
I/O Characterization on a Parallel File System
Sumit Narayan and John A. Chandy

Department of Electrical and Computer Engineering, University of Connecticut
371 Fairfield Way U-2157, Storrs, CT 06269-2157
Email: {sumit.narayan,john.chandy}@uconn.edu
tel +1 (860) 486-5047, fax +1 (860) 486-2447

Abstract—In this paper we present a study of I/O access
patterns of scientific and general applications on a parallel
file system. Understanding I/O access patterns is an essential
condition to effectively designing a file system. Supercomputing
applications running on these parallel systems make extensive
use of parallel file systems taking advantage of faster data access
by requesting information from multiple nodes simultaneously.
However, parallel file systems can become a bottleneck if the
file distribution parameters do not fit the access scheme of
the applications. In our work, we examine a variety of such
applications, providing measurement of inter-arrival times, I/O
request size and burstiness demanded from a parallel file system.
Our tests were conducted on the open source PVFS parallel file
system with different configurations of metadata servers and I/O
nodes. Among the findings are that the standard assumption of
Poisson or random interarrival times is not justified and that
access sizes are smaller than would be expected for a parallel
application.

I. INTRODUCTION

Rapidly increasing processor speeds and the ease with
which they can be connected and converted to form a clustered
computer environment has given rise to a new world of
parallel computing. These parallel machines run applications
which operate on the principle that large problems can always
be divided into several smaller ones, and then each smaller
problem can be solved concurrently.

However, disk I/O on these parallel machines continues
to be a challenge. According to Amdahl’s system balance
rule [1], each MIPS (million instructions per second) must
be accompanied by one megabit per second of I/O. However,
today’s disks are not able to meet this rule especially in light of
the modern cluster computing or supercomputing capabilities.
To overcome this, data is typically striped across multiple disks
or storage nodes and applications take advantage of this by
requesting data from different disks simultaneously. Parallel
file systems such as GPFS [2], Lustre [3] and PVFS [4],
have been designed to handle data in a clustered environment.
In these file systems, striping refers to distributing file data
blockwise (or objectwise) over multiple I/O devices or nodes.
The application can then concurrently access the data through
different connections. Scientific computing often requires large
applications doing several noncontiguous access of small re-
gions of data [5–8]. However, the frequency and size of request
varies across applications. Thus, a sophisticated design of the
parallel file system is required to minimize serialization of
requests and facilitate parallelism in client accesses.

Some of the proposed schemes to improve the I/O delays
include caching, prefetching and delayed writes. For example,
in Sprite [9], data is held in cache for 30 to 60 seconds before
being written to disk. This allows the short life temporary files
which exist for less than 30 seconds to be deleted before being
written to the disk. The distributed file system thus never sees
the file. It further helps the operating system to combine write
requests into a single larger request. These characteristics,
however, are application dependent and require changes made
to the file system to reflect differences between smaller and
larger applications. Prefetching data into a cache reduces
demand for immediate disk I/Os, but with increasing volume
of input data, they become another parameter dependent on
the application, thus requiring changes made to the file system
before being used.

Nevertheless, due to varying computational and data access
patterns of different applications, it is essential that file system
designers understand how an application accesses data. The
standard approach of striping data in a parallel file system can
become a bottleneck if the file distribution parameters do not
fit the actual access patterns of the applications. Workload
characterization, thus, plays an important role in systems
design. It is one of the necessary and most important steps
in recognizing the fundamentals of the parallel file system. It
allows us to understand the state of the system under different
applications. In this paper, we have collected I/O access data
for a variety of parallel applications and provided an analysis
that can characterize these applications.

The rest of this paper is organized as follows: we first
provide some background and a list of related work done in
Section II. In Section III, we give an overview of PVFS. Sec-
tion IV provides details of the applications which were run on
PVFS and in Section V we present details on our experiments
and results. We close with conclusions and summaries.

II. BACKGROUND & RELATED WORK

There are three primary reasons that any high-performance
application conducts I/O operations. They can be broadly
classified as compulsory, checkpoint and out-of-core [10].
Compulsory accesses are generally due to reading initialization
files, input files or writing intermediate/final outputs (applica-
tion data or visualizations). These I/Os are necessary for the
application to run and cannot be eliminated [6]. Checkpoints
are intermediate data which record necessary information to
restart the system after a failure. Checkpoint data is flushed at



specified intervals in terms of units of work, or of processing
time. They are not necessary in order for the application to
correctly execute. However, checkpointing is usually recom-
mended because these large applications typically run for sev-
eral hours or days and are subject to down times due to failures
or maintenance. Checkpointing data is also occasionally used
for other parametric studies. The frequency and size of a
checkpoint is application dependent, but a high-performance
file system can reduce the cost of checkpointing by exploiting
knowledge of checkpoint I/O characteristics. Finally, out-of-
core input/output is a consequence of limited primary memory.
Larger primary memories can reduce the number and size of
the out-of-core scratch files, but not obviate their need. With
disk I/Os being the slowest component, it is important for the
file system designers to know the nature of I/O requirements
from these high-performance scientific applications.

