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Abstract

The reliability of data stored in a storage system
is of immense importance for the users of the storage
system and every storage system is expected to provide
reliability. Along with reliability, storage systems are
also expected to provide a degree of high availability.
However, availability depends on the context in which
the storage systems are used. Traditionally RAID (Re-
dundant Array of Inexpensive Disks) has provided both
reliability and availability very effectively. The massive
increase in the usage of personal storage devices (like
laptops, PDA etc..) has created concern with respect to
the reliability and availability of these systems. These
issues cannot be addressed by RAID because it is not
feasible for this kind of portable personal storage de-
vices. In this paper, we present a system which uses
flash as part of the storage hierarchy to provide high
reliability for low end personal storage systems.

1 Introduction

Reliability and Availability are the two most impor-
tant factors for any storage system. However, the avail-
ability needs of a storage system are highly dependent
on the context of the usage of the storage system. Ap-
plications such as servers demand high availability, but,
in contrast, systems like desktops may not need that
level of availability. Irrespective on the context of us-
age, reliability is always necessary for all type of stor-
age systems. Traditionally, Redundant Array of Inex-
pensive Disks (RAID) has been used to provide both
reliability and availability in storage systems. RAID
achieves both of these by using extra disks (check disks)
and replicating the data or parity to the check disks.
If a RAID system has D data disks in a group of check
disks the overhead of a RAID system is 1

D
. So, in a

desktop system, where there is typically only space for
2 disks, the overhead of RAID is 100% - i.e. 1 data
disk and 1 check disk. However, we assume that these
desktop systems have access to a backup service which
can perform periodic backups. The overhead can be

reduced by mirroring only the modified data since the
previous backup. The backup systems do provide re-
dundancy; however, we do not count this as overhead
since the backup systems exist in any case whether we
use RAID or not.

This approach was considered in RAID0.5[3].
RAID0.5 uses a log disk in place of a mirror disk. Using
a log disk reduces the seek time involved in mirroring.
This reduction in the seek time makes RAID0.5 per-
form better than RAID1.

RAID0.5 is targeted mostly for desktop or enter-
prise systems (systems which can handle more than
two disks). However, the reduced overhead comes at
the cost of availability, since in a RAID0.5 system if
the data disk fails the system cannot service the read
requests to data which has not been updated from the
previous backup window. Thus, the system must be
deactivated upon failure even though there is no data
loss. Although RAID0.5 seems attractive to personal
storage systems the major drawback is the use of an
extra disk (check disk) which personal storage systems
cannot afford. In [2], the FEARLESS (Flash Enabled
Active Replication of Low End Survivable Storage) sys-
tem was proposed where a flash disk can be used for
logging the data rather than a disk. In this paper we
present an implementation of the FEARLESS system.

2 Reliability with FEARLESS

In this section we briefly describe how FEARLESS
can provide reliability for personal storage devices.
FEARLESS assumes that the personal storage systems
(laptop, PDA etc.) have the potential of an additional
secondary storage device like a flash or a SD card. Hy-
brid drives with both magnetic and flash storage can
enable this architecture in a single device. The key
assumption on which FEARLESS is built is that very
little data on a disk is modified every day. HP’s study
of working set sizes showed that, on average, only 2%
of available storage is written to over a 24 hour pe-
riod [8]. The largest observed 24-hour write set size
was just over 10%. Thus, in a given day the active
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data, the data that has changed since the last backup,
is only 10% of the size of the disk, assuming the pres-
ence of a daily backup service. The FEARLESS system
only logs (replicates) the active data.

FEARLESS assumes a single disk failure model -
i.e only either the flash or data disk can fail at a given
time. If the flash fails the data is safely in the data disk
and if the disk fails the active data is present in the flash
and the inactive Data can be recovered from the backup
service. Thus we can always guarantee the reliability
of data in FEARLESS with a single disk failure model.
In [2], the MTTDL(Mean Time To Data Loss) was
determined to be:

MTTDLFEARLESS =
MTTFDisk ∗ MTTFFlash

tr Disk + tr F lash

(1)
where MTTFDisk is the mean time to failure of the

disk, MTTFFlash is the mean time to failure of the
flash device, tr Disk is the time to restore the disk af-
ter failure, and tr F lash is the time to restore the flash
after failure. Note that tr Disk is only the time to re-
store the disk. In a FEARLESS system, since the sys-
tem is powered off after a failure, there is almost no
chance of a second failure while the failed disk is be-
ing replaced, so we do not need to include the time to
replace the disk. The restore/reconstruction time of
a FEARLESS system is determined primarily by the
speed of the backup restore - tape can be slow but
a D2D (disk-to-disk) backup system can be relatively
fast.

