
Trace Based Analysis of File System Effects on Disk I/O

Sumit Narayan, John A. Chandy
Department of Electrical & Computer Engineering, University of Connecticut

371 Fairfield Road Unit 2157, Storrs, CT 06269 – 2157
{sumit, chandy}@engr.uconn.edu

tel +1-860-486-5047, fax +1-860-486-2447

Keywords: I/O traces, file systems.

ABSTRACT

 In this paper, we present a study of low-level disk
access patterns for three workloads for a variety of file
systems. While there has been a great deal of work on disk
architectures, there has been very little work measuring
actual low-level disk access. We have extended previous
work to also consider different file systems to examine their
effect on the workload. The analysis is done based on
traces of disk access that have been captured at the driver
level just before the data is transferred to disk. The
workloads we examined were an email server, file server
emulation and a database server and each workload was
regenerated for different file systems. We found that
depending on the workload, the access patterns could be
read dominated or write dominated. The frequency of
access in some cases was very high – with inter-arrival
times well under 5ms. We also examined the burstiness
behavior and read/write distribution. We found that the
choice of file system was for the most part insignificant but
in some cases can greatly influence the access
characteristics. We believe the resulting traces and
summary analysis can be used by storage system designers
in their analysis of file system and disk organization
designs. The consideration of file system also allows
storage system designers to consider the style of file system
when making design choices.

INTRODUCTION

 As processor speed increases at Moore’s law rates and
disk access time barely change, the gap between processor
speed and disk access time becomes more and more
critical. Rapid increase in the speed of microprocessors and
the relative slowness of disk access times have caused file
servers to fail to deliver the speed they are designed for.
These access times could be reduced by a variety of
techniques including using larger caches, better file system
utilization, and varying disk organization techniques.
However, without an understanding of the actual disk usage
patterns, it is somewhat difficult to make these decisions.
Traces of the disk subsystem can provide the maximum
information on how the data is treated by a particular file
system. To improve the disk access times, one should be
familiar with how the data is delivered to the storage
system by the file system. There traces are important for
many purposes other than the algorithms. These traces are
difficult to obtain, and not much work has been published

in this area. Much of the related work has collected traces
at the operating system level, which does not clearly
indicate when the actual disk was accessed for a particular
request, since file system behaviors can mask much of the
activity at disk. In other words, these traces do not provide
the level of disk access detail needed to adequately
understand the disk access behavior. These operating
system traces are not useful when trying to improve disk
storage system systems design for file system performance
related to disk.
 Our work intends to provide an updated analysis of
I/O system behavior based on a variety of workloads, both
real and simulated. We also examine whether the choice of
file system has an effect on low-level I/O access. We have
introduced a small thread in the driver code of the Linux
kernel in order to capture the atomic details viz. the time of
access, request size, block access number etc.
 This paper is organized as follows; Section 2 discusses
work done previously by other researchers. Section 3
defines our experiment, and the methods used, while
Section 4 details out the system configuration used as
clients and servers. Section 5 discusses the results, with
analysis presented for all the workloads, and for different
file systems. Section 6 concludes the paper with our
observations and inferences.

RELATED WORK

 There has been significant work done on the analysis
of I/O system performance using traces collected from file
systems [4,6,7,8,9,11]. One of the earliest studies was the
BSD study and its follow up Sprite study [8,4]. The BSD
paper provided much of the foundation for latter file system
research. Roselli et al reexamined the conclusions from the
BSD study with a set of traces collected from several
HP/UX servers and a collection of Windows NT clients [9].
There have also been several studies of distributed file
system access traces [5,13]. The procedure used in these
and similar studies was to capture the trace at a high level –
either at the file system level or at the network level. These
traces do not illustrate when the access was actually made
to the disk, if at all. The UNIX buffer system stores the data
temporarily in cache. The data hence could have been hived
away in cache, and later deleted from cache memory itself
– thus a request for that particular file need not have been
made to the disk.
 The most relevant work at the disk level was that
done by Ruemmler and Wilkes from HP Laboratories in
1993 [1,2]. Their work generated traces from the disk level
access collected on HP-UX system with the BSD Fast File

System mounted. Their results indicated that a small non-
volatile cache at each disk allowed writes to be serviced
much faster that any regular disk. Similar work was done
by researchers at IBM where low-level traces were
collected on a wide variety of systems including Windows
NT PCs and IBM AIX and HP-UX servers [10]. As in the
HP study, they found a high degree of burstiness in the
access pattern, as well as a write-dominated workload.
Idleness in the storage system also suggested opportunities
for background optimizations. While the IBM study did
examine different file systems, it was difficult to determine
the effect of the file system on I/O accesses since the
workloads were changed as well. In our work, we intend to
further examine the effect of the file system by tracing the
same workload on different file systems.

