the matrix. In this manner, one can easily determine a conflictless schedule

for one dimensional 2DFB network for any value of k. Since one node has k choices,

21

for the same length there should be a selecting mechanism associated to each node.

For example, if a single node has two routing requests with length 1 and 3 respectively,

then it cannot select schedules Tx and T3 because there will be a conflict in the

channel SA . So the selecting mechanism should select conflictless schedules which are

always available. In this example, the selector can select Tx and T3 .

Conflictless schedules for higher dimensional networks can be derived from the

schedule of a one dimensional network with the help of the following theorem which is

proved in [16].

FromtheinitialB(Pi,mi,ni)andfinalF(P2, m2,n2)scheduleonecanconstructaconflictlessstaticst

m2, ni + n2)-

This theorem claims the existence of a n\ + 7i2 cycle conflict free static schedule

for a multiring with a network size of Pi x P2 and 7774 + 777.2 rings, if we know the

Bi cycle initial schedule of a multiring with a network size of P\ and TTII rings and

772 cycle final schedule of another multiring with a network size of P2 and 7772 rings.

Even though this theorem is derived for a multiring structure, the same procedure

can be used to construct conflict-free schedule for higher dimensional 2DFB network.

Consider an example of constructing conflict-free schedules for a two-dimensional 4-ary

2DFB from the schedule of its one dimensional network. Any routing length in a 2-

dimensional network can be decomposed to find the routing length in each dimension.

Consider a routing length of 11, which can be decomposed into two dimensions using

Equation 3 a s l l = 3 x 4 0 - | - 2 x 4 1 . This indicates that the routing can be split into

two routing lengths, i.e. 3 in the first dimension and a routing length of 2 in the

second dimension. The routing length in the first dimension is implemented using the

initial schedule and the routing length in the second dimension is implemented using

the final schedule of the one dimensional 2DFB. Thus, all the schedules corresponding

22

to 16 routing length of a 4-ary two dimensional 2DFB can be split into two parts such

that one part should be the initial schedule and the other part should be the final

schedule of the corresponding one dimensional schedule. The schedule of a 4-ary one

dimensional network, which is given in Equation 11, can be considered as an initial

schedule 5(4,6,2) . Its final schedule is obtained by simply taking the mirror image of

each row element which is as shown below.

F(4,6,2) =

(
r(l)

N

if
r (3)

T (4)

T (l)
12

T (2)
12

T (3)
12

T (4)
12

T (l) J 3

T (2)
J 3

T (3)

i r (4) ,
\13 J

(°
0

o(3)
^A

o(2)

0

0

c(l)
&A

o(3)
^B

0

0

c(2)

o(l)

o (l) \

0 B

o(2)

c(3)
^B

o(2)

o(2)
^B

^ B

o(3)

o(3)

o(3)
^B

c(2)
^B /

(12)

This final schedule is used to implement the routing length in the second dimension

by replacing j in the S^ and S$ by j + 3. Recall the relation S^+t*-1)*) = jkl(l <

j < k — 1,0 < i < r) and here the value of k — 4 and i = 1. So the four routing

schedule for a routing length of 11 in a 4-ary two-dimensional network can be derived

,0) <J) by making use of the T3
u; and T2

u; schedules of the 4-ary one dimensional 2DFB where

23

1 < j < 4. The conflict-free routing schedule of three routing length 11, 12 and 13 of

a two dimensional 2DFB is shown below.

(T<V\

T (2)

T (3)

T (4)

T (l) J 1 2

T (2)
J 1 2

T (3)
J 1 2

r (4)
J 1 2

T (l)
J 1 3

T (2)
J 1 3

7^(3)
i 1 3

T (4)
\ J 1 3 /

q(3)

o(3)
^ B

^ 4

o(2)
^ B

0

0

0

0

c (l)
^ B

o(2)

c(3)
^ B

o(2)
^ 4

o(2)
^ B

^ B

o(3)

0

0

o(2)

o (l)
^ B

0

0

0

0

0

0

o(3)
bA

c(2)
^ B

0

0

o (l)
^ 4

c(3)

0

0

c(4)
^A

c(6)
0 B

0

0

c(5)
0 y l

o(4)
°B

0

0

o(5)

o(4)
^ B

0

0

c(5)

c(4)

o(5

o(5
^ B

o(4
^ B

o(6

o(6
tiA

q(6

c (4
^ 4

o(5
^ B

o(6

o(6
^ B

o(4
^ 4

o(5
^ B

o(6
^ 4

o(6
^ B

o(4

c(5

The above mentioned procedure can be used to construct the conflict-free routing

schedule of any higher dimensional network if we know the initial and final schedule of

the corresponding lower dimensional networks.

24

2.4 Compar ison Resul t s and Discussions

2.4.1 Network d iamete r

Network diameter is a measure of the shortest distance between the source and

destination nodes. Since high priority traffic can be routed through this shortest path,

the network diameter plays an important role in an interconnecting network. We

have compared the diameter of a 32-ary 2DFB network with folded-Clos, DBHC, and

hypercube. The radix of the router in a 2DFB is a function of the number of end-

terminals connected to each switching element (k) and the network size (N). For

the comparison, folded-Clos and DBHC are implemented using routers with the same

radix as that required to implement a 2DFB network, for a fixed network size. In a

hypercube, the value of k is always one, and therefore, the radix of the router will be

always less than other topologies. The radix of the router and corresponding value of

k for different topologies with different network size used for the comparison are shown

in Table 1. In the 32-ary 2DFB network, since the network sizes 256 and 16384 are not

powers of 32, Equation 9 is used to find the number of ports in the last dimension.

The diameter of a hypercube network is

Diameterhypercube = [log2 N) (14)

The diameter of a DBHC network is

DiameterDBHC = \log2{N/k)} (15)

The diameter of a fc-ary folded-Clos network is

Diameterf0ided-cios = 2(|"(logfc iV)] - 1) (16)

The diameter of a fc-ary 2DFB network is

Diameter2DFB = ["(log* N)] ~ 1 (17)

25

Table 1 Diameter comparison - where 'r' is radix of the router, 'k' is ary and 'd' is the
diameter

Network
topology

2DFB
folded-Clos
DBHC
Hypercube

N = 2 5 6
r

88
88
88
9

k
32
44
17
1

d
1
3
4
8

N = l 024
r

94
94
94
11

k
32
47
11
1

d
1
3
7
10

N = 1 6 384
r

154
154
154
15

k
32
77
12
1

d
2
5
11
14

N = 3 2 768
r

156
156
156
16

k
32
78
12
1

d
2
5
12
15

Table 1 also compares the network diameter of 2DFB with other topologies for

different sized networks This diameter comparison is depicted in Figure 5 As we

can observe, 2DFB has the smallest network diameter compared to other network

topologies

16 i

14 -

E 10-re
1 « •
•s

I -
z 4 •

— • hyp*rcube

•- *""

•"""
A

256

— • - D B H C * foldad-Cloa

A

*
1024 16384

Network size

- • - 2 D F B

__ _ -•

— -' — "*"

A

32768

Figure 5 Network diameter

2.4.2 Switching element complexity of the network

The switching element complexity of a network is defined as the product of the total

number of switching elements in the network and the number of cross pomts in each

switching element Remember that the number of cross points in a switching element is

26

the square of the radix. We have compared the switching element complexity of a 32-ary

2DFB network with folded-Clos and DBHC. All these networks are implemented with

switching elements of the same radix. This switching element complexity comparison

is shown in Figure 6. Since all the topologies shown in Figure 6 are implemented

using switching elements of same radix, switching element complexity of the network

can also be considered as a measure of total number of switching elements required to

implement the network.

— DBHC

100000000 -i

X
3
1 10000000 •

o
s:
| 1000000 •
2
V
O)

| 100000 -
B
s CO

10000

- * -folded-Clos

/ i ' - - —
/ .sr

* •/
/ -S

/ ,x
** - V

256 ' ' 1024 16384

' Network size

- * - 2 D F B

— •

32768

Figure 6: Switching element complexity of the network

The number of switching elements required in a DBHC network is

SEDBHC = \N/k\ (18)

The number of switching elements required in a &-ary folded-Clos network is

SEfolded„cios = (\N/k])(\logk N}) (19)

The number of switching elements required in a A;-ary 2DFB network is

SE2DFB = \N/k] (20)

The value of k used for these topologies is shown in Table 1. As we can observe in

Figure 6, 2DFB has the smallest network complexity compared to the other high-radix

network topologies for the given range of network sizes.

27

2.4.3 Link complexity

Link complexity is defined as the ratio of the total number of links between the

switching elements in the network and the network size. The cost of a switching

network is mainly decided by the network complexity and the link complexity. The

link complexity is a measure of the link cost. We have compared the link complexity of a

32-ary 2DFB network with folded-Clos and DBHC. All these networks are implemented

with switching elements of the same radix. In this analysis we assume that all the links

have the same bandwidth.

Figure 7: Link complexity

The total number of links in a folded-Clos is

Linksfoided_cios = N{ [logfc N] - 1) (21)

The total number of links in a 2DFB, if the network size is a power of k is

Links2DFB = (N/k)(k - l)(flogfc N] - 1) (22)

If the network size is not a power of k and is a multiple of k^logk N^ then the number

of links in a 2DFB can be find out with the help of Equation 9. Total number of ports

28

in a DBHC is

Links DBHC = (JV/2)(riog2 (N/k)]) (23)

The value of k and radix used for these topologies for different network sizes are shown

in Table 1. The link complexity comparison is shown in Figure 7. As we can observe

in Figure 7, 2DFB has the smallest link complexity compared to the other high-radix

network topologies.

2.4.4 Speed analysis

Message latency in a nonblocking network is proportional to the number of hops

traveled during the routing process. Figure 8 represents the number of hops needed for

routing the message for different high-radix network topologies with varying network

sizes. The networks we are using for the comparison are 32-ary 2DFB, folded-Clos and

DBHC, all implemented with routers of same radix as shown in Table 1. The number

of hops required in a 2DFB is not the same as the network diameter for all source-

destination pairs. For example, in Figure 4, if end-terminals 0, 1, 2 and 3 are sending

messages to end-terminals 4, 5, 6 and 7 respectively with full bandwidth, then only

messages from terminal 0 and 1 can be routed through the direct link between VQ and

V\ and the messages from 2 and 3 should be routed through V% or V3. In this case the

number of hops required in the worst case is 2. For any one dimension 2DFB in which

k > 2, the worst case number of hops for routing any message is 2. With a higher

dimension 2DFB in which k > 2, in the worst case, 2 hops are required for routing the

message in each dimension. The dimension of a k-axy 2DFB is \(logkN)] — 1. So the

number of hops required (worst case) to complete any routing request in a fc-ary 2DFB

for k> 2is2{r(logfciV)] - 1 } .

29

For k — 2, 2DFB becomes a 2-dilated 2-way bristled hypercube (DBHC). In this

case the number of hops required is log2(iV/2). The number of hops required for the

routing of any message in a DBHC is log2(N/k). The number of hops required for a

k-ary folded-Clos network is 2{[(logfc iV)] - 1}. From the comparison we can notice

that the number of hops required for a A;-ary 2DFB in worst case is same as that of a

A;-ary folded-Clos network. Unlike folded-Clos, in 2DFB the number of required hops

is not the same for all source-destination pairs. Most source-destination pairs need

only one hop to traverse in one dimension. Therefore, the average number of hops in

a 2DFB will be always less than that of the corresponding folded-Clos network. Thus,

it is clear that a fc-ary 2DFB provides better message latency than the corresponding

folded-Clos network.

Figure 8: Speed comparison

DBHC, folded-Clos, and 2DFB networks are nonblocking, and proper routing al

gorithms can route all the messages without conflict by making use of the number of

hops shown in Figure 8. We have already seen that a flattened butterfly is a blocking

structure and a conflict-free routing schedule does not exist for this structure for heavy

traffic conditions. So for heavy traffic conditions, where all the input nodes transmit

30

data with full bandwidth the latency of a flattened butterfly will be higher compared

to all the networks shown in Figure 8.

2.4.5 Cost Analysis

A key determinant of the effectiveness of a network topology is the cost of the

network relative to the performance it delivers. The cost of the network is determined

by the network complexity and the link complexity of the network. As we mentioned

in section 2.4.2 and section 2.4.3, 2DFB has the lowest network complexity and link

complexity compared to the other nonblocking topologies. Now, we do a cost analysis,

by considering some practical implementation aspects. Our cost model for a high

performance Infiniband interconnection network is similar to the cost model described

in [7], which is based on the cost of routers and links of different types and length as

shown in Table 2.

Table 2: Cost breakdown of an interconnection network

Component

Router

Links

Router Chip
Development

Backplane
Electrical

Cost

$90
$300
$1.95

$3.72 + $0.81/

The network components such as switches, processing nodes and communication

links are packaged within a packaging hierarchy. Processing nodes will be in the lowest

level of hierarchy. In the next level, modules are connected using a backplane. Modules

and backplane are placed inside a cabinet. The whole network consists of several cabinet

interconnected using communication links as per the network topology. The network

cost is determined by the cost of the routers, backplane and cable links. The cost of a

31

link is decided by its length and its position in the packaging hierarchy which is shown

in Table 2. As we can see in the table, links within the backplane will be shorter and

cheaper compared to other global links. Electrical cables are used for interconnecting

cabinets and the cost of the cable is $3.72 + $0.81Z where I is the length of the cable

expressed in meters [49]. The router cost can be split into the development (non

recurring) cost and the silicon (recurring) cost. The development cost depends on the

number of router chips built. If we take a development cost of « $6M for 20k parts,

the development cost per router is $300. The recurring cost is the cost of silicon part

and it is taken as « $90 per router using the MPR cost model [22].

Figure 9 shows a possible packaging of a 3-dimensional 16-ary 2DFB network. Each

switching element is connected to 16 end-terminals and it has 15 channels dedicated

to each dimension. These 45 channels are connected to other switching elements and

the bandwidth of these channels should be twice the bandwidth of channels which

are connected to end-terminals. A single switching element and channels connected

to this switching element is shown in Figure 9(a). The 256 end-terminals which are

connected in dimension 1 can be packaged in a subsystem as shown in Figure 9(b).

This dimension 1 subsystem can be implemented using two cabinets each containing

128 end-terminals, and these cabinets are interconnected using short cables. Sixteen

such dimension 1 subsystems can be grouped and its like elements are connected using

dimension 2 channels forming a dimension 2 subsystem consisting of 4096 end-terminals.