There has been significant work on I/O analysis of parallel
applications [6, 10–14]. For the most part, these studies have
been done on message passing distributed memory parallel
systems such as the Intel Paragon, Intel iPSC and Thinking
Machines. Much of this work is several years old and may
not represent current usage of parallel file systems. In [15, 16]
Corbett et al. provided mechanisms in their Vesta file system
to dynamically change the partitioning of data based on the
intended access pattern to enhance the performance. Their
work was based on access patterns of applications existing at
that time and may not match with recent developments in the
field. Smirni et al. in [17] studied the evolution of I/O access
patterns of scientific applications and identified patterns that
belonged to the application and not artifacts of optimizations
made by the developers.

Recent work has looked at parallel I/O on the Cray XT [18].
Alam et al. in [19] characterized scientific workloads on multi-
core processors, but without considering the effects of the file
system. Their work evaluated the performance of the system
based on the bandwidth and latency of the operation when run
in different configurations. Kunkel and Ludwig evaluated the
performance of PVFS architecture under synthetic workloads
concentrating on software layers of PVFS instead of the disk
I/Os [20]. In 2007, Ahmad published results which included
disk I/O performance, block size and locality details, how-
ever they used synthetic workloads over ZFS and UFS file
systems [21].

Our work differs from previous work in that we evaluate
the workloads from the parallel file system point of view,
specifically looking at the effect on individual I/O nodes under
both synthetic and actual applications. We present details on
how different configuration of servers on storage nodes effects
the frequency of request on the file system, and how much
variation we get on those parameters by changing the number
of processors.

III. PARALLEL VIRTUAL FILE SYSTEM (PVFS)

There are many parallel storage file systems which have
been developed recently and are in common use [3, 22–25].
Most of these file systems are based on the idea of separating

the metadata from the data. By separating the metadata,
storage management functionalities are kept away from the
real data access, thus giving the user direct access to the data.
These file systems can achieve high throughput by striping the
data across many storage servers. Metadata is spread across
one or more storage servers with clients performing file system
activities over a shared network. In order to operate on a file,
the client must first obtain the file metadata from a metadata
server. This metadata information will include the location of
the file data, i.e. information about which storage server stores
which part of the file.

PVFS [26] is one such parallel file system and is installed
on several high performance clusters today. PVFS is a high-
performance parallel and distributed file system that utilizes
two types of servers – metadata servers to handle file system’s
metadata and I/O servers to handle storage of file data. The
node serving as metadata server can be a dedicated node or
one of the I/O nodes or clients. On both servers, information
is stored on top of the node’s local file system. This is
done in order to reuse existing solutions for the local storage
task. By doing this, PVFS does not need to implement a
proprietary storage mechanism for storing its data and can rely
on sophisticated techniques of existing file systems. With the
metadata separated from the actual data and data striped across
several nodes, PVFS can easily obtain very high throughput.

PVFS provides multiple application programming inter-
faces including UNIX/POSIX and MPI-IO. MPI-IO is part
of the standard programming interface for parallel applica-
tions, the message passing interface MPI. The MPI layer
calls PVFS’s functions directly to access data. Using MPI-
IO shows a great benefit in comparison to Unix’s POSIX
interface. MPICH2 [27], which is the most commonly used
implementation of MPI can be easily configured to support
PVFS using ROMIO [28], a high-performance input/output
implementation for MPI. ROMIO libraries, which are present
within MPICH2 and run on a variety of parallel architectures,
provide the abstract I/O device (ADIO) layer for PVFS. This
ADIO layer provides the link between MPI and PVFS. All
I/O requests made using MPI libraries are sent directly to the
PVFS file system. PVFS also provides a kernel module for
integration with Linux’s VFS to run applications which require
a POSIX interface to the parallel file system.