The MTTDL of a RAID1 is
MTTF 2

disk

2×MTTRdisk

. In the
above if trestore flash, trestore disk, and MTTRdisk are
of the same order and likewise for MTTFdisk and
MTTFflash then MTTDLfearless ≈ MTTDLRAID1.
From this its clear that the reliability of FEARLESS
and Reliability of RAID1 are nearly equivalent. The
problem we have is with the availability. In RAID1
if a disk fails, the system is still available because we
have the data mirrored on check disks, but in the case
of FEARLESS if the disk fails the system has to be
stopped and thus creating problems for the availabil-
ity. However for personal storage systems reliability is
of utmost important and availability is not as critical.
Thus, the FEARLESS system trades availability for re-
liability and less storage overhead in personal storage
systems.

Table 1 shows MTTDL, availability, and available
storage for a single disk, a two disk mirrored system,
and a single disk with flash replication. MTTFDisk is
300,000 hours which is typical for low-cost consumer
disks. MTTFFlash for USB flash drives is roughly
50,000 hours. In spite of the normally high reliability of

electronic components, USB flash drives have relatively
high failure rates because of the failure propensity of
the USB connector [6]. If the flash is not removable, as
in a hybrid drive, the mean time to failure is around
2,000,000 hours. We assume a mean time to repair of
24 hours for the mirrored systems, and 36 hours for
FEARLESS systems. MTTRFlash is assumed to be
19 hours. The availability is given in terms of “nines” -
i.e. −log10(1−A) where A is the fraction of time that
the system is available.

The tables show that FEARLESS can offer equiva-
lent or better MTTDL than RAID1 without the need
for a second drive. With the high reliability of built-
in flash, the MTTDL of FEARLESS is significantly
better than mirroring. The disadvantage, however, is
the availability of the FEARLESS system. While the
availability of FEARLESS is good (99.9%), this is due
entirely to the reliability of the disk and not due to the
flash replication. Enterprise systems typically demand
six nines of availability which can be delivered with
mirrored systems, but is not possible with FEARLESS.
Thus, the use of FEARLESS becomes a choice between
high availability with low storage overhead and high
availability with high storage overhead. As mentioned
before, the ideal environment for such a system is for
desktop or single-user systems that contain high value
data but do not require 24/7 availability.

3 FEARLESS Implementation

From the previous discussion it is clear that the
FEARLESS storage system needs to capture the active
data continuously as it is being used. This data can be
captured at either the block level or the file level. The
advantage of doing the capture at the block level is that
there is potentially less data that needs to replicated.
The RAID0.5 system used a block level implementa-
tion [4]. In this implementation of the FEARLESS
system, we instead use a file based system. The pri-
mary reason is that a file based system ties in well with
a backup system. Incremental backup is also made eas-
ier since the changes since the backup are present on
the flash drive.

We have used the FUSE (File System in Userspace)
framework to implement a prototype version of FEAR-
LESS. FUSE allows pseudo file systems to be devel-
oped in user space instead of the kernel. The FUSE li-
brary provides an API whereby the pseudo file system
can provide callbacks from the kernel which override
most of the VFS calls such as open, read, write, etc.
In FEARLESS, the VFS calls to open, write, mkdir,
rename, and other calls that change a file or the file
system are intercepted and these changes is replicated
into flash. The modified open VFS callback is illus-
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Table 1. MTTDL and Overhead. (MTTFDisk = 300,000 hours, MTTFUSBF lash = 50,000 hours,

MTTFBuiltinF lash = 2,000,000 hours, MTTRDisk = 24 hours, MTTRFlash = 19 hours)