Up to 16 of these dimension 2 subsystems can be grouped and all the like elements can

be inter connected using channels in dimension 3 leading to a network with up to 65 536

end-terminals. A possible packaging of this network is shown in Figure 9(c) where each

box indicates a dimension 1 subsystem which can be implemented using two cabinets.

All the interconnections in this dimension 1 subsystem can be implemented using short

32

cables. Therefore, all the interconnections in dimension 1 can be implemented using a

cheap backplane. Dimension 2 is mapped across columns and dimension 3 is mapped

across rows and the connections are only shown for left lower subsystem. The packaging

locality of the dimension 1 subsystem plays an important role in deciding the cost of

the 2DFB network.

For large sized networks, the total cost of the network is dominated by the cost

of the links. For example for N > 4K, the link cost accounts for 60% of the network

cost of a hypercube and 80% of the network cost of a folded-Clos network [7]. The

Infiniband 4x cables which support double data rate (DDR) and quad data rate (QDR)

are commodity cables. Infiniband 4x-QDR cables can handle twice the bandwidth of

Infiniband 4x-DDR cables. The cost of 4x-DDR and 4x-QDR cables are almost the

same [31]. The cost of a 4x-QDR adapter is also comparable to that of a 4x-DDR

adapter (less than 1.2 x cost of 4x-DDR) [32], A 2DFB network is obtained from a

flattened butterfly by dilating each interconnecting link between the switching elements

by a factor of two. Assume that we have a flattened butterfly which uses 4x-DDR

adapter and cables for all the interconnection. This can be converted to a 2DFB by

replacing all the links between switching elements with 4x-QDR adapters and cables.

Links between end-terminals and the switching elements are not changed. In this case,

the total link cost of 2DFB will be less than 1.2 x link cost of flattened butterfly. Instead

of doing this if we duplicate each 4x-DDR cables between the switching elements, the

total link cost of 2DFB will become close to 2 x link cost of flattened butterfly. Thus, in

an Infiniband 2DFB interconnecting system the link cost of the 2DFB can be reduced

significantly (nearly 50%) by using cheaper double bandwidth links.

In a DBHC system each interconnecting link is dilated by a factor k. The total

link cost of this network also can be decreased by making use of 4x-QDR. We are

33

ISJ^ 1S^> '5 . j -

S w i t c h

c£> c£> • •• C^D

(a) Switching element

D i m e n s i o n 2

(b) Network topology for 64K nodes

D i m e n s i o n ^

(c) Packaging block diagram

Figure 9: Topology and packaging of 3-dimensional 16-ary 2-dilated flattened butterfly

34

not considering higher bandwidth cables like 4x-FDR and 4x-EDR in our cost model

because they are not commodity cables and are not comparatively cheaper. Folded-Clos

also can be implemented using interconnecting links with double bandwidth. However,

in this case one additional stage will be added to the network if we maintain same radix

for the switching elements as that of 2DFB and if k/2 < N/k. Consider a folded-Clos

network with network size N and LT be the number of interconnecting links between

the switching elements. Assume b is the bandwidth of each link. If we implement

the same folded-Clos network using same radix switching element and interconnecting

links between switches with 2b bandwidth (bandwidth of links between end-terminal

and switch is b) then the total number of 2b bandwidth links will be {LT/2) + {N/2) if

k/2 < N/k, otherwise it is {LT/2). In 2DFB and DBHC total number of 26 bandwidth

links will be {LT/2). Total number of switching elements and 26 bandwidth links

required for different topologies for different network sizes are shown in Table 3. We

can see that a 2DFB needs fewer switching elements and 26 bandwidth links compared

to other nonblocking topologies.

The 2DFB structure can be implemented efficiently in Ethernet based networks. To

construct a 2DFB, a 1 Gb/s Ethernet twisted-pair link in the flattened butterfly could

be replaced with a 2 Gb/s SATA link instead of using two separate 1 Gb/s Ethernet

links. The cost of a 2 Gb/s SATA link is comparable to that of a 1 Gb/s Ethernet link.

Table 3 compares the total number of routers and interconnecting links required for

the implementation of different nonblocking topologies for a variety of network sizes.

The interconnecting links referred to here are the links with double the bandwidth of

the end-terminal links. Router internal bandwidth is represented in terms of maximum

bandwidth 6 of each end-terminal port. Routers with same bandwidth are used to

implement all the nonblocking topologies with the same network size. The value of k

35

Table 3: Resource comparison:- where T is the number of links with double bandwidth,
'n' is the number of routers and 'b ' is the bandwidth of the router

Network
topology

2DFB
Folded-Clos
DBHC

N = 2 5 6
1

112
128
256

n

8
12
16

b
88
88
88

N = l 024
1

496
512

1 792

n
32
44
94

b
94
94
94

N = 1 6 384
1

15 616
16 384
45 056

n
512
639

1 366

b
154
154
154

N = 3 2 768
1

31 744
32 768
98 304

n
1 024
1 263
2 731

b
156
156
156

used for these topologies for different network size is shown in Table 1. From Table 3

it is clear that 2DFB needs fewer routers and interconnecting links compared to other

nonblocking networks.

Table 4: Parameters and assumptions used for the cost comparison

parameter
nodes per cabinet
cabinet footprint
density
number of pairs per port
cable overhead

value
128
0.57m x 1.44m
75 nodes/ m2

3
2m

Figure 10 compares the cost per node of different networks for different network

sizes based on our cost model. The parameters and assumptions used for the cost

comparison is shown in Table 4 [11].

Here we compare the cost of DBHC, folded-Clos, 2DFB and flattened butterfly

topologies for different network sizes. The value of k and router bandwidth used for

the implementation of each network are shown in Table 1 and Table 3. We assume

that 128 nodes are packed in a cabinet. The router cost for the different networks are

appropriately adjusted, based on the internal bandwidth required in each network. We

know that router internal bandwidth of a flattened butterfly is nearly half of that of

36

Figure 10: Cost comparison

corresponding 2DFB. In this model, we have also assumed that the cost per length

of a 26 link is 1 + 7 times that of a link with bandwidth b and the value of 7 can

vary between 0 and 1. For example, consider a high-performance Infiniband switching

network with 4x Infiniband DDR and QDR forming the links in the 2DFB switching

network. The cost of 4x Infiniband DDR cable and adapter are comparable to that

of QDR cable and adapter. If we consider the ratio of the cost of these two channel

links, it will be less than 1.2, in other words, 7 < 0.2 [31]. A gigabit Ethernet based

network 2b link can be implemented using a single 2-Gb/s SATA link, and the cost of

this link is comparable with the b Ethernet link. In this case, 7 is very close to 0, since

the cost of a SATA cable and an Ethernet cable are comparable. However, as a worst

case approximation we have taken 0.3 as the value of 7.

From Figure 10, we can see that the cost of a 2DFB is less than that of corresponding

folded-Clos and DBHC networks. Obviously, the cost of 2DFB will be more than that of

flattened butterfly which need less router and link bandwidth. In the previous analysis

we have seen that the performance of 2DFB network is better than corresponding

folded-Clos and DBHC networks. From this analysis we argue that a 2DFB provides

37

better performance and lower cost compared to corresponding folded-Clos and DBHC

networks.

2.5 Simulation results

We have modeled 2DFB, DBHC, folded-Clos and flattened butterfly networks for

different network sizes using the OMNeT++ simulation library [27]. All the nonblock-

ing topologies are implemented using interconnecting links of 2 Gb/s bandwidth. All

the end-terminals are sending packets with a maximum bandwidth of 1 Gb/s. We have

used a packet size of 121 bytes. Higher size packets are also following the same trend.

The default OMNeT switch model was modified in order to include the 2 Gb/s channel.

We assume that the data transmission through the network is permutation type -

i.e. a unique source and destination are assigned to any data element and the elements

are permuted up on transmission. We have selected three traffic patterns to consider

the best case and worst case scenario of 2DFB topology which are named as below.

1) Benign : In a 2DFB structure each switching element is connected to k — 1

switching elements using direct links in each dimension. In benign traffic pattern all

the traffic can be routed through these directed links, that is in this pattern the number

of hops required for the routing of any packet will be equal to the diameter of the 2DFB

network. In this pattern each pair of end-terminals connected to a switching element

will be sending traffic to different directly connected switching elements. 2DFB provides

minimum latency for benign traffic pattern.

2) Adversarial : In this traffic pattern all the end-terminals connected to a switch

ing element S% will be sending traffic to end-terminals which are connected to another

single switching element St+j. If this pattern is used in a 2DFB only two end-terminals

which are connected to a switching element can send traffic through the direct link.

38

All other k — 2 end-terminals should send traffic through indirect links. 2DFB provides

worst case latency for adversarial traffic pattern.

3) Random : In this pattern destination terminals are selected randomly. Latency

provided by 2DFB for this pattern will be between that of benign and adversarial

patterns.

We have compared the throughput and latency of different network topologies for

different traffic patterns mentioned before. We have used static routing schedule.

Figure 11: Throughput comparison of 64-terminal networks

The average throughput for the different network topologies for a network size of

64 is shown in Figure 11. The static routing scheme is used for this analysis. An

8-ary 1-dimensional 2DFB is compared to DBHC, folded-Clos and flattened butterfly

networks. All the networks except flattened butterfly are implemented using routers

of same internal bandwidth. These nonblocking topologies are also implemented using

double bandwidth interconnecting links. All the end-terminals are transmitting data

with maximum bandwidth (1 Gb/s). We can see that, like DBHC and folded-Clos

networks, 2DFB also provide 100% throughput for all the traffic patterns. We can

also notice the blocking behavior of the flattened butterfly networks. For all the traffic

39

Figure 12: Packet loss of 64-terminal networks for different input load

patterns, the flattened butterfly can provide only 50% of the maximum throughput if

all the end-terminals are transmitting data with full bandwidth.

Another measure of the effectiveness of a switch topology is the amount of packet

loss as input data rates are increased. Figure 12 shows the packet loss for different

64-terminal networks for the adversarial traffic pattern by varying the input data

rate of each end-terminal. We can see that flattened butterfly network start dropping

packets when the end-terminal data rate goes above 500M. However, DBHC, folded-

Clos and 2DFB networks have zero packet loss up to a data rate of 1 Gb/s due to their

nonblocking nature.

We have measured the average end-to-end packet delay of different 64-terminal

networks for maximum input load condition and it is shown in the Figure 13. For

a nonblocking network, end-to-end packet delay will be proportional to the average

number of hops needed for the routing process. Packet delay is also decided by the

switching delay of each switching element. This switching delay is proportional to the

radix (bandwidth) of each switching element. In our comparison we have implemented

all the nonblocking networks using switching elements of equal radix. Therefore, the

40

Figure 13: Latency comparison for a 64-terminal network

effect of switching delay will be same for all the nonblocking networks described here.

We have used benign, adversarial and random traffic patterns for this latency compar

ison. 2DFB exhibits maximum delay for adversarial traffic pattern compared to other

traffic patterns. In this pattern the average number of hops needed for routing the

packets in a 8-ary 64-terminal 2DFB is close to 2. Average number of hops required in

a 8-ary 64-terminal 2DFB for benign pattern is 1. The average number of hops needed

for a random traffic pattern will be in between that of benign and adversary traffic

patterns.

A folded-Clos implementation of a 64-terminal network with the same radix router

as that of 2DFB and double bandwidth links needs three stages of switching elements

(N/k > k/2), and therefore, the number of hops needed for routing any of the traffic

pattern is 4. The average number of hops for a DBHC for the given traffic patterns are

close to log2(N/k). The average number of hops for a 64-terminal DBHC network that

is implemented using the same radix router as that of 2DFB is 4. We know that the

flattened butterfly is a blocking structure, and therefore, in heavy load conditions, the

end-to-end packet delay will be determined by the queuing delay. This queuing delay

41

• Fl«tun*d buttaifly BDBHC •Folded-Clot H2DFB

1000

900

_ 800

3 700

§• 600
a. 500
^ 400

o

£ 300

" " 200

100-

0

1
..,.• '• 1
'! • ! ! . !

• IJ

s in

lii™ I I I !

!!£
!:i=
l»5

1024 16384

Network size

Figure 14: Throughput comparison for different network size

is significantly higher compared to the end-to-end packet delay of other nonblocking

networks. From this latency comparison we can observe that a 64-terminal 8-ary 2DFB

provides minimum average end-to-end packet delay compared to other networks for all

the traffic patterns.

10 -

•« 9 -

» 8

» 6 i

>; 5

1 4 -
* 3 -

i 2-
LU 1 .

BDBHC Efolded Clot B2DFB

•IS. ..

sl;:--

E
k •h- •

"H

'H:.!
S.H

. IL—i
' Hi Bft*llH

• i Sifcwl
Si IBw

256 1024 16384

Network size

t

i1

••«

32768

Figure 15: Latency comparison for adversarial traffic

We have observed the throughput and end-to-end packet delay of 2DFB network

for varying network size from 256 to 32 768 and compared it with that of DBHC,

42

folded-Clos and flattened butterfly. We have implemented 1-dimensional 2DFB with

static routing schedule, where the value of k selected is \\/rN] . The higher dimension

implementation also follows the same behavior. We have implemented DBHC, and

folded-Clos using switching elements of same bandwidth as that of 2DFB. All these

topologies are implemented using interconnecting links of 2 Gb/s bandwidth. All the

end-terminals are transmitting data with 1 Gb/s bandwidth. The throughput compari

son is shown in Figure 14. We have used adversarial traffic pattern for this comparison.

As we can see in the figure 14, like other nonblocking networks 2DFB also provides

100% throughput for the all given network sizes. Obviously flattened butterfly provides

a maximum of 50% throughput for all the network sizes.

Figure 16: Latency comparison for benign traffic

The end-to-end packet delay comparison for the adversarial traffic pattern is shown

in Figure 15. The average number of hops of the given 2DFB network for any network

size is close to 2, because all the networks are implemented in one dimension. A folded-

Clos network with a network size of 256 needs three stages (N/k > fc/2) of switching

elements, and therefore, the average number of hops for this network is 4. All the

folded-Clos networks with network size higher than 256, which are shown in the figure,

43

need only two stages (N/k < k/2) of switching elements and the average number of hop

count of these networks is 2. Thus, for larger networks end-to-end delay of 2DFB will

be very close to that of folded-Clos network for adversarial traffic pattern. End-to-

end delay of a DBHC will be larger compared to corresponding folded-Clos and 2DFB

for adversarial traffic pattern and the increment in the delay is proportional to the

network size.