IV. APPLICATIONS

Input/output characterization of an application code ideally
includes access patterns and performance data from the ap-
plication, its input/output libraries, file system, and device
drivers [6]. Some of these are handled by cache at different
levels of the system. Physical disk access patterns provide
the ultimate evaluation of system’s response. Disk accesses
made by the application generally depend on its input/output
modules, size of the data being handled, temporal spacing
and spatial patterns generated from its computation libraries
and certain file system’s optimizations (eg. prefetching or
caching). Tracing the I/O patterns gives us the real response
of the system under that application and gives the file system



designers an insight into the application’s requirements. At the
same time, it is also a good resource for application developers
to maximize the use of the file system policies.

Most parallel applications use one of the five major models
of I/O as described below.

• Single output file shared by multiple nodes by ranges
• Large sequential read by single node at beginning of

computation and large sequential write by single node
at end of computation

• Checkpointing of state
• Metadata and read intensive - small data I/O, frequent

directory lookups for reads
• Each node outputs to its own file

There are other I/O access patterns, but most applications
use one or more of these patterns for the majority of their I/O.
In this study, we selected a sample of parallel applications that
use one of these forms of I/O in order to represent a wide
range of parallel I/O applications. We don’t investigate the
last I/O class because in this case, the application can write
its own file to local storage before flushing to a parallel file
system. The popular benchmarking tool NPB-BMI uses the
single output file model. The scientific application OpenAtom
is largely distinguished by its I/O on several input states files
during the computation. FLASH, another common scientific
application uses frequent checkpointing of state to an output
file, and finally, web server usage is characterized by heavy
metadata usage. We shall briefly discuss the properties of each
of these applications in this section.

A. NPB-BMI Benchmarking Tool

The NAS Parallel Benchmark (NPB) (BMI version 3.3) is a
parallel benchmarking tool developed by the NASA Advanced
Supercomputing Division [29, 30]. This tool was formerly
known as BTIO. It presents a block-tridiagonal (BT) parti-
tioning pattern on a three-dimensional array across a square
number of compute nodes. Each processor is responsible for
multiple Cartesian subsets of the entire data set, whose number
increases with the square root of the number of processors
participating in the computation. The I/O requirements and
verification tests for the tools are as follows. After every five
time steps, the entire solution field, consisting of five double-
precision words per mesh point, must be written to one or
more files. After all time steps are finished, all data belonging
to a single time step must be stored in the same file, and must
be sorted by vector component x-coordinate, y-coordinate and
z-coordinate respectively. It uses MPI for communication and
MPI-IO for I/Os. In our experiments, we ran NPB-BMI’s ‘C’
class of “full mpio” application which uses collective I/O
to combine data accesses of multiple processes into large,
regular I/O requests. This application provides an example of
a parallel application in which each processor writes into a
shared output file the data for which it is responsible, thus
potentially contributing to the file system’s fragmentation.

B. OpenAtom

OpenAtom is a highly scalable and portable parallel ap-
plication for molecular dynamics simulations at the quantum
level [31]. It is written in Charm++ [32] which is a parallel
object-oriented programming language based on C++ and was
designed with the goal of enhancing programmer productivity
by giving a high-level abstraction of a parallel program to de-
liver good performance on the underlying system. OpenAtom
attempts to solve important problems in material science
and chemistry. Their approach uses Car-Parrinello ab initio
molecular dynamics (CPAIMD) which involves a large number
of inter-dependent phases with high-communication overhead
including sparse 3D Fast Fourier Transforms (3D-FFTs), non-
square matrix multiplies and dense 3D-FFTs. OpenAtom’s I/O
requirement consists of a large sequential read at the beginning
of simulation to read the input data. At the end of simulation,
the output is flushed as a large file thus initiating a sequential
write. In addition, there are several intermediate checkpoint
flushes which can be controlled using pre-defined parameters.
OpenAtom requires POSIX access to file system and hence
uses PVFS’s virtual file system interface.

C. FLASH

FLASH is a block-structured adaptive mesh hydrodynamics
code that solves fully compressible, reactive hydrodynamic
equations, developed mainly for the study of nuclear flashes
on neutron stars and white dwarfs [33]. The “Flash” problem
is centered on simulating the accretion of matter onto a
compact star, and the subsequent stellar evolution including
nuclear burning either on the surface of compact star, or in
its interior. The computational domain is divided into blocks
which are distributed across the MPI processes. A block is
a three dimensional array with an additional four elements
as guard cells in each dimension on both sides to hold
information from its neighbors. The I/O uses HDF5 [34], a
higher level data abstraction which allows data to be stored
along with its metadata in the same file. HDF5 is built on top
of MPI-IO. FLASH flushes its data at checkpoint intervals over
multiple checkpoint files and is a completely write-dominated
workload. It hence provides us a different perspective of
scientific applications.