Configuration MTTDL (years) Availability
Single Disk 5.7 3.32
Mirror 213895 6.94
FEARLESS with USB Flash 39794 3.47
FEARLESS with Built in Flash 1591773 3.98

trated in Algorithm1. This open VFS call back tries
to check if the file is opened in write or append, creat

mode. If a file is opened in any of these modes, then it
is a potential candidate for creating active data. In this
case, the FEARLESS system creates an entry for this
file on the flash in the form of a LookUpTable where
the key is the file descriptor of the disk file which is be-
ing opened. Since the write call is called with the disk
file descriptor (fddisk), FEARLESS can find the corre-
sponding file descriptor for the file in flash (fdfearless)
and updates that file (in flash) with the active data.
This is done along with the write to the actual disk
file. Flash replicas are kept in an active directory on
the flash mount. The Algorithm2 illustrates the outline
of the modified VFS write callback.

Algorithm 1: open VFS call back in FEARLESS

INPUT: File Path and File mode
if open file mode is write or append then

if file is not in flash then
copy file into flash(path) ;

fdfearless = open fearless file(path) ;
fddisk = open disk file(path ;
LookUpTable[fddisk] = fdfearless ;

else
do a normal file system open

Algorithm 2: write VFS call back in FEARLESS

INPUT: file descriptor of the disk file and data
buffer

fdfearless = LookUpTable[fddisk] ;
len = write to fearless(fdfearless, buffer, size) ;
len = write to disk(fddisk, buffer, size) ;
return len ;

4 Backup process in FEARLESS

In this section we briefly describe how the backup
process works in FEARLESS. Since the FEARLESS

system logs all the active data, the backup process is
highly improved since the incremental changes since
the last backup are already determined. Thus, there is
no reason to perform a file system scan to find all new
files. A simple backup strategy can simply copy the
data in flash into the backup store. In order to easily
maintain the file tree structure, one could use the “tar”
utility to archive the flash disk and then regenerate
it on the backup system. In order to minimize the
amount of data transfer, a utility such as rsync can
used to identify small changes within a file.

Before initiating a backup, the user or backup util-
ity sets a special extended attribute, start backup, on
the flash file system. This will initiate a pre-backup
procedure. The first step is to simply rename the ac-

tive directory on the flash mount to a backup directory.
This essentially takes a snapshot of the active data.
Open files need to be preserved in the active directory
so that running applications will still function. To en-
able this, the pre-backup procedure will move any open
files to the active directory and then the file is copied
back to the backup directory. FEARLESS keeps track
of open files through the LookUpTable. Instead of the
move and copy, the same process could be achieved by
doing a hard link. However, many flash file systems do
not support hard links, so the move and copy is more
portable.

Once the pre-backup procedure is complete, the user
level backup procedure can start. As mentioned before,
this can be tar, rsync, or any other file level backup
process. A utility that is customized to FEARLESS
can be optimized to take advantage of the incremental
changes on flash. Since the backup process is operating
on the backup directory, normal FEARLESS operation
can continue on the primary disk and the flash active

directory. After the backup process is complete, the
user can then initiate a post-backup procedure by set-
ting the finish backup extended attribute. This process
simply removes the backup directory.

We have used the extended attribute feature to ini-
tiate the pre- and post-backup procedures. Though
many flash file systems may not support extended at-
tributes, these set attribute calls are intercepted before
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Figure 1. IOZone results for reads

reaching the underlying file system, so that is not an is-
sue. However, one could conceivably implement these
procedures as ioctls on the flash file system. At this
point, FUSE does not support ioctls, so we could not
use this option. However, a kernel VFS implementa-
tion could support ioctls to initiate the pre- and post-
backup procedures.

5 Experimental results

Since FEARLESS performs an extra write to the
flash for every write to disk, there is the potential of
performance degradation. In this section, we present
some results that show that the overhead of using
FEARLESS is minimal. We have verified FEARLESS
using a 40 GB hard disk as the primary drive and a 2
GB iPod as the flash drive. The hard drive is format-
ted with the ext3 file system and the iPod uses a HFS
file system.