Figure 16 shows the comparison of end-to-end packet delay of 2DFB for different

network sizes to that of folded-Clos networks for benign traffic pattern. For benign

traffic, a 1-dimensional 2DFB needs only one hop to complete any routing irrespective

of the network size whereas folded-Clos networks with higher network size need two

hops. Therefore, the end-to-end packet delay of 2DFB will be less than that of folded-

Clos network for any network size for benign traffic pattern.

The end-to-end packet delay of DBHC will be larger compared to the other two

nonblocking topologies and is not shown in Figure 16. In normal practice, the traffic

patterns will be random, and in this case the delay of 2DFB will be in between that of

adversarial and benign traffic patterns. So, the end-to-end packet delay of 2DFB will

be always less than that of folded-Clos for any network size.

All these simulation results reveals the reduced latency of a 2DFB over folded-Clos

and DBHC networks for different traffic patterns and network sizes. Thus, we can

consider 2DFB as a nonblocking high speed network with reduced cost.

44

Chapter 3

Hardware Implementation of 2DFB

3.1 Overview

A critical component of an ASN is the network switch since the switch implements

the data processing on data as it is aggregated and distributed from multiple sources.

Typically, custom silicon is used to build gigabit and multigigabit switches and these

switches offer the best performance. FPGAs on the other hand provide an intermediate

design point by offering maximum flexibility in the network processing while achieving

high performance. For this reason we use a switch built using an FPGA.

The selection of switching topology is also extremely important in an ASN. The

topology has an impact on the flexibility of computations that can be performed on an

ASN. Aspects like the type and nature of the interconnects used, latency, nonblocking,

etc. are decided by the switching topology and thus have an important impact on

the overall performance and scalability of the network. We have selected 2DFB as

the switching topology for ASN [14,35]. The ASN switch is built using a NetFPGA

board designed by Stanford University and Digilent Inc. to help build prototypes of

hardware-accelerated networking systems [1].

45

3.2 Hardware implementation

We implemented a 2-dimensional 2-ary 2DFB network with a network size of 8

terminals using the NetFPGA as the switching element. The NetFPGA board is a PCI

card, which contains a Virtex 2Pro (XC2VP50) FPGA, specifically designed for network

applications by a research group at Stanford University [1]. It has four 1 Gigabit/second

Ethernet (GigE) interfaces and two SATA ports which make it suitable to build a

switching network. The NetFPGA research group also provides the source code for the

board so that it can be used as a hardware accelerated OpenFlow switch [25]. We have

extended this work by developing two interfacing modules SATA TX_Q and SATA

RX_Q which are shown in Figure 17 and we have achieved serial data transmission

through the SATA link up to 2Gb/s.

The structure of the OpenFlow switch hardware is shown in Figure 17. It is a five

stage pipeline structure where each module communicates using a simple packet based

synchronous FIFO push interface which makes it easy to add additional modules to

the structure for the purpose of packet processing. The user data path is 64 bits wide

and it is driven by a 125 MHz clock. Therefore, the switch can handle a maximum

throughput of 8 Gb/s - i.e. the hardware can process packets at line rate.

The RX queues accept data from the Ethernet MAC core or Aurora core and convert

it to the format required for the user data path. This module also generates an 8-bit

control word and the module header. This 64-bit header is prepended to the beginning

of each packet and the 8-bit control word is generated for each 64 bit word. The module

header contains the length of the packet in bytes, the source port as a binary-encoded

number and the packet length in 64-bit words. This module header is named the IOQ

module header. The Input Arbiter selects an RX queue in which packets are available

46

and pushes a packet into the Output Port Lookup module without modifying the

module header. Based on the desired destination port, the Output Port Lookup module

decides which output port the packet should be transmitted to, and this information is

added as a one-hot-encoded number to the IOQ module header. The Output Queues

module looks at the IOQ module header and decides the output queue according to

the output port information and it stores the packet into the selected output queue.

The output queues are in SRAM and are not in the FPGA. The packet length from the

IOQ module header is used to store the packet efficiently. The stored packets in the

output queue are removed and pushed into the corresponding destination TX queue.

The TX queue module changes the data format according to the requirements of the

core (MAC or Aurora) and pushes it to the respective core inputs. The TX queue

module also removes the IOQ module header from each packet before transmission and

it generates all the control input signals for the core.

MAC1

J U L
MAC2

eiraira
MAC3

raja, U _ J L-EUL
MAC4

JUL
SATA1

I
SATA2

Input Arbiter

Output Port Lookup

±
M y y

Output Queues

MAC1 MAC2

i , Jt-iT.k Z H.T,
MAC3

.JUL
MAC4

JOLO.
M
SATA1

-QUI.

SATA2

Figure 17: NetFPGA switch architecture

In the 2DFB with a network size of 8, we are making use of the SATA ports of the

NetFPGA card for the interconnection between switching elements. The NetFPGA

47

card supports two SATA ports. We are making use of the Aurora protocol for serial

communication through SATA [23]. Aurora is a LogiCORE IP designed by Xilinx

to enable easy implementation of the FPGA RocketIO transceivers while providing a

light-weight user interface on top of which designers can build a serial link. It is a

scalable, lightweight, link-layer protocol for high-speed serial communication. It also

supports full duplex operation and flow control.

SATA with Aurora can give the maximum throughput of 3.125 Gb/s if we drive the

RocketIO transceivers using a differential clock network [24]. Unfortunately, the current

implementation of the NetFPGA does not provide a differential clock pair, but instead

provides a single ended clock generator of 125MHz. Using the Aurora Protocol we can

transmit two bytes in a single clock pulse. Thus, the maximum throughput provided

by Aurora in the present system is 2Gb/s which is still twice that of gigabit Ethernet.

We have used LogiCORE Aurora v3.0 for our implementation. The Aurora core can be

customized to suit a wide variety of requirements using the CORE Generator software

provided by Xilinx.

3.2.1 Customizing Aurora core

One of the important parameters that we should select while generating the core

is LaneWidth which decides the number of bytes transmitted during the period of one

clock cycle. Aurora supports LaneWidth of 2 and 4. If we set the LaneWidth to 4, the

user clock (USER_CLK) should be half of the reference clock (REFCLK), whereas with

a LaneWidth of 2, the frequency of USER_CLK and REFCLK should be the same. So,

the effective data rate will be same for both cases. Moreover, the clock generation for

a LaneWidth of 4 is complicated than for a LaneWidth of 2. So we have selected the

default LaneWidth value of 2. There are two types of data path interfaces used for the

48

core which are Framing and Streaming. The Streaming interface is a simple word-

based interface with a data valid signal to stream data through the Aurora channel

whereas the Framing interface is a Local Link interface that allows encapsulation of

data frames of any length. Since in our application we have to transmit packets through

the SATA link, we selected Framing interface. The Aurora core supports two data

flow modes, Simplex and Duplex. We have selected Duplex mode because we need to

transmit data in both directions. The Aurora core also supports several clock inputs to

drive the RocketIO transceivers. BREFCLK and BREFCLK2 are low-jitter differential

clock networks that can support line rates up to 3.125 Gb/s. However, the NetFPGA

platform does not support differential clock networks, and as a result we have selected

the REFCLK, which is a reference clock input for low rate serial connections. The

Aurora REFCLK frequency was set to 125MHz to match the NetFPGA clock - thus

giving an Aurora/SATA line rate of 2 Gb/s (125 MHz * 2 byte lane * 8 bits). The

Aurora core also supports UserFlowControl and NativeFlowControl, but we are not

making use of either of these flow controls.

3.2.2 Clock interface for Aurora

Aurora cores require a low jitter reference clock for generating and recovering high

speed serial clocks in the RocketIO transceivers. We can use either the differential clock

pair BREFCLK or the single ended clock REFCLK as the reference clock. Since the

differential clock pair is not available in the NetFPGA platform, we have used gtx-dk,

which is the common TX clock of 125MHz, which we can see in the top level module of

the source code, as the source for the REFCLK. Two-byte lane Aurora cores also use a

single clock to synchronize all signals between the core and the user application called

USER_CLK. All logic that connects to the core must be driven by USER_CLK, which

49

in turn must be the output of a global clock buffer (BUFG). Figure 18 shows how the

reference clock and USER_CLK from gtx-dk are generated.

gtx_clk

>

Reference Clock
•

IBUF

USER_CLK

BUFGMUX

Figure 18: Clocking for 2-Byte Aurora core

3.2.3 Auro ra core and Interfacing modules

The top-level interfacing unit of the Aurora core, which can be directly connected

to the other modules of the project, is known as the Aurora Local Link Interface. The

Aurora Local Link Interface, with Local link-compliant ports for TX and RX data, is

shown in Figure 19 [24].

3.2.3.1 Transmi t t ing

Table 8 lists port descriptions for Local Link TX data ports. The timing diagram

for a simple data transfer at the Aurora transmitting side is shown in Figure 20 [24].

All the signals required to feed the Aurora Local Link transmitter are provided

by the module SATA TX_Q, which is shown in Figure 21. The 64-bit data and the

8-bit control, which are coming from the output queue, are used to generate the 72-bit

Arranged Data. This 72-bit Arranged Data is stored in a FIFO in the SATA TX.Q

50

TX_D[0:15] _

TX_REM[0]

T X SOF N

—*o
TX EOF N _

TX_SRC_RDY_N

TX_DST_RDY_N

Local
Link

Interface

RXJ>[0:15]

RX_REM[0]

RX SOF N

0—
RX_E0F_N

RX_SRC_RDY_N

Figure 19: Aurora Core Framing Interface [24]

module. The data and control bits are arranged in such a way that, the FIFO should

output 2 bytes of data and the corresponding two control bits in a single FIFO output

read cycle. The writing data width of the FIFO is 72 and the reading data width

is 18. The iruwr signal, which is asserted whenever the incoming data are valid, is

used as the write enable signal for the FIFO. The SATA TX_Q module also generates

a signal injrdy which is asserted whenever this module is ready to accept data from

Output Queue module. All the other control signals required for the FIFO and for

the Aurora Local Link Interface transmitter are generated by a State Machine in the

SATA TX_Q module. A state machine controls the reading process of the FIFO by

generating FIFO read enable signal. Sixteen bits of data are extracted from the 18-bit

read data and it is given to the TX_D port of Aurora transmitter. TX_DST_RDY_N is

an incoming signal which is asserted by Aurora core and the Aurora core will accept the

data only when this signal is asserted. So the state machine should assert FIFO read

enable only after checking the TX_DST_RDY_N signal for successful transmission of

data. State Machine generates TX.SOFJNT, TX_EOF_N and TX_SRC_RDY_N signals

by making use of 8-bit control and in_wr signals from Output Queue module. Since

51

Table 5: LocalLink User I/O Ports (TX)

N a m e

TX_D[0:15]
TX_DST_RDY_N

TX-EOF.N
TX_REM[0]

TX_SOF_N

TX.SRC_RDY_N

Description
Outgoing data.
Asserted (Low) during clock edges
when signals from the source will
be accepted. Deasserted (High) on
clock edges when signals from the
source will be ignored.
Signals the end of the frame.
Specifies the number of valid bytes
in the last data beat; valid only while
TX_EOF.N is asserted.
Signals the start of the outgoing
channel frame (active-Low).
Asserted (Low) when LocalLink
signals from the source are valid.
Deasserted (High) when LocalLink
control signals or data from the
source should be ignored.

Aurora transmits two bytes per clock, it is essential to indicate the last byte of the

frame. This information is passed through the signal TX_REM[0].

The Aurora core supports a feature called clock compensation that allows up to

±100 ppm difference in the reference clock frequencies used on each side of an Aurora

channel. This feature is used in systems where a separate reference clock source is

used for each device connected by the channel. Since each NetFPGA platform uses its

own reference clock we have to make use of this clock compensation feature. A clock

compensation module is generated with the Aurora core. To perform Aurora-compliant

clock compensation, DO_CC must be asserted for several cycles during every clock

compensation period. The duration of the DO-CC assertion and the length of time

between assertions is determined based on the width of the RocketIO data interface.

52

User Clock

4VTTM~i-P-P-n-P
TX_SOF_N

TUT
TX_EOF_N

TX_REM[OJ

J I

TX SRC RDY N

\1
TX_DST_RDY_N

I I I
TX_D[0:15] '

"YTTTTmrT
I I I I I 1 I I
I I I I I I I I

Figure 20: Data transfer in Aurora transmitter [24]

For a lane width of 2, DO.CC is asserted for 6 USER_CLK cycles after each 5000

USER-CLK cycles.

3.2.3.2 Receiving

Table 6 lists port descriptions for Local Link RX data ports. All the signals coming

from the Aurora Local Link receiver, which are shown in Figure 22 [24], are given to

the module SATA RX_Q, which is shown in Figure 23.

The 16-bit data, which is coming from port RX_D[0:15] and corresponding two

control bits generated in the SATA RX_Q are written in a FIFO. The writing data

width of the FIFO is 18 and the reading data width is 72. We know that the user

data path of the NetFPGA switch is 64 bits wide and so in each read cycle, the FIFO

should output 64-bits of data as well as the corresponding 8-bit control signal which

are given to the Input Arbiter as shown in Figure 23. All the operations in the SATA

53

Outout Queue
64-bit Data 8-bit Data in_wr

SATA
T X Q

I 72-1 bit Arranged]„

State
Machine

in_rdy

FIFO

16-bit Data

I TX_SOF_N, TX_EOF_N,
TX SRC RDY_N*TX_REM[01

TX_D*TJU»Y_M

Aurora
Local Link
Interface

Figure 21: SATA TX_Q module

RX_Q module are controlled and synchronized by state machines. Both the FIFO read

enable and FIFO write enable signals are generated by state machines. The FIFO read

enable is asserted only when outjrdy signal is asserted which is an incoming signal

coming from Input Arbiter, out.rdy signal is asserted only when Input Arbiter is

ready to accept data. RX_SRC_RDY_N is an incoming signal coming from Aurora core

which indicates whether the received data is valid or not. This signal is similar to

the Ethernet MAC core's emacclientrxdvld signal that is asserted at the beginning of

each frame and is de-asserted only after the last byte of the frame, emacclientrxdvld

is not de-asserted during the transmission of a frame. However, in the Aurora core,

RX_SRC_RDY_N can be de-asserted during the transmission of a frame because Aurora

will stop the transmission for a few clock cycles whenever DO_CC is asserted for clock

compensation. Therefore, the signals RX_SOF_N and RX_EOF_N are the only way to

identify the starting and ending of a frame. State machine should assert FIFO write

enable only when RX_SRC_RDY_N is asserted. Since the Aurora receiver delivers 2

bytes for each clock cycle, State machine should make use of RX_REM[0] to find out

54

Table 6: LocalLink User I/O Ports (RX)

N a m e

RX_D[0:15]
RX_EOF_N

RX_REM[0]

RX_SOF_N

RX_SRC_RDY_N

Description

Incoming data.
Signals the end of the
incoming frame (active-Low).
Specifies the number of valid
bytes in the last data beat;
valid only when RXJEOF.N is asserted.
Signals the start of the incoming
frame (active-Low).
Asserted (Low) when data and control
signals from an Aurora core are valid.

the last byte of the frame. The SATA RX_Q module also generates a header which

carries information like word length, byte length and the number of input port. This

64-bit header is written at the beginning of each frame. SATA RX_Q also generates

8-bit control signal which carries useful information like starting of a frame, ending of a

frame and the position of the header, for each 64-bit data which is passed to the Input

Arbiter.