D. Web Server

Since the metadata server is a prime component of a
parallel file system such as PVFS, we chose a metadata heavy
workload for our final application. We used the real web
server traces of the 1998 Soccer World Cup website [35].
The traces were collected on 33 different web servers at four
geographic locations. The real measurement was done over
a period of 88 days during which it received 1.35 billion
requests [36]. However, for our experiments, we ran the trace
of 4 peak hours on one of the busiest days observed by the web
server. The access rate averaged roughly 800 HTTP requests
per second. Unlike the scientific applications that we have
discussed above, the web server is very metadata intensive
as it requires numerous directory lookups and file opens and



TABLE I
BASIC APPLICATION CHARACTERISTICS

Application Number of Files Number of Data Data Read Number of Metadata Run Time
Accessed Accesses Percentage Accesses (sec)

NPB-BMI 1 30,736 50 1 59
OpenAtom 135 174 91.8 135 297

FLASH 10 480 0 10 934
Web Server 4,965 11,469,846 100 2,433,391 14,524

closes. Thus, running these web server traces will give us an
insight into the impact of real-world heavy metadata workloads
on parallel file systems.

V. APPLICATION CHARACTERIZATION

We conducted our experiments on 16 dual-core AMD
Opteron dual-processor machines each with 2GB RAM and a
80GB SATA disk drive. EXT3 served as the base file system
on each of these machines. We modified PVFS (ver. 2.7.0)
to collect traces about each request sent by the client and
received by the server. The information which was logged
included time-stamp, nature of request, size of request (in case
of read/write), server number and file ID. This information
which was added as a configurable option to PVFS would
dump the trace to a separate log file, in a temporary directory.
In our experiments, apart from tracing, PVFS was mounted
with default options using TCP protocol.

For the Web server experiment, we took the World Cup
trace and partitioned the trace so that the workload was load
balanced across the available Apache servers. We configured
from 2 to 16 Apache servers and split the requests among
them. PVFS was configured with multiple metadata servers
with each MDS colocated with an Apache server.

We analyze our results based on three important parameters.
They are inter-arrival time, request size and long-range depen-
dence of requests. Table I also shows other basic character-
istics of the applications including number of files accessed,
number of data accesses, percentages of data accesses that
are reads, number of metadata accesses, and run time for 16
processors using 16 I/O nodes configuration.

A. Inter-arrival Time

Inter-arrival time is defined as the time difference between
successive I/O requests on a node. It is a useful measure to
help identify the load on the storage nodes and determines the
required service from them. It can be used to determine the
intensity of traffic observed by the node and hence can help
design and configure both hardware and software components
of the node.

Each application was run with 2 to 16 compute nodes and
2 to 16 I/O nodes, except for NPB-BMI where the number
of compute nodes were 4, 9 and 16 since for NPB-BMI
the number of processors must be a square. In the graphs
in Figures 1–4, we show the cumulative interarrival time
distribution seen by all I/O nodes.

As seen in Figure 1, NPB-BMI has very frequent accesses –
more than 90% of the requests are within 2 milliseconds of the
previous request in all cases. We see heavy load on storage

nodes in case of 16 I/O nodes with over 90% of requests
having inter-arrival time of less than a millisecond. However,
increasing the number of storage nodes reduces the frequency
of requests. This is because the data is shared between more
nodes. It can also be seen that increasing the number of
compute nodes increases the frequency of requests, which is
because the new processors are sharing the I/Os and hence the
storage node sees requests from more compute nodes.

The FLASH application (Figure 3) and the web server
(Figure 4) show similar characteristics to NPB-BMI. For
FLASH and the web server, it can be seen that with fewer
processors, the frequency is reduced, which is similar to what
was seen with NPB-BMI. Thus, as we scale up in processors
we must be careful to scale up I/O capacity to match with
the increase in computation. But scaling up I/O does not
simply mean increasing the number of I/O nodes. As seen
in the figures, distributing the I/O across more nodes does
not decrease the interarrival times because the files are striped
across all nodes which causes any read or write to access all
nodes. If the latency is being affected because of the frequent
accesses, it may be appropriate to change the striping so that
files are distributed across only different subsets of the I/O
nodes.