TRACE COLLECTION

 We sought to extend previous work by examining the
effect of the file system on I/O access patterns. Since our
system under study was a Linux server, we traced three
popular file systems, namely EXT2, EXT3 and JFS. EXT2
is the most commonly used file system in client Linux
systems [14]. EXT3 and JFS are both journaling file
systems in that fast restart is enabled through file system
metadata logging techniques [15,16]. We examined these
file systems under three different workloads – an actual
NFS email server, a synthetic CIFS file server workload
and a database workload.
 To capture the disk I/Os at the lowest level, we
introduced a thread into the IDE driver of Linux kernel
2.6.0 (kernel 2.4.20 for NFS email server tests). The code
was designed in such a way, that only one particular disk
could be tested. The differentiation was done based on the
drive numbers of the disk. The thread was transparent to
user, and did not add much burden to the system’s
performance. This thread would record all the requests sent
to the disk, along with many other details. Each record
collected the following details:

1. Action (Read/Write)
2. Time of Request
3. Sector Number to which the request was made
4. Request Size

 The collected trace was written at regular intervals to a
completely different disk, to avoid this write as being
recorded as another request on the test disk. The average
size of each of such write was approximately 300KB.
 To trace the NFS email server, we used the CAMPUS
trace from the Harvard study [5]. Using this trace, we
reconstructed the file tree which would have existed on the
CAMPUS server at Harvard University at the time they
collected the trace. Similar file tree reconstruction
techniques are described in [3,5]. While this tree is not an
exact duplicate of the CAMPUS server, it replicated
enough information so that we can replay the trace and
collect meaningful data. This tree was then replicated on
three different servers each built with one of the targeted
file systems. Upon generation of the file system tree, an
NFS client was programmed to generate requests to the
target as read from the CAMPUS trace file. This NFS client
made requests to the server as if a real request for I/O was
made to the server. For the purposes of this work, we

replayed a week’s worth of Harvard’s trace. To make our
framework more precise, we sent the request to the server
with the same time interval, as the trace file stated. On the
server side, the thread was initiated. The CAMPUS trace
also included userid, groupid and IP address information –
these were ignored, since they were not relevant to our
experiment.
 The second workload was the synthetic Netbench [17]
benchmark which exercises CIFS file servers. We used the
Disk Mix Test suite to generate the synthesized emulation
of network file server access from Windows clients in an
office environment. While Netbench may not be an ideal
real-world trace, it is based on real office patterns. More
importantly, it does exhibit more write oriented behavior as
opposed to the CAMPUS NFS Server. The Netbench Disk
Mix Test Suite was run to test the behavior of file systems.
 The final workload was the ODSL’s Database Test
Suite (ODSL-DBT-2) [20], inspired from the TPC-C
benchmark [21]. It is an online transactional processing
test, which simulates an inventory control database with
several workers accessing the database for purposes such as
viewing, update etc. The test was conducted for 50
warehouses under single connection for 18,000 seconds.
The database we used for data management in this test was
PostgreSQL 7.4.

TRACED SYSTEM

 The systems which acted as NFS clients were Pentium
4, 2.4 GHz computers with 512MB of RAM each, while
the server configurations were Pentium III, 800 MHz
computers with 512MB RAM. Each file system was
mounted on one individual server and a unique client was
connected to it to perform the experiment.
 For the Netbench [17] workload we used Client and
Controller Windows machines to run the Netbench
software. Using Samba, these Windows systems were
connected to the test Linux server and separate servers
were again used with different file systems mounted and
traces were collected.
 For the OSDL-DBT2 workload, we used the same
Pentium 4 configuration as servers for testing with a fresh
mount of the file system. With each run, a fresh installation
of PostgreSQL was done, a new disk was mounted and a
new database was created.

ANALYSIS

 In this section we analyze the traces collected in our
experiments. Our analysis is based on the following
categories:

1. Read/Write Frequency
2. Inter-arrival Time Distribution
3. Request Size Distribution
4. Burstiness

Read/Write Frequency
 Read/Write frequency is the percentage of read and
write requests which were made on the disk. We use this
parameter to define the kind of workload we are using. We
obtained this ration for each file system under each

workload. The exact figures for the read/write frequency
can be seen in Table 1.
 Since the CAMPUS server is predominantly an email
server, it is natural to expect it to be read-dominated. The
Harvard data indicated the same, as they found three times
as many reads as writes. At the disk level, however the
ratio of reads and writes are significantly more due to the
extra metadata activity that is not present in the NFS trace.
Our observation showed that the CAMPUS email server [5]
was read-dominated, Netbench [17] write dominated, and
OSDL Database workload had equal read/write ratio. All
three file system followed the same pattern. It is interesting
to see that the type of workload can have such a dramatic
effect on the read/write frequency. Particularly, the fact that
the email server is heavily read-oriented should lead
storage system designers to optimize reads even at the
expense of writes. However, the Netbench numbers, though
it may indicate that file servers should be write optimized,
should be taken with a grain of salt. The Netbench data set
is only 22MB in size, which can easily fit in cache, thus
explaining why there are so few reads. In the context of the
traces we are collecting, however, the Netbench data is
useful since it serves as an example of a write-dominated
workload. Finally, the database workload is a good
example of a workload that is evenly divided between reads
and writes.
 In terms of raw numbers, there are some points that
stand out. With the heavily write-oriented Netbench
workload, we see that that two journaling file systems,
EXT3 and JFS, have nearly three times as many writes than
EXT2. These extra writes are due to the writes to the
journal. However, one may notice that the database
workload does not show a similar increase in writes. The
reason is that the database workload does only writes
without any file system/metadata operations such as
deleting a file, renaming a file, moving a file etc. while on
the other hand, the Netbench workload does a lot of these
operations. File writes are nor journaled, but file system
modifications are journaled, thus the differences in
behavior.