3.2.4 Implementation of 2DFB

A 2-dimensional 2-ary 2DFB network with a network size of 8 terminals is shown

in Figure 24 where all the inter-switch links have double the bandwidth compared to

the end-terminal links.

Each switching element is implemented using a NetFPGA. So in order to implement

the network shown in the Figure 24 we need four NetFPGA boards. Each end-terminal

is connected to the NetFPGA board using 1 Gb/s Ethernet link, and SATA links are

used for the interconnection between the NetFPGA boards which will support a data

rate of 2Gb/s. So we are making use of two Ethernet ports and two SATA ports of

55

User Clock

4T-p-rifi-p-P-ri-n
L N RX_SOF_N

RX_EOF_N

I I I

RX_REM[0] J
T T

RX_SRC_RDY_N

RX_D[0:15]

u-r
TJ.

\ I / p , u ^ \ I / I

OTTOC4
Figure 22: Data transfer in Aurora receiver [24]

each NetFPGA board. We have derived a conflict free routing schedule which is used

for the implementation of the 2-dimensional 2-ary 2DFB network.

3.3 Results

We have observed the throughput performance of the network using IPERF [26],

which is a network testing tool that can create TCP and UDP data streams and measure

the throughput of a network that is carrying them. We have used UDP data stream for

the throughput measurement because in UDP mode we can specify the input data rate

and we will get the exact statistics of packet loss. We have also implemented three other

network topologies of the same network size for the throughput comparison. The other

three topologies are butterfly, flattened butterfly and Benes [10] which is a 2-ary Clos.

For these three topologies Ethernet links are used for all the interconnections. Four

boards are needed for the implementation of butterfly and flattened butterfly networks,

56

Aurora Local Link Interface
RX_SRC_RDY RX_SOF RX_EOF RX_REM[0] RX_D[0:15]

SATA
RX_Q

State
Machine

< * — •

f

FIFO

, , l6^bitDataj •

8-bit control

•^Tout

out_rdy

Input
Arbiter

Figure 23: SATA RX_Q module

whereas a Benes network requires six NetFPGA boards. Throughput measurements

are done for three different traffic patterns as described in Table 7. We have selected

these patterns to consider the best case and worst case scenario of different topologies.

All the nodes are named as in Figure 24.

Table 7: 8-terminal network traffic pattern

Straight
Random
Cross

(1,5),(2,6),(3,7),(4,8)
(1,4),(2,3),(5,7),(6,8)
(1,8),(2,7),(3,6),(4,5)

The throughput comparison of the four network topologies is shown in the Fig

ure 25. The source terminal is transmitting UDP data stream with a rate of 1 Gb/s.

The average throughput for all the three traffic patterns is taken for the comparison.

We can see that more than 50% of the packets are lost in both flattened butterfly

and butterfly network for all the given traffic patterns. We observe that like a Benes

network, a 2DFB also shows nonblocking behavior. We can also see a small amount of

57

zn
VI

V2

Z3
V3

Figure 24: 2-ary 2-dilated flattened butterfly structure

packet loss in a 2DFB for the cross traffic pattern which is the worst case traffic for

this network. In this traffic pattern, some switching elements need to handle compar

atively higher traffic and we observe that in this case, the NetFPGA switch is slightly

deviating from its idle switching performance.

We have also observed the percentage of packet loss for different load conditions for

the above mentioned network topologies. We have selected cross traffic pattern for this

measurement because cross is the worst case traffic pattern for all the given networks.

We have observed the percentage of packet loss by varying all end-terminal data rate

from 0.25Gb/s to IGb/s. This percentage of packet loss is shown in Figure 26. We can

see that both butterfly and flattened butterfly networks starts dropping packets when

the end-terminal data rate go above 500 Mb/s and we can also see that for both Benes

and 2DFB, the packet drop is close to 0% up to a data rate of 1 Gb/s. An 8-terminal

58

Figure 25: Throughput comparison

60

50

I
X

7,
•5

**20

10

• Butterfly
D Bares

•
0 25 0 5

£3 Flattened butterfly
• 2-dilated flattened butterfly

m

w
mtty 1:1

m.
m

1
'A

i

1
n

1
\
%
±

1 1 n
0 6 0 75 0 9 1

End-terminal data r»t»(Gb/s)

Figure 26: Packet loss for different load condition

Benes implementation requires six NetFPGA boards whereas a 2DFB needs only four

NetFPGA boards. As a result, the maximum data rate handled by each board in a

2DFB topology is greater than that of Benes for the worst case traffic pattern cross

and this causes a small packet loss in a 2DFB network when the end-terminal data rate

is closer to lGb/s.

The above hardware implementation results reveal that 2DFB implementation us

ing NetFPGA is able to provide maximum throughput. It also requires reduced imple

mentation cost because the number of NetFPGA boards required in this case is lesser

59

compared to other topologies. We also make use of the whole internal bandwidth of

the NetFPGA switch (8Gb/s) by making use of the two SATA interconnection.

60

Chapter 4

ALDFB: An Adaptive Load Balanced Deadlock free

Routing Scheme

4.1 Overview

In this chapter, we introduce an adaptive load balanced deadlock free routing

scheme called ALDFB that is designed to exploit all the positive topological prop

erties of a 2DFB network. ALDFB achieves load balance by allowing one non minimal

forwarding in each dimension in case of network congestion. This algorithm provides

high throughput on adversarial traffic patterns and better latency on benign traffic

patterns.

A routing algorithm can be considered as optimal if it provides low latency on local

traffic and high throughput on adversarial traffic. Most algorithms must compromise

one goal in order to achieve the other. Minimal routing, which always chooses the

shortest path for each packet, provides minimum latency for local and benign traffic.

61

However, it provides non acceptable latency for adversarial traffic due to load imbal

ance. In order to improve the throughput in adversarial traffic, the routing algorithm

should balance the load by sending some fraction of packets over non-minimal paths.

Researchers have been trying to address the issue of providing high worst-case

performance while preserving locality. Valiant's randomized algorithm [2] gives good

performance in worst case traffic but very poor performance for local traffic in terms of

latency. Minimal adaptive routing [3] [4] suffers from global load imbalance. UGAL is a

load balanced adaptive routing algorithm designed for a torus network [5]. It provides

better load balance with improved performance for local traffic. UGAL will take a wise

decision in the selection of minimal or non-minimal route according to the status of the

channel. In the non-minimal routing phase, UGAL will select a random intermediate

router and the packets will be routed to and from the intermediate router minimally.

This random selection of intermediate router helps UGAL to balance the load. Adaptive

Clos [33] is an adaptive routing algorithm designed for Clos network which provides

optimum performance for a high-radix Clos network. UGAL and adaptive Clos are

considered as the most efficient routing schemes for interconnecting networks in a high

performance computing system.

The adaptive routing algorithm, ALDFB, that we propose is designed for a 2DFB

network. It is designed in order to make use of all the positive topological properties

of a 2DFB network. For benign or local traffic it selects the minimal path and makes

use of the reduced diameter of a 2DFB network. In adversarial traffic, ALDFB make

use of the improved path diversity of a 2DFB network. In case of traffic congestion

ALDFB balances the load efficiently by allowing one non-minimal forwarding in each

dimension. ALDFB guarantee deadlock and live lock freedom. In order to achieve

deadlock freedom we have made use of the concept of virtual channels and dimension

62

ordered routing. We observed the performance of ALDFB over a 2DFB network and

compared its performance with UGAL, minimal adaptive and adaptive Clos routing

schemes. We show that ALDFB over a 2DFB network outperforms other routing

schemes in terms of throughput and latency. We have also compared the performance

of ALDFB over a 2DFB network with other well-known networks like Mesh, folded-Clos

and dilated bristled hypercube.

4.2 Routing Algorithm: ALDFB

The proposed routing algorithm ALDFB is designed to explore the topological

properties of a 2DFB network. A 2DFB network is similar to a fc-ary generalized

hypercube (GHC) [8] except that in a 2DFB k end-terminals are connected to each

switching element. A 2DFB can be considered as a A;-way bristled 2-dilated GHC. If r

is the dimension of a /c-ary flattened butterfly, then there will be kr nodes (switching

elements) in the system and each node can be represented using a r-digit number, i.e.

any node x = xr-\...Xi...XQ where X{ 6 [0, k — 1]. In a 2DFB network any two nodes,

whose numbers differ only in the ith digit, are joined by a duplex channel and is known

as the ith dimension channel. Thus by comparing the r bit number associated to the

current switching element and the destination switching element, one can find out the

set of dimensions in which forwarding of the packet is required. Every node contains

(k — 1) channels in each dimension.

ALDFB has two phases of operation, the minimal forwarding phase and the non-

minimal forwarding phase. The minimal forwarding phase of ALDFB is shown in

Algorithm 1. In the minimal phase, the algorithm considers the set of dimensions in

which forwarding is required and it adaptively selects the dimension if the direct link

in the selected dimension is ready to use. This adaptive selection is possible in the

63

same cycle if we make use of a priority encoder. The input of the priority encoder is a

P bit register where P is the total number of ports of a router. Each bit of this input

register indicates the status of corresponding output queue. For example if the number

of packets in the queue is less than a threshold value the bit will be ' 1 ' , and otherwise it

is '0'. Output of the priority encoder will be the address of the port selected according

to the priority. If we have more than one empty queue we can give priority to the

port in the higher dimension to preserve the dimension order routing nature. In the

minimal routing phase only the status of the direct ports are given as the input of the

priority encoder. If no usable direct link is available in the selected dimension, then

the algorithm will turn in to non-minimal phase of operation.

In the non-minimal phase, ALDFB will consider all the ports in the selected di

mension and adaptively check the availability of any of these non-minimal links. This

non-minimal forwarding phase is shown in Algorithm 2. Again, a priority encoder is

used for the adaptive selection of output port. The status of all the selected ports is

given as input to the priority encoder and it will output the address of selected port.

The packet will be forwarded to this non-minimal link. We constrain this non-minimal

forwarding by adding a one bit flag in the header of each packet and we call this flag as

the priority flag. ALDFB allows only one non-minimal forwarding in each dimension.

If the switching element sees that the priority flag is set for the received packet, then

that packet will be sent to a minimal direct link even though all minimal output queues

have packets more than the threshold level. In the next cycle some portion of the traffic

coming from the other switches will be adaptively rerouted to any non-minimal link

which will reduce the traffic congestion. Thus, by the combined use of minimal and

non-minimal phase of operation, ALDFB will balance the load efficiently and it will

reach the steady state within a few iterations.

64

A l g o r i t h m 1: Minimal routing phase of ALDFB.

1 beg in

2 if Sd = = dd t h e n

3 LinkSel = 1, Linkout = Local Link

4 e l se

5 Set Pi — 0, Find Dr (Dimensions selected for routing)

6 Find Pr (Direct Links corresponds to Dr)

7 Add queue s tatus of Pr to Pi

8 if Ps —— true t h e n

9 Linkout = Po, hi—0, LinkSel=l

10 send(frame, Linkout)

n e lse

12 if hi —— 1 t h e n

13 Linkout — higher dim Link from Pr, hi—0, LinkSel=\

14 send(frame, Linkout)

15 e l se

16 Go to non-minimal routing phase

17 e n d

18 e n d

19 e n d

20 e n d

65

ALDFB always gives priority to the minimal forwarding and therefore for local

traffic and benign traffic, the performance of this routing scheme will be equal to the

minimal routing. With the worst case traffic ALDFB will use at most two links per

dimension. In the worst case also a fraction of traffic is routed through direct links

which will help to reduce the latency.

Algorithm 2: non-minimal routing phase of ALDFB.

1 begin

2 if LinkSel != 1 then

3 Set Pi = 0

4 Find Dr (Dimensions selected for routing)

5 Add queue status of all ports in Dr to Pi

6 Linkout — Po

7 hx=\

8 LinkSel=l

9 send(frame, Linkout)

10 end

n end

We have numbered each link based on the number of the router at the starting point

and the number of the router at the ending point. We have numbered each router as

shown in Figure 1. For a 2DFB network of dimension r we have used 2 x r digits

for numbering each link. Out of this 2 x r digit number the first r digits represents

the number of the router from which the link is starting and last r digits represents

the number of the router to which the link is connected. For example a 64 terminal 2

66

dimensional 2DFB network need four digits for numbering each link. In this case each

router will have six incoming links and six outgoing links (all links connected to the

end terminals are not considered here). The numbering of all links which are connected

to the router R\2 in the Figure 1 is shown in Figure 27. Each time after selecting the

output link ALDFB compare the output link number with the corresponding input link

number. If the output link number is greater than the input link number corresponding

forward virtual channel is selected for routing the packets, else the packets are routed

through corresponding reverse virtual channel.

Lion

L1112

L1312

L0212

L2212

L3212

Figure 27: Links associated to router R\2

4.2.1 Terminologies used in the algorithm

The minimal routing phase of ALDFB is shown in the Algorithm 1 and the non-

minimal phase is shown in the Algorithm 2. A one bit flag is added to the header of each

packet to indicate the switching priority and it is represented as h\. An output link is

selected by considering the number of packets already in queue in the corresponding

output queue. The link is selected if the number of packets in the output queue is less

than the threshold value T^. The preferred dimensions to which the packets can be

forwarded are decided by comparing the r digit representation of the current switching

L1210

L1211

L1213

L1202

L1232

L1222

- >

-

—

R n

67

element and the destination switching element, where r is the dimension of the network,

r digit representation of current switching element and destination switching element is

represented as Sd[r] and dd[r] respectively. A priority encoder is used to select an output

link adaptively according to the queue status corresponding to each link. The input of

the priority encoder is a P bit register where P is the total number of outgoing links

associated to each router and this input is represented as Pi. Output of the priority

encoder is the address of the selected link and is represented as Po. There is a flag to

indicate the validity of priority encoder output and it is represented as Ps.