OpenAtom, on the other hand, does not show any significant
difference in the interarrival rates as we change the number
of processors (Figure 2). Increasing the number of processors
reduces the interarrival time only by a small factor. This is
because OpenAtom does most of its I/O through a single
compute node. Although OpenAtom dumps checkpoint data at
regular intervals, it is also done through a single compute node.
Thus, the number of processors does not change the frequency
of the I/O. From Figure 2 it is also clear that increasing the
number of I/O nodes lengthens the interarrival times. This
is simply because the data is distributed sequentially across
more I/O nodes. As a result, striping across all nodes is a
preferred option to increase throughput at the start and end,
and latency is not likely to be an issue during the actual run
of the application.

Figure 5 shows the average interarrival time of each meta-
data server using the web server application. For relatively
few HTTP servers, the frequency of access to the metadata
servers is not that great, but as we increase the number of
HTTP servers the interarrival time decreases significantly.
With 16 HTTP servers, the interarrival time distribution is
nearly the same as the data I/O distribution. Even with the
load distributed across 16 metadata servers, the each server
can see significantly increased activity.



 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Pe
rc

en
ta

ge

Time(ms)

NPB-BMI - C Class - 2 I/O Nodes

16 Processors
9 Processors
4 Processors

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Pe
rc

en
ta

ge

Time(ms)

NPB-BMI - C Class - 4 I/O Nodes

16 Processors
9 Processors
4 Processors

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Pe
rc

en
ta

ge

Time(ms)

NPB-BMI - C Class - 8 I/O Nodes

16 Processors
9 Processors
4 Processors

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Pe
rc

en
ta

ge

Time(ms)

NPB-BMI - C Class - 16 I/O Nodes

16 Processors
9 Processors
4 Processors

Fig. 1. Interarrival Time on NPB-BMI ‘C’ Class

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4  5  6  7  8  9  10

Pe
rc

en
ta

ge

Time(ms)

OpenAtom - 2 I/O Nodes

16 Processors
8 Processors
4 Processors
2 Processors

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4  5  6  7  8  9  10

Pe
rc

en
ta

ge

Time(ms)

OpenAtom - 4 I/O Nodes

16 Processors
8 Processors
4 Processors
2 Processors

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  1  2  3  4  5  6  7  8  9  10

Pe
rc

en
ta

ge

Time(ms)

OpenAtom - 8 I/O Nodes

16 Processors
8 Processors
4 Processors
2 Processors

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  1  2  3  4  5  6  7  8  9  10

Pe
rc

en
ta

ge

Time(ms)

OpenAtom - 16 I/O Nodes

16 Processors
8 Processors
4 Processors
2 Processors

Fig. 2. Interarrival Time on OpenAtom



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Pe
rc

en
ta

ge

Time(ms)

FLASH - 2 I/O Nodes

16 Processors
8 Processors
4 Processors
2 Processors

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Pe
rc

en
ta

ge

Time(ms)

FLASH - 4 I/O Nodes

16 Processors
8 Processors
4 Processors
2 Processors

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Pe
rc

en
ta

ge

Time(ms)

FLASH - 8 I/O Nodes

16 Processors
8 Processors
4 Processors
2 Processors

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Pe
rc

en
ta

ge

Time(ms)

FLASH - 16 I/O Nodes

16 Processors
8 Processors
4 Processors
2 Processors

Fig. 3. Interarrival Time on FLASH

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4  5  6  7  8  9  10

Pe
rc

en
ta

ge

Time(ms)

Web Server - 2 I/O Nodes

16 Apache servers
8 Apache servers
4 Apache servers
2 Apache servers

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12  14  16  18  20

Pe
rc

en
ta

ge

Time(ms)

Web Server - 4 I/O Nodes

16 Apache servers
8 Apache servers
4 Apache servers
2 Apache servers

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12  14  16  18  20

Pe
rc

en
ta

ge

Time(ms)

Web Server - 8 I/O Nodes

16 Apache servers
8 Apache servers
4 Apache servers
2 Apache servers

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12  14  16  18  20

Pe
rc

en
ta

ge

Time(ms)

Web Server - 16 I/O Nodes

16 Apache servers
8 Apache servers
4 Apache servers
2 Apache servers

Fig. 4. Interarrival Time on Web server



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12  14  16  18  20

Pe
rc

en
ta

ge

Time(ms)

MDS of Web Server - 16 I/O Nodes

16 Apache servers
8 Apache servers
4 Apache servers
2 Apache servers

Fig. 5. MDS Interarrival time with 16 I/O nodes on Web server

TABLE II
REQUEST SIZE FOR THE NPB-BMI APPLICATION (IN MB)

Application Number of I/O Nodes
Processors 2 4 8 16

NPB-BMI
4 15.4 15.4 15.4 15.4
9 7.05 7.05 7.05 7.05
16 3.34 3.34 3.34 3.34

B. Request Size

In this section, we examine the request size distribution, a
measure of the number of blocks in each request sent to the
disk (Table II). The larger the request the more likely that the
underlying file system can deliver the parallelism required for
performance.