Our first set of experiments use the IOZone bench-
mark [1]. IOzone measures raw filesystem I/O perfor-
mance on a set of read/write access patterns. Since our

Table 2. Compilation Times (sec)

FEARLESS FUSE XMP FUSE RAID0.5
bash 25.3 23.3 24.19
gcc 129.9 119.2 129.26

implementation is based on FUSE, there is significant
overhead due to using FUSE but not due to our FEAR-
LESS algorithm. FUSE XMP is a bare-bones FUSE
file system where every VFS call is passed through to
the underlying ext3 file system. As an indication of
the overhead of FUSE, FUSE XMP has less than 30%
of the performance of the underlying ext3 file system.
Therefore, we have used FUSE XMP as a base compar-
ison to remove the effects of the overhead of the FUSE
framework. If FEARLESS was implemented within the
kernel at the VFS layer, the overheads would be simi-
lar. Since FEARLESS is a flash based implementation
of a 2 disk RAID0.5 system, we have also included a
comparison of flash-based FEARLESS system with a
FUSE RAID0.5 disk-based system.
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Figure 2. IOZone results for writes

Figures 1 and 2 show experimental results from the
IOZone [1] benchmark. The figures show read and
write throughput for different file sizes (X-axis) and
different record lengths. The record length is the trans-
fer size of each access. Looking at the figures, we find
that for reads, FEARLESS performs comparable for
reads with FUSE XMP (1% difference). However, for
writes, FEARLESS is on average 29% worse compared
with FUSE XMP because of the extra write into the
flash. The read overheads are manageable though the
write performance is slightly worse. In the personal
storage environment that we are targeting FEARLESS,
this is a not significant issue since disk performance is
not a critical factor and reads are much more common
than writes. In comparison with RAID 0.5. we see
that the flash based FEARLESS system performs bet-
ter than the disk-based RAID 0.5 system because of the
faster flash read performance. As expected, write per-
formance is slightly better on the HDD-based RAID-
0.5 system, but the difference is not significant.

IOZone is a measurement of raw throughput, which
may not be an ideal metric for personal storage sys-

tems. Therefore, we have looked at the effects of
FEARLESS on application performance - namely com-
pilation. Table 2 show the times required to compile
bash and gcc on FEARLESS and FUSE XMP. The
average overhead is 8% compared to FUSE XMP and
2.5% compared to RAID-0.5. Once again, the FEAR-
LESS impact on performance is minimal.

6 Related work

The FEARLESS system that we have presented is
most similar to disk mirroring techniques from an im-
plementation point of view. The distinction is that the
flash mirror does not fully mirror the primary disk.
FEARLESS differs particularly in the fact that the
flash is not only used as a redundancy store but also
as cache to off-line backup media.

The use of removable storage as a cache has been
recognized in distributed storage and pervasive storage
research. For example, BlueFS uses removable storage
as part of a cache hierarchy in a distributed file sys-
tem [7]. Similarly, Tolia extended the Coda file system
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to support portable storage devices through lookaside
caching built on file recipe hashing [10]. The Personal-
RAID system is a portable storage solution where the
storage device is the central personal storage device and
provides synchronization with local storage [9]. The
distinction between these systems and our system is
that FEARLESS caching is designed for redundancy -
in other words the cache is a redundancy cache of a
backup system rather than a performance cache of a
distributed file system.

FEARLESS is intimately tied into judicious use
of backup and systems that provide seamless online
backup can ease this process. Tape backed systems
are inherently difficult to use and are not often used
in personal storage systems. However, there have been
recent efforts to automate the backup process including
research efforts such as Pastiche [5] which uses peer-to-
peer systems to provide backup storage and commercial
efforts in disk-to-disk backup. Online backup storage
services such as Moby and Carbonite can also be used
in conjunction with FEARLESS.

7 Conclusions

In this work we implemented a storage system that
uses flash in conjunction with backup systems to pro-
vide high reliability at the expense of availability. The
convenience of flash make it a more appropriate so-
lution for redundancy compared to redundant hard
disks. Our results indicate that we can achieve reliabil-
ity for personal storage systems equivalent to RAID1
with little impact on read throughput and only 29%
overhead on write throughput. For a real application
such as compilation, the overhead is only 8%. The
work demonstrates a practical application of integrat-
ing nonvolatile memory such as flash into the storage
hierarchy.
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