4.2.2 Deadlock and Livelock

A deterministic minimal dimension ordered routing is free from deadlock [52]. We

have made use of the concept of dimension ordered routing to ensure deadlock freedom.

As mentioned in Section 4.2 we have numbered each link and the packets which are

routed in the increasing channel order are forwarded through forward virtual channels

and the packets which are routed in the decreasing channel order are forwarded through

reverse virtual links.

Figure 28: Packet flow through virtual links

68

Dally, in his work [50] showed that virtual channels increase network throughput

and reduce the dependence of throughput on the depth of the network. He also had

introduced deadlock-free adaptive routing algorithms by making use of virtual chan

nels [51]. Virtual channels can be used to eliminate cycles in the resource dependency

graphs. Figure 28 helps to visualize the concept. The upper plane in Figure 28 con

sists of all forward virtual channels and the bottom plane consists of all reverse virtual

channels. An example of packet flow is shown here. The Packet is starting from an

end-terminal which is connected to router RQQ and it is going to an end-terminal which

is connected to the router i fo . In the router RQQ ALDFB fail to get any direct path

in the minimal routing phase and it find a non-minimal path in the non-minimal rout

ing phase and the packets are forwarded to the link L0200 through the forward virtual

path. Before this non-minimal forwarding the priority bit in the header is set to one

and therefore the router i?02 has to assign a minimal path to forward the packet. The

minimal link assigned by the router R02 is L0102 which has a lower link number com

pared to the input link and therefore the packets are forwarded through the reverse

virtual channel. The transition from forward virtual channel to reverse virtual channel

is shown as the dashed vertical arrow towards down. Notice that now the distance

between the source router and the destination router is decreased by one dimension.

Because of the use of the priority header in ALDFB after each non-minimal forwarding

there will be a mandatory minimal forwarding which will further decrease the distance

between source and destination by one dimension. Before the packet is forwarded from

RQ2 the priority header is changed back to zero and so when the packet reaches in

the router i?oi ALDFB running in router i?oi can go to the non-minimal phase if the

minimal links are not available. This process repeats and the packet reaches at the

destination router after four forwarding stages. From this example it is clear that in

69

each virtual plane packets are forwarded according to the link order and whenever there

is a pair of transition from one virtual plane to the other virtual plane the distance

between the source and destination will be decreased by one dimension. Thus the chan

nel dependence graph will be free from cyclic dependency and the routing will assure

deadlock freedom. Restricting the non-minimal forwarding using priority header also

makes ALDFB free from live lock.

Algorithm 1 and Algorithm 2 are modified by restricting the packet flow through

virtual channels in order. This provides deadlock freedom and the modified minimal

phase is shown in Algorithm 3. The modified non minimal phase is shown in Algo

rithm 4. We are making use of two virtual channels per physical link. Half of the

outgoing virtual channels are dedicated to the packets flow in the increasing chan

nel order which are named as forward virtual channels (ForwardVC) and half of the

outgoing virtual channels are dedicated to the packets flow in the decreasing channel

order which are named as reverse virtual channels (ReverseVC). After selecting the

outgoing link, the routing scheme selects appropriate output virtual channel to which

the packet is to be forwarded based on the incoming link number and outgoing link

number.

70

A l g o r i t h m 3: Minimal routing phase of ALDFB.

1 beg in

2 if Sd —— dd t h e n

3 LinkSel = 1, Linkout = Local Link

4 e lse

5 Set Pi = 0, Find Dr (Dimensions selected for routing)

6 Find Pr (Direct Links corresponds to Dr)

7 Add queue s tatus of Pr to Pi

8 if Ps —= true t h e n

9 Linkout = Po, h%=0, LinkSel—1

10 Go to Assign VCout

n e lse

12 if hi —= 1 t h e n

13 Linkout — higher dim Link from Pr, hi=0, LinkSel—1

14 Go to Assign VC0Ut

15 e l se

16 Go to non-minimal routing phase

17 e n d

i s e n d

19 Assign VCout'- if Linkin < Linkout t h e n

20 VC0ut = ForwardVCLmkout, send(frame, VCout)

21 else

22 VCout - ReverseVCLinkout, send(frame, VCout)

71

23 e n d

24 e n d

25 e n d

A l g o r i t h m 4: non-minimal routing phase of ALDFB.

1 beg in

2 if LinkSel != 1 t h e n

3 Set Pi = 0

4 Find Dr (Dimensions selected for routing)

5 Add queue s tatus of all ports in Dr to Pi

6 Linkout = Po

7 /li = l

8 LinkSel—1

9 if Linkin < Linkout t h e n

io V C o u i = ForwardVCLmkout

n send (frame, FCOW()

12 else

13 V C o u (= ReverseVCunkout

14 send (frame, VCout)

15 e n d

16 e n d

17 end

4.2 .3 A l g o r i t h m s u s e d for c o m p a r i s o n

We have selected minimal adaptive routing, non-minimal global adaptive routing

(UGAL) and adaptive Clos for the performance comparison with our proposed routing

72

scheme ALDFB. The minimal adaptive algorithm will always route packets in the

shortest path. UGAL will take a wise decision in the selection of minimal or non-

minimal route according to the status of the output queue. In the non-minimal routing

phase UGAL will select a random intermediate router and the packets will be routed

to and from the intermediate router minimally. This random selection of intermediate

router helps UGAL to balance the load. The adaptive Clos routing algorithm uses

forward and backward phases. In the forward phase any of the links in the forward

path is adaptively selected by checking the status of each forward link. In the reverse

phase, routing is deterministic as there exists only a single path to the destination.

The adaptive Clos routing scheme is implemented over a folded-Clos network.

4.2.4 UGAL Vs. ALDFB

If we compare minimal adaptive and UGAL routing schemes over a 2DFB net

work we can see that UGAL outperforms minimal adaptive because it provides bet

ter throughput and reduced latency for both benign and adversarial traffic patterns

whereas the minimal adaptive algorithm shows poor performance for adversarial traffic

patterns. Therefore, it will be worthwhile to do a comparison between the behavior of

UGAL and ALDFB for different traffic conditions over a 2DFB network. Both routing

schemes always give priority for links corresponding to the minimal distance (direct

links). So benign or reduced traffic both the routing scheme route packets through the

direct links and therefore the performance will be same. For heavy and adversarial

traffic the behavior of both the routing scheme will be different. In a k-avy 2DFB

network since k end-terminals are connected to a router all the packets cannot route

through direct links in heavy and adversarial traffic conditions. In this traffic condition

in order to balance the load UGAL will select a random intermediate node and the

73

packets are transmitted to and from the intermediate node through minimal path. In

this traffic condition ALDFB consider all the non-minimal channels in all dimensions

in which traversal of the packet is required and select an available channel. After se

lecting the non-minimal channel, ALDFB sets the priority header and sends the packet

through the non-minimal link. In the case of UGAL after selecting the intermediate

node packets are not allowed to take any non-minimal link. Even though this random

selection of intermediate node helps for load balancing, there can be many corner cases

in which a single channel is overloaded and this will affect the overall performance of

the network. One corner case situation in which UGAL provides bad performance due

to overloading a channel is shown in Figure 29. Since bandwidth of each link in 2DFB

is twice than that of end-terminal injection bandwidth, packets from two end-terminals

with full bandwidth can be passed through a link without much delay. A channel in

2DFB will be overloaded if three end-terminals are trying to send packets through one

link with full bandwidth. In the Figure 29, one terminal connected to RQI, Rn and

-R31 are selected R22 as the intermediate node. Assume that all the three links between

these three starting routers and R%\ (L210I1 -̂ 2111, £2131) are having reduced traffic and

all the packets are routed to R21. According to UGAL the router R21 do not have any

other option and have to forward all the packets towards R22 and this will overload the

link 1/2221-

A similar worst case situation in ALDFB is depicted in Figure 30. Assume that

one end-terminal connected to R23 is sending packets to an end-terminal connected to

R12 through i?i3 with full bandwidth. Then, another end-terminal connected to Rn

starts sending packets to R12 through R13 with full bandwidth. Now the link L1213 is

fully loaded. In this situation assume one more end-terminal connected to Rio sending

packets to R12 through R13. Since this is a non-minimal forwarding, the packets that

74

Figure 29: A traffic flow in UGAL which will cause overloaded channels

reach at R\z do not have any other option and are forwarded to the link L1213 and

make this link overloaded. However, at the router R\z we can notice that the priority

header of all packets which are coming from R23 is not set. Therefore, during the next

forwarding cycle the packets coming from R23 will be forwarded to another available

non-minimal link and this further reduces the traffic through the link £1213- Thus,

ALDFB is more adaptive in nature and it effectively balances the load.

O) CED (SD (ED

d D do) (eg) CH)

(eg) C03> (3D CUD
Figure 30: A worst case traffic flow for ALDFB

4.3 Simulation results

We have modeled 2DFB, folded-Clos, DBHC and Mesh networks for a network

size of 64 using the OMNeT++ simulation library [27]. All simulated topologies have

the same bisection bandwidth, and all end-terminals send packets with a maximum

75

bandwidth of 1 Gb/s. We have used a packet size of 121 bytes to simulate the worst case,

but larger size packets show similar behavior. 2DFB, folded-Clos and DBHC networks

are implemented using interconnecting links of 2 Gb/s bandwidth. The low-radix mesh

is implemented using interconnecting links of 4 Gb/s bandwidth. The default OMNeT

switch model was modified in order to include these higher bandwidth channels. We

have compared the throughput and latency of these network topologies for different

routing schemes and traffic patterns. We assume that the data transmission through

the network is permutation type - i.e. a unique source and destination are assigned

to any data element and the elements are permuted according to the traffic patterns.

We have selected Benign, Adversarial and Random traffic patterns as explained in

chapter2 to consider the best case and worst case scenario of 2DFB topology.

We have compared the average throughput of a 4-ary 2-dimensional 2DFB network

with a network size (N) of 64 for three different routing algorithms, Minimal, UGAL

and ALDFB. The throughput comparison is done for three different traffic patterns as

mentioned before and is depicted in Figure 39.

Figure 31: Throughput comparison for different routing schemes

All the end-terminals are injecting packets at a rate of 1 Gb/s. ALDFB provides

a nonblocking traffic flow and the throughput is very close to 100% for all the traf

fic patterns. UGAL also provides throughput close to 100% for benign and random

76

traffic patterns, but considerable reduction (8%) for adversarial traffic patterns. For

adversarial traffic patterns UGAL fail to provide efficient load balancing due to the

random selection of intermediate router whereas ALDFB exploits the path diversity in

the 2DFB network and balances the load efficiently. Minimal adaptive routing is not

offering any load balancing and so all the direct links in 2DFB will be overloaded and

it provides poor throughput for random and adversarial traffic patterns.

Figure 32: End-to-end packet delay comparison for different routing schemes

The average end-to-end packet delay comparison for the above mentioned routing

schemes over 64-terminal 2-dimensional 2DFB network is shown in Figure 32. Please

note that the delays are plotted at log-scale. All the end-terminals are injecting pack

ets with a rate of 1 Gb/s. For benign traffic the delay is same for all routing schemes

because all packets are routed through the direct link without overloading it. For

the adversarial traffic pattern, the minimal adaptive algorithm shows poor delay per

formance. Even though UGAL provides better load balancing compared to minimal

adaptive it is not able to avoid overloading few interconnecting links in adversarial

traffic patterns. We can see that ALDFB provides minimum delay compared to other

two routing schemes.

The end-to-end packet delay comparison for reduced load condition where each

end-terminals are injecting packets at a rate of 500 Mb/s is shown in Figure 33. In this

77

Figure 33: Delay comparison for different routing schemes for reduced load

reduced load condition all three routing schemes forward packets through the minimal

links without overloading it and thus the delay performance will be same.

BUGAL+Mesh W UGAL+DBHC ED Ad Clos+Clos SALDFB+2DFB

Benign Random Adversarial

Figure 34: Throughput comparison for different network topologies

We have also compared the average throughput of four different network topologies

with the same bisection bandwidth and with the network size of 64. The topologies that

we have selected are 4-ary folded-Clos, dilated 4-way bristled hypercube (DBHC), Mesh

and 4-ary 2DFB. Mesh and DBHC use UGAL, folded-Clos uses adaptive Clos and 2DFB

uses ALDFB for routing packets. This throughput comparison is shown in Figure 40.

We can see that with an adversarial traffic pattern, 2DFB with ALDFB provides slightly

better throughput performance compared to the other three topologies.

While the improvement in throughput is small, the effect of the ALDFB algorithm

is much more pronounced on the packet latencies. The average end-to-end packet

78

HUGAL+Mesh EUGAL+DBHC E3 Ad Clos+Clos DDALDFB+2DFB

Benign Random Adversarial

Figure 35: End-to-end packet delay comparison for different network topologies

delays for the above mentioned network topologies with an end-terminal injection ratio

of 1 Gb/s are shown in Figure 35. This delay comparison reveals the reduced delay

performance of a 2DFB network with ALDFB routing scheme. A low-radix mesh

provides the worst delay performance because of its large diameter and the number of

hops needed for routing. We can see that ALDFB makes use of the reduced diameter

and larger path diversity of 2DFB network and provides minimum delay performance

for all traffic patterns.

Figure 36: Delay comparison for different network topologies for reduced load

The average end-to-end packet delay comparison for an end-terminal injection ratio

of 500 Mb/s for different network topologies is shown in Figure 36. As can be seen, even

79

with a reduced load, a 2DFB network with ALDFB provides minimum delay because

it uses the minimum number of hops for routing compared to other networks.

From the above throughput and latency comparison, it is clear that 2DFB with

ALDFB provides maximum throughput with reduced latency. For benign and ran

dom traffic the performance of UGAL and ALDFB are almost the same as in a 2DFB

network. However, at full load and with adversarial traffic, ALDFB significantly out

performs UGAL in terms of throughput and latency. We can also see the improved

latency performance of ALDFB on 2DFB compared to other networks for all the sim

ulated traffic patterns. Thus, we consider ALDFB over 2DFB as an optimal candidate

for a high performance interconnection system with reduced cost.

80

Chapter 5

2DFB based On-Chip Networks

5.1 Overview

The on-chip interconnection network (OCIN) and routing plays an important role

in the performance of a chip multiprocessor (CMP). As the number of cores in CMP

increases, the OCIN also should scale efficiently to make use of the increasing pro

cessing capacity. An ideal OCIN should provide maximum throughput and minimum

latency. We propose using a 2-dilated flattened butterfly (2DFB) instead of a mesh

as a high-radix OCIN because of its nonblocking property and reduced diameter. We

also propose using ALDFB, an adaptive load balanced routing scheme for 2DFB based

OCIN networks. We evaluate the performance of the 2DFB OCIN with ALDFB routing

using synthetic traffic patterns and compare it with a mesh network having the same

bisection bandwidth, which uses adaptive minimal routing scheme. We also compare

the performance of ALDFB with two other most popular adaptive routing schemes.