In the case of NPB-BMI, we observed a fixed request size
across different storage node counts. The request size however
decreased as the processor count increased. This implies that
the new processors are sharing the I/Os.

The request size for the FLASH, OpenAtom and web server
workloads were fixed at 4K in size. This could be easily
explained since all three of them do sequential reads of data
through a single processor, they do not do very large I/O.
Further, OpenAtom and the web server submit requests using
the POSIX interface which uses Linux kernel’s VFS and thus
limiting the request size to 4K. An increase in VFS’s page size
limit could possibly help storage nodes see larger requests and
at a slightly lower frequency thereby improving overall I/O
performance.

C. Long Range Dependence

Many analytical studies of I/O assume a Poisson model for
I/O requests. Poisson models presume that there is no depen-
dence between a request and subsequent requests. However,
real I/O does exhibit some long range dependence - i.e. request
patterns that do not behave like the request patterns generated
by a Poisson process. Markov I/O models that assume a
probabilistic dependence also do not accurately reflect real
I/O behavior. In our work, we calculate the Hurst parameter
to describe self-similarity or long-range dependencies on the
traffic generated by the workload as seen on the storage nodes.
Self-similar traffic behaves the same when viewed at different

TABLE III
HURST PARAMETER FOR DIFFERENT WORKLOADS

Application Processor Count
2 4 8 9 16

NPB-BMI - 0.8850 - 0.8700 0.8245
OpenAtom 0.7831 0.7932 0.8628 - 0.8552

FLASH 0.6474 0.7660 0.7871 - 0.6013
Web Server 0.9439 0.9831 0.7707 - 0.9438

degrees of traffic. This information could be used to under-
stand the “burstiness” of requests. We draw on techniques to
estimate the Hurst parameter as described in [37].

Let X = (Xt : t = 0, 1, 2 . . .) be a covariance stationary
stochastic process with mean µ, variance σ2 and autocorrela-
tion function r(k), k � 0. Assume r(k) of the form

r(k) ∼ k−β , k →∞

where 0 < β < 1. The process X is called (exactly) second-
order self-similar if for all m = 1, 2, 3 . . ., var(X(m)) =
σ2m−β and

r(m)(k) ∼ r(k), k ≥ 0.

and called (asymptotically) second-order self-similar if for
k large enough,

r(m)(k)→ r(k),m→∞

The Hurst parameter, H is characterization of long range
dependence. To calculate the Hurst parameter and determine
self-similarity, we first plot var(X(m)) as a function of m.
The variance-time (variance vs. m) plot is made on log-log
scale. The relationship between the Hurst parameter and β is
given by H = 1− β/2, where β = −ρ from the equation of
the line y = ρx + b for each processor configuration. ρ is the
slope of the line. Any process characterized by a slope less
than 0 and greater than the reference line exhibits long range
dependency and has an H parameter value of 1/2 < H < 1.

Figure 6 shows the variance-time plot for OpenAtom with
16 I/O nodes. The data for each processor configuration series
is fitted to determine the y = ρx + b line. The graph shows
the slowly decaying variance of a self-similar series. It can be
observed that the slope for all processor configurations has a
slope between 0 and −1. Thus, for OpenAtom, the requests
on the storage nodes exhibit Long Range Dependence. We
found similar behavior for the other applications and the Hurst
parameter for these applications is shown in Table III.

The Hurst parameter, H , takes on values from 0.5 to 1.
A value of 0.5 indicates the data is uncorrelated and purely
random, while values closer to 1 indicate high degree of persis-
tence or long-range dependence. In our work, we obtained the
Hurst parameter by calculating the slope of the best-fit line on
each configuration. From this, it can be observed that all four
applications have self-similar inter-arrival properties on the
storage nodes. Thus, the traditional approach of using Poisson
models to characterize I/O behavior is not adequate. NPB-
BMI and Flash do I/O at regular intervals and OpenAtom does



-4

-2

 0

 2

 4

 6

 0  0.5  1  1.5  2  2.5  3  3.5  4

Lo
g1

0V
ar

{X
(m

)}

Log10m

OpenAtom - 16 Nodes

16 Processors
 

8 Processors
 

4 Processors
 

2 Processors
 

Reference

Fig. 6. Variance-time plot for 4 configurations on 16 I/O nodes for OpenAtom

major I/O at the beginning and end as well as checkpointing
at regular intervals. Thus, these I/O accesses are clearly
repetitively patterned and that is reflected in the high Hurst
parameters. Web server I/O shows significant self-similarity
because of the popularity of groups of files. A Hurst parameter
value closer to 1 for the web server workload indicates that
significant performance benefit could be achieved by using
additional memory or caching on the storage nodes.