We observe that 2DFB with ALDFB provides significant improvement in terms of

throughput and latency.

81

The advancement in VLSI technology has led to a doubling of available processing

cores on a single chip every third year. As the processing power of a chip has increased

and data intensive applications have emerged, designing efficient on-chip interconnec

tion networks (OCIN) and routing schemes has attracted increasing attention [36,37].

Most multiprocessor chips currently available such as the RAW processor [38], the

TRIPS processor [39] and the 64-node chip multiprocessor from Tilera [40] are making

use of low radix 2-D mesh architecture. Low radix 2-D mesh networks are attractive

because of their simplicity and short wire requirement for interconnection. However,

the drawback is its large diameter and average number of hops used for the routing

process. As a result, 2-D mesh based OCINs suffer from increased latency and power

dissipation.

Recent work has shown that a high-radix OCIN, based on a flattened butterfly,

can outperform the corresponding low-radix mesh network in terms of latency and

power [41]. This improvement is achieved due to its reduced diameter and average

number of hops used for the communication. The 2-dilated flattened butterfly (2DFB)

is a nonblocking version of a flattened butterfly network. In this chapter, we analyze

the OCIN, based on 2DFB, and compare it with a mesh based OCIN. We also pro

pose using ALDFB routing scheme for 2DFB based OCIN. ALDFB balances the load

efficiently by allowing one non-minimal forwarding in each dimension in case of traffic

congestion. It senses the traffic congestion from the packet queue. We observed the

performance of ALDFB in 2DFB based OCIN for both local (benign) and adversarial

traffic patterns and observed that it outperforms other routing scheme in terms of la

tency and throughput. We have also compared the performance of a mesh based OCIN

with 2DFB based OCIN of same bisection bandwidth and observed that 2DFB based

OCIN provides significant reduction in latency for reduced load condition.

82

5.2 OCIN Networks

In this section we describe OCINs using mesh and 2DFB interconnecting topologies.

We also compare the resources needed and different parameters of these OCINs.

5.2.1 Mesh based OCIN

The mesh topology is the simplest topology and is well suited for tiled architecture

implementations. The length of each interconnecting link is equal to the length of a

tile (Ts). A 64 core mesh based CMP is depicted in Figure 37. We assume

Figure 37: 64-core CMP using mesh topology

that the width of each channel in the mesh network is 64 bits. Therefore, the total

number of wires passing through the bisection is 8 x 64. For simplicity we express the

bisection bandwidth as the total number of wires that pass through the bisection. Each

switching element can be implemented by making use of a 5X5 crossbar switch.

83

5.2.2 2DFB based OCIN

A 64-core 2DFB based OCIN is depicted in Figure 38. Here four processing cores are

connected to each switching element. A 10X10 crossbar switch is needed to implement

each switching element. The width of each interconnecting link is selected as 32 bits so

that the total number of wires (16 x 32) crossing the bisection (bisection bandwidth)

is same as that of the mesh system shown in Figure 37. As shown in Figure 38, a

2DFB implementation requires interconnecting links of different length. The minimum

channel length required for a fc-ary 2DFB based OCIN is y/kx tile span (Ts). Ts is

the width of a single processor core/tile. We assume that the cores are square - i.e.

the width and height are the same. In a 4-ary 64-core system, the minimum channel

length is 2TS and the length of other channels are 4TS and 6TS. Since horizontal

and vertical channels cross each other, a silicon implementation would require two

metal layers. Horizontal interconnection links and the links connected to the cores

can be implemented in one metal layer and all vertical interconnection links can be

implemented in another metal layer without conflict.

5.2.3 Mesh Vs 2DFB

A comparison of some critical parameters of above mentioned mesh and 2DFB

based 64-core CMP implementation is shown in Table 8. The bisection bandwidth is

represented as the number of wire segments that cross the bisection and it is the same

for both networks. Wiring density is defined as the maximum number of tile-to-tile

wires routable across a tile it is also same for both networks. The degree of each

crossbar switch in a 64-core 2DFB is twice than that of mesh, but the diameter and

maximum hop count of 2DFB is much less than that of a mesh network and this helps

to improve the performance of 2DFB in terms of latency and power.

84

Figure 38: 64-core CMP using 2DFB topology

Table 8: Parameters comparison for 64-core CMP networks

Parameter

Bisection bandwidth
Wiring density
Maximum hop count
Diameter
Degree of each crossbar switch

Mesh

512
64
14
14
5

2DFB
512
64
6
2
10

A resource comparison of mesh and 2DFB based 64-core CMP implementations is

shown in Table 9. Wire segments are separated into four groups having different lengths

and these lengths are represented in terms of tile span (Ts). Even though 2DFB uses

wire segments of larger length, because of the reduced number of wires, the total wire

length used is 28.5% less than that of a mesh network.

A 5X5 router is used in the 64-core mesh network and each router needs 5 input

and 5 output FIFOs. In a 64-core CMP there are 64 such routers and therefore the

total number of FIFOs needed in a 64-core mesh network is 640. The size of each router

85

Table 9: Resource comparison

Resource
No. of wire segments:L,2L,4L,6L
Total wire length (in Ts)
Total No. of cross point transistors
Total No. of FIFOs

Mesh

7168,0,0,0
7168
102400
640

2DFB

0,768,512,256
5120
51200
320

in the 64-core 2DFB network is 10X10 and each router needs 10 input and 10 output

FIFOs. There are 16 such routers in the 64-core 2DFB based CMP and therefore the

total number of FIFOs needed in a 64-core 2DFB based CMP is 320. Thus the total

number of FIFOs used in a 64-core 2DFB based CMP is 50% less than that required

for a 64-core mesh based CMP. The channel width of a 2DFB based OCIN is 32, so

the total number of cross point transistors used in a single router of 2DFB network

is 32 x 100 and the total number of cross point transistors used in the 2DFB based

CMP is 16 x 32 x 100. The channel width of a mesh based OCIN is 64 and hence

the total number of cross point transistors used in a single router of mesh network is

64 x 25 and the total number of cross point transistors used in the mesh based CMP is

64 x 64 x 25. Thus, the total number of cross point transistors required for the 64-core

2DFB implementation is 50% less than that of the corresponding mesh network.

The disadvantage of 2DFB is that it needs longer wire segments and a higher

degree crossbar switch. Longer wires may need larger driving power or need a series of

driving buffers or repeaters to reduce the wire delay. In the case of mesh, even though

the wire length is short the packet has to pass through a large number of hops to

reach the destination and this increases the power requirement. This additional power

requirement will be comparable to the additional power needed to drive longer wires

in 2DFB. A larger degree crossbar switch also needs a complex control unit, but the

86

total number of switching elements in a 2DFB is much less than that of a mesh and

therefore the total area requirement for the control units in 2DFB will be comparable

or less than that of a mesh network. From this resource comparison it is clear that a

2DFB based CMP implementation outperforms a mesh based CMP in terms of area

and cost.

5.3 Simulation results

We have modeled 64-core 2DFB and mesh based OCINs for the same bisection

bandwidth using the OMNeT+4- simulation library [27]. We consider 125 MHz as

the router clock frequency. With this clock frequency, the channel bandwidth of the

mesh will be 8 Gb/s and the 2DFB will be 4 Gb/s. We also consider 2 Gb/s as the

maximum injection ratio of the end terminals. Beyond 2 Gb/s both the mesh and

2DFB networks show blocking behavior. Our motive is to study the performance of

mesh and 2DFB as a nonblocking switching network. We have selected a packet size

of 32 bytes and we consider a store and forward type routing protocol. Output queue

size considered is 64 bytes so that we can store only two packets in the buffer. In the

case of traffic congestion packets will be dropped inside the switch. We have compared

the throughput and latency of these network topologies for different traffic patterns.

We have also compared the performance of ALDFB with Minimal adaptive and UGAL

routing schemes on mesh and 2DFB networks. We assume that the data transmission

through the network is permutation type - i.e. a unique source and destination are

assigned to any data element and the elements are permuted upon transmission. We

have selected Benign, Adversarial and Random traffic patterns to consider the best

and worst case scenario of 2DFB topology.

87

5.3.1 Throughput comparison

We have compared the average throughput of a 64-core, mesh and 2DFB based

OCIN with the same bisection bandwidth. Adaptive Minimal, UGAL and the proposed

ALDFB routing schemes are used for the throughput comparison.

m Mesh-Min Adpt El Mesh-UGAL E2DFB-Min Adpt
• 2DFB-UGAL 12DFB-ALDFB

Adversanal Random Benign

Figure 39: Throughput comparison for an injection rate of 2Gb/s

Figure 40: Throughput comparison for an injection rate of lGb/s

The throughput comparison is done for three different traffic patterns as mentioned

before. Figure 39 shows the throughput comparison for an end-terminal injection rate

of 2Gb/s which is considered as the maximum injection rate of the network. In a 2DFB

network, for adversarial traffic pattern ALDFB effectively balances the load and is able

to achieve a throughput very close to 100%. We notice the performance degradation of

88

Minimal adaptive and UGAL routing schemes in 2DFB network for adversarial traffic

pattern. Minimal adaptive routing will always route packets through direct links (link

corresponds to the shortest path) and will overload the direct links. This will cause a

large amount of packet loss for adversarial traffic pattern. UGAL routing will try to

improve the throughput by forwarding packets to a random intermediate node. For

warding to and from the intermediate nodes are done minimally. From our simulation

we observe that this technique also fails to avoid overloading few interconnecting links

in an adversarial traffic pattern. ALDFB in adversarial traffic pattern shows 29.3%

improvement in throughput over UGAL and 102% improvement in throughput over

Minimal adaptive in the 2DFB based OCIN. ALDFB provides the same throughput

as the low radix mesh network. Even though the throughput performance of the low

radix mesh is good it shows poor performance in terms of latency. We can see that

ALDFB helps the high radix 2DFB network to provide good throughput performance

while keeping low latency. Random traffic patterns are distributed in nature and so the

chances of channel congestion are comparatively less and there is no chance of channel

congestion in benign traffic pattern.

The throughput comparison for an end-terminal injection ratio of lGb/s (half load

condition) is shown in Figure 40. We can notice that Adaptive minimal and UGAL

routing schemes fail to provide 100% throughput even in the half load condition for

adversarial traffic conditions in a 2DFB network. At the same time ALDFB provides

100% throughput.

89

5.3.2 End-to-end packet delay comparison

We have compared the average end-to-end packet delay of mesh and 2DFB based

64-core OCIN for different routing algorithms. Average end-to-end packet delay com

parison for an end-terminal injection rate of 2 Gb/s is shown in Figure 41.

Figure 41: Packet delay comparison for an injection rate of 2 Gb/s

The low latency of the 2DFB network for random and benign traffic patterns is

because of the reduced number of hop counts in the high radix 2DFB network. With

an adversarial traffic pattern, almost all the routers in 2DFB are fully loaded. However,

because of the increased number of routers, all the low radix routers in the mesh are

not fully loaded. Moreover the channel bandwidth of mesh is twice than that of 2DFB.

Because of these reasons in adversarial traffic pattern even though the hop count of

mesh is larger, the overall latency will be comparable to that of a 2DFB network. For

random traffic patterns, a 2DFB based OCIN with ALDFB routing provides 28.8%

reduction in latency compared to a mesh based OCIN and for benign traffic pattern

the reduction in latency is 43.5%. We can also notice that ALDFB shows 20.98%

reduction in latency compared to UGAL for random patterns over 2DFB network.

In Figure 42 we compare the average end-to-end packet delay of mesh and 2DFB

based 64-core OCIN for and end-terminal injection rate of lGb/s (half load condition).

90

Figure 42: Packet delay comparison for an injection rate of lGb/s

Here we notice the reduced latency of 2DFB network over mesh network even for

adversarial traffic pattern. In this reduced load condition more percentage of traffic

are forwarded through the direct links. Thus, in a 2DFB network, the reduced hop

count leads to reduction in latency even for adversarial traffic pattern. We observe

that 2DFB with ALDFB shows 32.06% reduction in latency compared to the mesh

network for adversarial traffic pattern. The reduction in latency of a 2DFB network

with ALDFB over a mesh network for random and benign traffic patterns are 37.6% and

43.5% respectively. We also observe that ALDFB shows 22.03% reduction in latency for

adversarial traffic pattern and 21.6% reduction in latency for random pattern compared

to UGAL over 2DFB network.

These throughput and latency comparison reveal the advantage of the 2DFB net

work with the proposed routing scheme ALDFB. The ALDFB routing scheme succeeds

in providing maximum throughput even for adversarial traffic conditions over 2DFB

networks. It also exploits the reduced diameter of 2DFB network and provides signif

icant reduction in latency for random and benign traffic patterns and in reduced load

conditions. From the simulation results we observe that ALDFB outperforms UGAL

and minimal adaptive routing schemes in terms of throughput and latency.

91

Chapter 6

ASN Applications

6.1 Overview

Several commercial and academic parallel file systems have been developed by al

lowing dedicated data and control paths thus demonstrating aggregate throughput

scalability for very large systems. However, these systems do not scale well when I/O

requests are too small to stripe across multiple nodes or when applications do many

metadata operations such as file creations and deletions, fstats, and directory reads.

Parallel I/O systems also do not perform well when a single client wants to read data

from many storage nodes and perform a reduction operation like min-max or a search.

In such cases, with high performance storage nodes, we can easily saturate the network

connection to the client. Consider that if a storage node can deliver 1 Gb/s of data, 10

nodes can potentially deliver 10 Gb/s of data, thereby overwhelming a single 1 Gb/s

network connection to a client. Thus, the client does not see the benefit of the parallel

I/O.

We counter the problem by attacking the problem where it exists - i.e. the network.

By optimizing the flow of data in the parallel I/O system, the overall performance of

92

the system can be enhanced. This is the principle behind an active storage network

(ASN), a network with embedded intelligence. In this chapter, we demonstrate the

power of an ASN by performing data processing in an intelligent switching system.

File system operations that we have selected to demonstrate the power of ASN are file

striping with parity and file locking. We show the performance improvements made by

offloading processing from the computation node to the network.

6.2 File striping with parity

The first file system operation that we have selected to run over ASN system is file

striping with parity in a parallel file system. In recent years network components, CPU

and memory have made great improvement in their performance. However storage

systems have not seen corresponding increases in performance. Parallel file systems

have demonstrated an ability to scale aggregate throughput very well for large data

transfers. In parallel file systems large size files are striped across number of storage

systems and improve the aggregate I/O bandwidth. There are many parallel storage

file systems which have been developed and are in common use [45-47].

Performance reliability is another critical factor in I/O intensive applications such

as transaction processing and supercomputing. The reliability of the storage subsystem

is important even in less crucial environments such as simple file server usage. High

performance parallel file systems such as Lustre [45] and PVFS [46] have ignored storage

node failures. As cluster sizes increase, these failures will become more common and

more important. In order to improve the reliability, parallel file systems can make use of

parity based redundancy [48]. However, the use of redundancy can reduce performance

by 25% which has led most high performance computing parallel file system to disable

parity. We will use an ASN to lower the performance penalty. There are different levels

93

±M^ jClJ Jj&J Li'Pij MM m m m

v. J \ J V. J V ^ ^ y

DiskO Diskl Disk 2 Disk 3

Figure 43: RAID 4-block-level striping with dedicated parity

of Redundant Array of Inexpensive Disk systems (RAID) [43]. We have selected RAID

4 (block-level striping with dedicated parity) for our implementation and is shown in

Figure 43.

We have modeled a 4-ary 2DFB network with 16 end-terminals using the Omnet++

simulation tool [27]. File striping using RAID4 is implemented over this network which

is shown in Figure 44. Eight terminals are considered as clients who send write requests

after a random time interval. The time interval between each write request is generated

using a Poisson distribution. Each client stripes a file across four servers which are

selected according to the data provided by the metadata server.

In PVFS the whole file is split in to n parts and each part is buffered separately

in the client side. Narayan proposed a parity mechanism for PVFS [48] whereby the

parity is calculated for each block and is also buffered separately - i.e. the data to be

written to each server is copied to corresponding buffers and after that, data from these

buffers are written to corresponding servers independently. The amount of time taken

for these splitting and copying operations is proportional to the size of the file.

94

Figure 44: 4-ary, 16 terminal 2DFB network

We have implemented a simulation of this normal RAID4 file striping and compared

it with the RAID4 file striping done in an ASN network. In an ASN network, the

splitting of a file for different servers is done on the fly in the ASN switches. The parity

calculation is also done in the switch which has a global view of all the servers used

for striping. Since the splitting of the file is done on the fly in the ASN switch, the

initial delay for splitting and copying large files in the client side can be avoided. The

second advantage of an ASN is that the traffic provided by the clients to the network

is significantly decreased because the client is not providing any parity data to the

network. Parity is calculated in the ASN switch, which will be normally the last switch

which is directly connected to the servers. This reduction in the traffic also helps ASN

network to provide significant improvement in performance in terms of delay.

Consider a RAID4 file striping example in the ASN network shown in Figure 44.

Assume that a file F l in client CI is to be striped between three servers 51, 52, 53 and

the parity is written in server 54. The client CI sends the file Fl as such without doing

95

any splitting and without any parity. Splitting of the file and the parity calculation

is done in the router R3. In this case we can notice that compared to the normal file

striping case the traffic offered to each switching element in the ASN network will be

25% less because the parity is introduced only at the output of the last switch which

is directly connected to the servers used for striping.

6.2.1 Simulation results

We have implemented RAID4 file striping over normal 2DFB network and 2DFB

ASN network using Omnet++ simulation tools. We have selected files of two different

sizes (192KB and 768KB) for striping across four servers (three servers for file and one

for parity). All the eight clients shown in Figure 44 are generating write requests after

random time interval according to a Poisson distribution. The average of this random

time interval is plotted in X-axis and the average of the end-to-end delay of each write

operation is plotted in Y-axis.

—•— File striping with parity

300 n
"3T
1 :250 -
2
.2
' 200-?
% 150-

i o 100 -
8>
i 50-

> •5

100

* - File striping over ASN —*— File striping without parity

/
/

/ / *
/ ,'/

' • /

/ .'/
/ 'X

/ ,y
• ~ j /

200 300 500 1000

Average writes/Sec

Figure 45: File stripe (file size-192kB)

Figure 45 shows the delay comparison of the file stripe for a file size of 192 KB.

The stripe size used is 64 KB. An end-to-end delay comparison for lower write rates

for the same file size is depicted in Figure 46

96

Figure 46: File stripe for lower write rates (file size-192kB)

Figure 47 shows the delay comparison of the file stripe for a file size of 768 KB.

The stripe size used is 64 KB. An end-to-end delay comparison for lower write rates

for the same file size is depicted in Figure 48

—» — File stnping with parity - « -

300 i

I
r; 250-
8"
5 200

1
6 150 ^

A
ve

ra
ge

 e
nd

-

3
O

O

20 50

File striping over ASN « File stnping without parity

A

/
/

/ , V*

~- "•** * ^ i"T*g < ' ~ ' "

100 110 125 200

Average writes/Sec

Figure 47: File stripe (file size-768kB)

It can be seen that using an ASN provides up to 44% decrease in latency compared

to a non-ASN implementation, Moreover, the increase in latency compared to no parity

is only 13% making it more acceptable to use redundancy in a high performance file

system.

97

Figure 48: File stripe for lower write rates (file size-768kB)

6.3 File locking

In parallel file systems large size files are striped across number of storage systems

and therefore high-level I/O operations should maintain atomicity for the correctness

of the data. For example, assume one process Pi is writing a contiguous file which

spans two I/O servers I\ and I2. Assume process Pi writes to I\ first and then I<i-

Assume another process P2 reads 1% first and then I\. In this case P2 may see only

part of Pi's write, violating atomicity.

File locking is the most common technique used for maintaining atomicity. Parallel

virtual file systems (PVFS) today do not have an optimum file locking technique. Three

different locking methods that can be applied to a parallel file system are given below.

POSIX Locking

Read and write operation in POSIX use a pointer to a contiguous region of memory,

the current file pointer location, and a count, to access data. The locking interface of

POSIX will acquire all locks to the necessary file regions before doing any I/O operation.

Even though POSIX lock ensures atomicity it has several drawbacks. The number of

lock requests required should be at least equal to the number of noncontiguous file

98

regions which will increase the traffic significantly. The situation becomes worst due

to splitting the locks on lock server boundaries.

List Locking

In list locking, a list based description is used to specify multiple noncontiguous

regions in both memory and file [53]. This list based description provides a way to take

advantage of the high-level I/O information available from data types. If the application

performs a unstructured data access, lists of offset and lengths are used to describe the

access patterns to the lock servers. In such cases if the size of the noncontiguous

regions is small, the length of the list locking description can be comparable to that of

the actual data.

Datatype Locking

In datatype locking, structured data access are concisely described with a derived

datatype. The datatype access pattern can consists of a tree of datatypes as opposed

to the offset and length pairs used in list locking. Datatype locking reduces network

traffic and the number of lock requests when moving the access pattern description

across a network. Datatype locking breaks down into list locking if the access pattern

has no regularity.

Two phase Locking

When multiple locks are acquired and released in a parallel file system, the main

problem that can appear is deadlock. In deadlock, execution of all transactions is

stalled because of the mutual blocking between transactions. Deadlock can be avoided

99

by making use of two phase locking protocol for locking the files [44]. As the name

indicate two phase locking consists of two phases of operations, expanding phase and

shrinking phase. In expanding phase the locks are acquired and no locks are released. In

shrinking phase locks are released and no locks are acquired. All the files are acquired

and released in order and the order can be imposed based on the file offset. This

serialization in acquiring and releasing locks avoid the possibility of deadlock.

Hybrid Locking

A scalable distributed lock manager (DLM) architecture proposed in [6] uses hybrid

lock protocols to maintain the atomicity. Hybrid lock protocol makes use of Two phase

locking along with an optimistic approach to get all the locks in parallel. At first the

hybrid protocol tries to get all the locks from the servers by sending parallel requests

to all servers. Then it releases the locks that are out-of-order. For example assume

that client CI in the Figure 44 wants to acquire locks on offset-length pairs (1, 9), (2,

9), (3, 9), and (4, 9). Assume that file (1,9) is in server SI, file (2, 9) is in server S2, file

(3,9) is in server S3 and file (4,9) is in server S4. At first client CI optimistically tries

to acquire all locks by sending parallel requests to all these servers. Client CI waits for

the responses from all the lock servers and then revokes locks which are out-of-order.

If client CI has received locks from servers SI, S3 and S4, then it has to release the

locks from the servers S3 and S4. After releasing these locks client CI will make use

of two phase file locking to attain locks from servers S3 and S4. In Hybrid locking

one can combine optimistic and two phase locking in number of ways. One-try Lock

protocol is one way to implement Hybrid locking and in this protocol, a client first

tries the optimistic lock protocol to acquire all locks in parallel. If it fails to acquire

100

all the locks in parallel, it releases the out -of-order locks and then reverts to the two-

phase lock protocol of acquiring locks in-order. Most of the I/O access patterns are

not overlapping and therefore one-try lock protocol can speed up the application.

File locking in A S N network

In all the file locking protocols mentioned above, the client generates a lock request

and it is transmitted to the file locking servers and the response is transmitted back

to the client. The number of requests and responses are proportional to the number

of noncontiguous file segments and the number of conflicting file segments. These

requests and responses add additional traffic load to the system and affect the overall

performance. Ching shows that there is a 30% performance degradation when using

locking [6]. An ASN can be considered as a better solution to decrease the additional

traffic load introduced by this lock requests and responses. The ASN reduces the

traffic by offloading the file locking protocols to the ASN switch. In an ASN, all the

lock requests are processed by ASN switching elements and it will send the responses

back to the clients, thus eliminates the traffic between switch and lock servers.

• •*- - Two-Phase Locking -

80 i
W

£ 7 0 -

>* $ 60-
•o

•g 50

J 40'
1 30-
w
8.20"
2
g 10-

< 0 ' 100

- » -Hybrid locking —*—Locking+ASN

// .+',' S
- - ' - */y

' 200 300 400
Average Writes/Sec

—•—Without lock

*
' g

.'/
; / A

;'S /
'//

' 500

Figure 49: File stripe (file size-768kB)

101

-Two-Phase Locking —• -Hyb r i d Locking — *-Locking+ASN -Without lock

E 7

a 6

i 3
v

$ 1-

25 50 100
Average Writes/Sec

250

Figure 50: File stripe for lower write rates (file size-768kB)

-Two-Phase Locking i - Hybrid Locking —*- Locking+ASN

300

250

g
£200
S
c 150
8i
(8 100

I
50

100 200 300
Average Writes/Sec

Figure 51: File stripe for lower write rates (file size-768kB)

As an example consider client CI in Figure 44 is attempting to write a file which

is spanned across servers SI, S2, S3 and S4. At first client CI collect all the metadata

information from the metadata server. The metadata server provides the information

regarding the servers, offset values and the address of the ASN switch which handles all

the locks for that file. The ASN switch selected to handle all the locks of a file should

be the nearest switch which has a global view of all the servers in which the file has

to be striped. In this example, an ASN can provide optimum performance if we select

R3 as the switch which handle all the locks of the file. After collecting the metadata

information client CI will send the lock request to the switch R3. After getting the

lock request the switch will check the status of the locks corresponding to each servers

102

and provides the lock if it is available. Otherwise the lock request is loaded to the wait-

request-queue and the lock is issued in order according to the availability. All the lock

information of the requested file will be there in the local memory of the active switch.

So the switch can effectively handle the issue of the locks in the order of file offset and

there will not be any chance of deadlock. An ASN switch can be implemented using

NetFPGA card as discussed in Chapter 3. A NetFPGA card has an SRAM capacity of

4.5 MB and DRAM capacity of 64 MB. This memory capacity is sufficient for storing

the lock information of the files even in larger networks. Since one active switch is

handling all the lock information of a particular file the client Cl need to send only

one lock request to the active switch R3. Moreover, the active switch need not send

requests to any server because all the lock information is available in the switch and

the switch is controlling the issue of locks. Thus compared to any other file locking

system, the ASN based file locking offers less traffic to the network and provides an

overall performance improvement.

6.3.1 Simulation results

- - • - - Two-Phase Locking — » - Hybrid locking —* - Lockmg+ASN —•—Without lock

120 •

>. 10° '
3

•8 80 •

I 60 •
5 40 -
8
| 2 0 -
<

0 -
20 50 100 110 125

Average Writes/Sec

Figure 52: File stripe (file size-768kB)

. -J'

103

- * - Two-Phase Locking

30-,

£
•=- 25 •
2
•$ 20 •

?
I 1 5 -
I 10-
o>
S 5

<
6

— • - Hybrid Locking —*— Locking+ASN —"—Without lock

* /
y

' S
, • y

- • '-" '11—--
^ ^ i ^ ^ ^ ^ ^ ^ - - "

12 30 63
Average Writes/Sec

Figure 53: File stripe for lower write rates (file size-768kB)

80 i

70-

£ 6 0 -

fso-
c 40 •

g 20 •

10-

0 -

-Two-Phase Locking - • -

/
/

Hybrid locking —*—Locking+ASN

50 100
Average Writes/Sec

110

Figure 54: File stripe for lower write rates (file size-768kB)

We have implemented two phase locking and Hybrid locking for parallel file systems

using the Omnet-|-+ simulation tool and compared the performances with the ASN

based file locking system. Figure 49 shows the delay comparison of different file locking

protocols for a file size of 256 KB. The stripe size used is 64 KB. End-to-end delay

comparison for lower write rates for the same file size is depicted in Figure 50. For

comparison we have also plotted the file striping without using any locking protocol.

We can notice that ASN based locking protocol provides significant reduction in End-

to-end delay for the parallel write operation. Figure 51 shows the percentage increase

in delay provided by two phase locking, hybrid locking and ASN based locking with

respect to the file striping without using any locking protocol for a file size of 256 KB.

104

For an average file writes/second of 400, the network will be close to saturation and

in this case the end-to-end delay of file locking in ASN is 54% lesser than two phase

locking and 41% lesser than hybrid locking. For a low average file writes/Second of

100, the end-to-end delay of file locking in ASN is 22% lesser than two phase locking

and 10% lesser than hybrid locking.