VI. CONCLUSION

In this paper, we conducted a survey of different applica-
tions and their impact on I/Os as seen on storage nodes and
metadata servers in a parallel file system. From our study on
interarrival times, we see that most parallel applications that
do significant I/O during the run increase the I/O frequency as
we increase the number of compute nodes. However, scaling
I/O nodes alone will cause problems because the increased
load is transferred to each I/O storage node. Thus, care must
be taken with striping as you increase the number of I/O
nodes. Other applications which do significant sequential I/O
can and should use striping across as many nodes as possible
to increase throughput. Our study on self similarity shows
that most parallel applications exhibit significant long range
dependencies. This result shows that I/O access models that
assume independence or randomness between requests are not
valid.

ACKNOWLEDGMENT
This work was supported in part by the National Science Foundation HECURA

program under Award Number CCF-0621448. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect those of the National Science Foundation. The FLASH software used
in this work was in part developed by the Department of Energy - supported ASC/Alliance
Center for Astrophysical Thermonuclear Flashes at the University of Chicago, IL.

REFERENCES
[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach, 3rd ed. Morgan Kaufmann Publishers, Inc., May 2002.
[2] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for large computing

clusters,” in Proceedings of the Conference on File and Storage Technologies,
Monterey, CA, January 2002, pp. 231–244.

[3] P. J. Braam and R. Zahir, “Lustre - a scalable high performance file system,” Cluster
File Systems, Inc., Mountain View, CA, Tech. Rep., July 2001.

[4] P. H. Carns, W. B. Ligon, R. Ross, and R. Thakur, “PVFS: A parallel file system
for Linux clusters,” in 4th Annual Linux Showcase and Conference, Atlanta, GA,
October 2000, pp. 317–327.

[5] S. Baylor and C. E. Wu, “Parallel I/O workload characteristics using Vesta,” in
IPPS Workshop on Input/Output in Parallel and Distributed Systems, April 1995.

[6] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed, “Input/output charac-
teristics of scalable parallel applications,” in Proceedings of SuperComputing, San
Diego, CA, 1995, p. 59.

[7] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and M. L. Best, “File-access
characteristics of parallel scientific workloads,” in IEEE Transactions on Parallel
and Distributed Systems, vol. 7, no. 10, October 1996, pp. 1075–1089.

[8] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective I/O in ROMIO,”
in Frontiers of Massively Parallel Computation, February 1999, pp. 182–189.

[9] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B. Welch,
“The Sprite network operating system,” IEEE Computer, vol. 21, no. 2, pp. 23–26,
February 1988.

[10] E. Miller and R. H. Katz, “Input/output behavior of supercomputing applications,”
in Proceedings of SuperComputing, Albuquerque, NM, Nov. 1991, pp. 567–576.

[11] B. Maron, T. Chen, B. Olszewski, S. Kunkel, and A. Mericas, “Workload charac-
terization for the design of future servers,” in IEEE International Symposium on
Workload Characterization, Austin, TX, October 2005, pp. 129–136.

[12] A. L. N. Reddy and P. Banerjee, “An evaluation of multiple-disk I/O systems,” in
IEEE Transactions on Computers, vol. 38, no. 12, December 1989, pp. 1680–1690.

[13] ——, “A study of I/O behavior of PERFECT benchmarks on a multiprocessor,” in
Proceedings of the 17th Annual International Symposium on Computer Architec-
ture, Seattle, WA, May 1990, pp. 312–317.

[14] D. Kotz and N. Nieuwejaar, “Dynamic file-access characteristics of a production
parallel scientific workload,” in Proceedings of the 1994 Conferenceon Supercom-
puting, Washington, D.C., November 1994, pp. 640–649.

[15] P. F. Corbett and D. G. Feitelson, “The Vesta Parallel File System,” in ACM
Transactions on Computer Systems, vol. 14, no. 3. ACM, 1996, pp. 225–264.