Figure 52 shows the delay comparison of different file locking protocols for a file size

of 1 MB. The stripe size used is 64 KB. End-to-end delay comparison for lower write

rates for the same file size is depicted in Figure 53. Figure 54 shows the percentage

increase in delay provided by two phase locking, Hybrid locking and ASN based locking

with respect to the file without using any locking protocol for a file size of 1 MB. For

an average file writes/Second of 110, the network will be close to saturation and in this

case the end-to-end delay of file locking in ASN is 24% lesser than two phase locking

and 18% lesser than hybrid locking. For a low average file writes/Second of 20, the

end-to-end delay of file locking in ASN is 13% lesser than two phase locking and 6%

lesser than hybrid locking. We can notice that the difference in delay between ASN

based File locking and other locking protocols increases as the network approaches

saturation. We can also notice that the ASN based file locking provides considerable

reduction in delay even for reduced load conditions.

105

Chapter 7

Conclusion and Future Work

In this dissertation, we presented a study of different aspects of an active storage

network (ASN). We have designed and implemented an innovative 2-dilated flattened

butterfly (2DFB) topology for an ASN that can provide a nonblocking behavior in

the network. We have developed an adaptive load balancing deadlock free routing

protocol for the 2DFB network. We have also presented two applications that can

take advantage of ASN. In this chapter, we conclude our work and discuss about the

opportunities for further investigation.

7.1 Conclusions

An active storage network consists of intelligent switches which are capable of doing

data processing and data computation in line speed. ASNs can improve data inten

sive computations by offloading data transformation and reduction operations to the

network switch. Offloading appropriate processing from end machines to the active

switches also reduces the net traffic flow and decreases the end-to-end delay. One of

106

the critical components which enhance the performance of ASN is the switching topol

ogy. We have developed and implemented a nonblocking switching topology 2DFB for

ASN. We have proposed a procedure to develop a conflict-free static routing sched

ule for 2DFB networks. We have compared the performance of a k-ary 2DFB with

other nonblocking topologies like folded-Clos and DBHC and we have seen that 2DFB

outperforms other topologies in terms of speed. Then we compared the cost of the

k-ary 2DFB with other nonblocking topologies and we have verified that the cost of

a k-ary 2DFB is lower than other nonblocking topologies. We have also implemented

an 8-terminal hardware switch using NetFPGA boards and verified the nonblocking

nature of the 2DFB network.

In any switching topology there should be a routing schedule which route packets

efficiently from the source node to destination node. Recent studies reveal the advan

tages of adaptive routing schemes over static routing schemes. We have introduced

a deadlock free adaptive load balanced routing algorithm called ALDFB for a 2DFB

switching network. ALDFB is designed to exploit all positive topological properties

of a 2DFB network. The algorithm takes full advantage of the reduced diameter and

improved path diversity of 2DFB network. It provides better load balancing by al

lowing one non-minimal forwarding in each single dimension of 2DFB network. This

algorithm also provides good performance for local and benign traffic by providing pri

ority to the selection of direct links. We have compared the performance of ALDFB

with the UGAL and minimal adaptive algorithms running over the same 2DFB net

work. We have also compared the performance of ALDFB over 2DFB with three other

well-known topologies with the best available routing schemes. We have observed that

ALDFB provides better throughput and reduced latency for all the traffic patterns.

107

Finally we demonstrated the power of ASN network by implementing two applica

tions over Omnet++ simulation platform. We have selected file striping with parity

in a parallel file system as the first application. Unlike the traditional way to splitting

the file and calculating parity in the client side, in ASN these operations are done on

the run in active switches. By properly selecting the switch to perform these actions

the network traffic can be reduced significantly. ASN will also have the advantage of

having less software processing time because the data processing is done in the intel

ligent hardware switch. The second application that we have implemented over ASN

is file striping using file locking protocol. In ASN all the locking operations are done

in the active switch which has a global view of all the servers used to stripe the file.

This reduces the number of lock requests and responses between client and servers and

helps ASN to provide significant performance improvement. We have compared the

performance of ASN based file locking with conventional two phase locking and hybrid

locking protocols. Both the applications implemented in ASN provide a significant

reduction in the end-to-end delay compared to other systems.

7.2 Future Work

We have implemented a 2DFB network using NetFPGA boards for a network size of

8. We have used static routing schedules for the performance comparison. In future, we

are interested to observe the performance of ALDFB routing schedule in the hardware

system. Similarly we also interested to implement the two ASN applications that

we have implemented in the simulation platform. Future research will also include

the design of NetFPGA switch specifically for ASN. The challenging hardware design

problem will be handling the data processing in the case of packet drop. There should

be some form of handshaking protocol between client and the switch to ensure the

108

retransmit of the dropped packets. Also there should be some mechanism to reproduce

the correct order of the processed data. Researchers can also experiment with various

applications that can be effectively implemented over ASN.

109

Bibliography

[1] NetFPGA, http://www.netfpga.org

[2] L. G. Valiant and G. J. Brebner, "Universal schemes for parallel communication,"

Proc. of the ACM Symposium on the Theory of Computing, pp. 263-277, 1981.

[3] L. Gravano, G. Pifarre, P. Berman and J. Sanz, "Adaptive deadlock- and livelock-

free routing with all minimal paths in torus networks," IEEE Trans, on Parallel

and Distributed Systems, vol. 5, pp. 1233-1252, 1994.

[4] D. Linder and J. Harden, "An adaptive and fault tolerant wormhole routing strat

egy for k-ary n-cubes," ACM Trans, on Computer Systems, vol. 40, pp. 2-12, 1991.

[5] A. Singh, "Load-Balanced Routing in Interconnection Networks," PhD thesis,

Stanford University, 2005.

[6] Avery Ching, Wei keng Liao, Alok Choudhary, Robert Ross and Lee Ward,

"Noncontiguous locking techniques for parallel file systems," Proc. of the 2007

ACM/IEEE conference on Supercomputing, pp. 2-12, 2007.

110

http://www.netfpga.org

[7] J. Kim, W. J. Dally and D. Abts, "Flattened Butterfly: A Cost-Efficient Topology

for High-Radix Networks," Proc. of the International Symposium on Computer

Architecture (ISCA), pp. 126-137, Jun 2007.

[8] L. N. Bhuyan and D. P. Agrawal, "Generalized hypercube and hyperbus structures

for a computer network," IEEE Trans. Computers, vol. 33, pp. 323-333, 1984.

[9] C. Clos, "A Study of Non-Blocking Switching Networks," The Bell System Tech

nical Journal, vol. 32, pp. 406-424, 1953.

[10] V. Benes, Optimal rearrangeable multistage connecting networks, The Bell System

Technical Journal, vol. 43, pp. 16411656, July 1964.

[11] S. Scott, D. Abts, J. Kim and W. J. Dally, "The BlackWidow High-radix Clos Net

work," Proc. of the International Symposium on Computer Architecture (ISCA),

Boston, MA, Jun, 2006.

[12] J. Kim, W. J. Dally, S. Scott and D. Abts, "Cost-efficient dragonfly topology for

large-scale system," IEEE Micro Top Picks, vol. 29, pp. 3340, 2009.

[13] W. J. Dally and B. Towles, "Principles and Practices of Interconnection Networks,"

MorganKaufmann, 2004.

[14] A. Thamarakuzhi and J. A. Chandy, "2-Dilated Flattened Butterfly: A nonblock

ing switching network," International Conference on High Performance Switching

and Routing (HPSR 2010), Jun 2010.

[15] A. Thamarakuzhi and J. A. Chandy, "2-Dilated flattened butterfly: A nonblocking

switching topology for high-radix networks," Elsevier Computer Communications,

May 2011.

I l l

[16] A. V. Allenov and V. S. Podlazov, "Throughput of the Set of Ring Channels II.

Ring Switches," Avtom. Telemekh, pp. 162-172, 1996.

[17] V. S. Podlazov, "Conflict-free Static Decentralized Routing for Ring Switches and

Hypercubes," Avtom. Telemekh, pp. 79-89, 1999.

[18] V. S. Podlazov, "Generalized Crossed Rings - Multirings with a Decreased Degree

of Node," Avtom. Telemekh, vol. 68, pp. 160-170, 2007.

[19] V. S. Podlazov, "Nonblocking Conditions for Multiring Commutators and Gener

alized Hypercubes in Arbitrary Commutations. I. Internodal Commutation. Mul

tirings," Avtom. Telemekh, pp. 118-126, 2001.

[20] V. S. Podlazov, "Nonblocking Conditions for Multiring Commutators and Gen

eralized Hypercubes for Arbitrary Commutations. II. Generalized Hypercubes.

Intranode Commutation," Avtom. Telemekh, pp. 114-124, 2001.

[21] V. S. Podlazov, "Nonlockability in Multirings and Hypercubes at Serial Transmis

sion of Data Blocks," Avtom. Telemekh, vol. 63, pp. 120-130, 2002.

[22] The Insider's Guide to Microprocessor Hardware, http://www.mdronhne.com/

[23] AuroraWebsite, http://xihnx. com/products/'design-resources/conn.central/'grouping/aurora.htm

[24] User Guide, http://xihnx. com/'support/'documentation/ip-documentation/'auroraSb 10b-ug353.pdf

[25] Jad Naous, David Erickson, G. Adam Covington, Guido Appenzeller and Nick

McKeown, "Implementing an OpenFlow switch on the NetFPGA platform," Pro

ceedings of the ACM/IEEE Symposium on Architectures for Networking and Com

munications Systems, pp. 1-9, 2008.

112

http://www.mdronhne.com/
http://xihnx
http://xihnx

[26] OpenSS7 IPERF Utility Installation and Reference Manual,

http://www. openss7. org/iperf-manual

[27] Varga, Andras, "The OMNeT++ Discrete Event Simulation System," Proceedings

of the European Simulation Multiconference (ESM'2001), 2002.

[28] ELPEUS, http://www.elpeus.com/

[29] Jose F. Martnez, Josep Torrellas and Jose Duato, "Improving the Performance of

Bristled CC-NUMA Systems Using Virtual Channels and Adaptivity," Interna

tional Conference on Supercomputing (ICS), Jun 1999.

[30] Zhiyong Liu and David W. Cheung, "Oblivious routing for LC permutations on

hypercubes," ELSEVIER Parallel Computing, vol. 25, pp. 445-460, 1999.

[31] TMCSCSI, http://www.tmcscsi.com/QSFP-cables.shtml

[32] SUN, https://shop.sun.com/store/productsa/27a63daa-0dc8-llde-8c47-

080020a9ed93

[33] J. Kim, W. J. Dally and D. Abts, "Adaptive Routing in High-radix Clos Network,"

International Conference for High Performance Computing, Networking, Storage,

and Analysis (SC06), 2006.

[34] A. Thamarakuzhi and J. A. Chandy, "Adaptive Load Balanced Routing for 2-

Dilated Flattened Butterfly Switching Network," International Conference on Net

working (ICN 2011), January 2011.

[35] A. Thamarakuzhi and J. A. Chandy, "Design and Implementation of a Nonblocking

2-Dilated Flattened Butterfly Switching Network," IEEE Latin-American Confer

ence on Communications 2010, September 2010.

113

http://www
http://www.elpeus.com/
http://www.tmcscsi.com/QSFP-cables.shtml
https://shop.sun.com/store/productsa/27a63daa-0dc8-llde-8c47

[36] T. Bjerregaard and S.Mahadevan, "A survey of research and practices of network-

on-chip," ACM Comput. Surv, vol. 38, 2006.

[37] D. Seo, W.T. Lim, N. Rafique and M. Thottethodi, "Near-Optimal Worst-Case

Throughput Routing for Two-Dimensional Mesh Networks," In Proc. of the In

ternational Symposium on Computer Architecture (ISCA), pp. 432-443, 2005.

[38] M. B. Taylor, W. Lee, S. Amarasinghe and A. Agarwal, "Scalar Operand Net

works: On-Chip Interconnect for ILP in Partitioned Architectures," International

Symposium on High-Performance Computer Architecture (HPCA), pp. 341-353,

2003.

[39] P. Gratz, C. Kim, R. McDonald, S. Keckler and D. Burger, "Implementation

and Evaluation of On-Chip Network Architectures," International Conference on

Computer Design (ICCD), 2006.

[40] A. Agarwal, L. Bao, J. Brown, B. Edwards, M. Mattina, C.C. Miao, C. Ramey

and D. Wentzlaff, "Tile Processor: Embedded Multicore for Networking and Mul

timedia," Hot Chips, 2007.

[41] J. Kim, J. Balfour and W. Dally, "Flattened Butterfly Topology for On-chip Net

works," International Symposium on Microarchitecture, pp. 172-182, 2007.

[42] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle, "Active disks for large-scale

data processing," IEEE Computer, vol. 34, pp. 68-74, 2001.

[43] D. A. Patterson, G. A. Gibson, and R. H. Katz, "A Case for Redundant Arrays

of Inexpensive Disks (RAID)," In Proc. of 1988 ACM SIGMOD International

Conference on Management of Data, pp. 109-116, 1988.

114

[44] P. A. Bernstein, V. Hadzilacos, and N. Goodman, "Concurrency Control and

Recovery in Database Systems," Addison-Wesley, 1987.

[45] P. J. Braam and R. Zahir, " Lustre technical project summary.," Technical report,

Cluster File Systems, Inc., Mountain View, CA, July 2001.

[46] P. H. Cams, W. B. L. Ill, R. B. Ross, and R. Thakur, " PVFS: A parallel file

system for linux clusters," In Proceedings of the Annual Linux Showcase and

Conference, pages 317327, Oct. 2000.

[47] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn, " Ceph: A

scalable, high-performance distributed file system," Proceedings of the 7th Sym

posium on Operating Systems Design and Implementation (OSDI), Seattle, WA,

page 22, Nov. 2006.

[48] S. Narayan and J. A. Chandy, " Parity Redundancy in a Clustered Storage Sys

tem," Fourth International Workshop on Storage Network Architecture and Par

allel I/Os (SNAPI 2007), 2007.

[49] Gore, http://www.gore.com/electronics

[50] W.J. Dally, " Virtual Channel Flow control," IEEE Trans, on Parallel and Dis

tributed systems, vol.3, no. 2, pp 194-205, Mar 1992.

[51] W.J. Dally and H.Aoki, " Deadlock-Free adaptive routing in multicomputer net

works using virtual Channels," IEEE Trans, on Parallel and Distributed Systems,

vol. 4. pp 466-475. Apr. 1993.

[52] W.J. Dally and C.Seitz, " Deadlock free message routing in multiprocessor inter

connection networks," IEEE transactions on Computers, pp 547553, 1987.

115

http://www.gore.com/electronics

[53] A. Ching, A. Choudhary, W. K. Liao, R. Ross, and W. Gropp, " Noncontiguous

I/O through PVFS," Proceedings of the IEEE International Conference on Cluster

Computing, September 2002.

116