[16] P. F. Corbett, D. G. Feitelson, J.-P. Prost, G. S. Almasi, S. J. Baylor, A. S.
Bolmarcich, Y. Hsu, J. Satran, M. Snir, R. Colao, B. Herr, J. Kavaky, T. R. Morgan,
and A. Zlotek, “Parallel file systems for the IBM SP computers,” IBM Systems
Journal, vol. 34, no. 2, pp. 222–248, January 1995.

[17] E. Smirni, R. A. Aydt, A. A. Chien, and D. A. Reed, “I/O requirements of scientific
applications: An evolutionary view,” in 5th IEEE International Symposium on High
Performance Distributed Computing, Syracuse, NY, August 1996, pp. 49–59.

[18] W. Yu, J. S. Vetter, and H. S. Oral, “Performance characterization and optimization
of parallel I/O on the Cray XT,” in IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Miami, FL, April 2008, pp. 1–11.

[19] S. R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth, and J. S. Vetter, “Character-
ization of scientific workloads on systems with multi-core processors,” in IEEE
International Symposium on Workload Characterization, San Jose, CA, October
2006, pp. 225–236.

[20] J. M. Kunkel and T. Ludwig, “Performance evaluation of the PVFS2 architecture,”
in 15th EUROMICRO International Conference on Parallel, Distributed and
Network-Based Processing, Naples, Italy, February 2007, pp. 509–516.

[21] I. Ahmad, “Easy and efficient disk I/O workload characterization in VMware ESX
Server,” in IEEE International Symposium on Workload Characterization, Boston,
MA, September 2007, pp. 149–158.

[22] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff, C. Hardin,
E. Riedel, D. Rochberg, and J. Zelenka, “A cost-effective, high-bandwidth storage
architecture,” in Proceedings of Architectural Support for Programming Languages
and Operating Systems, October 1998, pp. 92–103.

[23] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in ACM
Symp. on Operation System Principles, Lake George, NY, Oct. 2003, pp. 29–43.

[24] H. Tang, A. Gulbeden, J. Zhou, W. Strathearn, T. Yang, and L. Chu, “The Panasas
ActiveScale Storage Cluster - Delivering Scalable High Bandwidth Storage,” in
Proceedings of SuperComputing, Pittsburgh, PA, November 2004, p. 53.

[25] S. A. Weil, S. A. Brandt, E. Miller, and D. D. E. Long, “Ceph: A scalable, high-
performance distributed file system,” in Proceedings of Symposium on Operating
System Design and Implementation, Seattle, WA, November 2006, p. 22.

[26] “Parallel Virtual File System (PVFS).” [Online]. Available: http://www.pvfs.org
[27] MPICH2 - High Performance MPI. [Online]. Available: http://www.mcs.anl.gov/

research/projects/mpich2
[28] ROMIO: A High-Performance, Portable MPI-IO Implementation. [Online].

Available: http://www-unix.mcs.anl.gov/romio
[29] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of NAS Parallel

Bencmarks and its performance,” NASA Advanced Supercomputing (NAS) Divi-
sion, Moffett Field, CA, Tech. Rep. NAS-99-011, October 1999.

[30] P. Wong and R. F. V. der Wijingaart, “NAS Parallel Benchmarks I/O version 2.4,”
NASA Advanced Supercomputing (NAS) Division, Moffett Field, CA, Tech. Rep.
NAS-03-002, January 2003.

[31] OpenAtom. [Online]. Available: http://charm.cs.uiuc.edu/OpenAtom
[32] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent object oriented

system based on C++,” in Proceedings of the Conference on Object Oriented
Programming Systems, Languages and Applications, vol. 28, no. 10, Washington,
D.C., September 1993, pp. 91–108.

[33] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNe-
ice, R. Rosner, and H. Tufo, “FLASH: An adaptive mesh hydrodynamics code for
modeling astrophysical thermonuclear flashes,” Astrophysical Journal Suppliment,
vol. 131, pp. 273–334, November 2000.

[34] (2007) HDF Group - HDF5. [Online]. Available: http://www.hdfgroup.org/HDF5
[35] Webserver traces - Soccer World Cup 1998. [Online]. Available: http://ita.ee.lbl.gov
[36] M. Arlitt and T. Jin, “Workload characterization of the 1998 world cup web site,”

HP Laboratories, Palo Alto, CA, Tech. Rep. HPL-1999-35(R.1), September 1999.
[37] R. G. Clegg, “A practical guide to measuring the Hurst parameter,” in ArXiv

Mathematics, October 2006, pp. 3–14.