Inter-arrival Time
 Inter-arrival time is defined as the time between
successive disk accesses request. It is a useful measure to
help identify the load on the disk system. In particular, the
average inter-arrival time determines the required service
from the disk. The inter-arrival time can also be used to
develop workload models that can drive queuing studies.
Inter-arrival Time Distribution for the same test for
different file systems showed different patterns. Figures
below show the comparison of the different file systems
(EXT2, EXT3 and JFS) under various workloads with
respect to the inter-arrival time in each case.

 Email Server (read dominated)
 It is clear from the distribution graph shown in Figure
1 that most of the requests are on average less than a
second apart, with the majority of them less than about
400ms apart for EXT2.
 A steep rise was observed in the count of inter-arrival
requests between 0.2 and 0.4 seconds for EXT3, while
EXT2 and JFS showed spikes near 0.6 seconds and 1

second. Figure 2 shows the distribution graph plotted for
the read requests alone, which showed similar
characteristics to that of the overall inter-arrival cumulative
distribution graph.
 Since nearly half of the inter-arrival times are very
short, we magnified the graph for the region between 0 and
0.5 seconds (Figure 3). As can be seen, nearly half of the
inter-arrival times are at 0.01 seconds. The short intervals
are due to back to back NFS requests caused by a large
NFS read broken into smaller NFS protocol limitations. To
know the inter-arrival distribution of write requests, we
plotted the graph for write requests also (Figure 4). All
three file systems indicated almost the same behavior with
EXT3 showing slightly more frequent accesses.

 Netbench (write dominated)
 On Netbench, EXT2 and EXT3 showed almost the
same pattern, with EXT3 having slightly more frequent
accesses. (Figures 5a & 5b).
 Since Netbench is write dominated, the write access
distribution is very similar to the overall inter-arrival time
distribution (Figures 6a & 6b). Looking at Figure 5b, one
can see that EXT2 and EXT3 have inter-arrival times that
are much shorter than JFS. Nearly 90% of the intervals
with EXT3 are less than 0.02 seconds. JFS tends to delay
writes, and thus eliminate some writes through cache, thus
accounting for the difference. It would seem that because of
this behavior, JFS-based storage system would have longer
periods of idle time. Idle time can be used by disk systems
to run background disk optimization schemes, and this
graph shows that atleast for write-dominated data, the
choice of file system can influence the length of idle time
available. Figure 7 and 8 shows the same type of behavior
for reads but on a different scale. Note that since Netbench
has so few reads, this data is not meaningful.

 Database Workload (~equal read/write ratio)
 Figure 9 and 10 shows the inter-arrival time
distribution for the database workload. The most striking
feature is that the inter-arrival times are much more
frequent. Interestingly, for the database workload, the JFS
file system shows much more frequent access than EXT3.
This behavior is the complete opposite of what was
observed for the read dominated and write dominated
workloads. Nearly, 50% of the inter-arrivals are less than
3ms for JFS, while for EXT3, the 50% mark is reached
only at 20ms.
 To evaluate this further, we looked at reads and writes
separately as shown in Figures 11-14. It can be seen that
there is very little difference between the file systems for
reads. However for writes, there is a marked difference. For
JFS, about 80% of the intervals are less than the 10ms,
whereas for EXT3, the 80% mark is reached only at 100ms.
It is clear that JFS does not do a good job of grouping
writes, when reads are intermixed with the writes.

Request Size Distribution
 In this section we examine the request size
distribution, a measure of the number of blocks in each
request sent to the disk. We discuss the request size in each
file system under the different workloads.

Table 1: Read/Write Frequency for the three file systems under three different workloads.
 Email Server NetBench Database Workload

 EXT2 EXT3 JFS EXT2 EXT3 JFS EXT2 EXT3 JFS
Read 8,998,227 8,464,299 7,215,712 30 48 21 2,940,367 2,893,065 2,331,008
Write 246,579 337,898 182,263 16,720 45,991 46,193 2,156,496 2,125,214 1,712,358
Total 9,244,806 8,802,197 7,397,975 16,750 46,039 46,214 5,096,863 5,018,279 4,043,366

% Read 97.33 96.16 97.54 0.18 0.10 0.05 57.68 57.65 57.65
% Writes 2.67 3.84 2.46 99.82 99.90 99.95 42.32 42.35 42.35

Interarrival Time Distribution Function

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Interarrival Time in Seconds

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Figure 1: Inter-arrival Time Distribution for Email Server

Interarrival Time Distribution - Read

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Interarrival Time in Seconds

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Figure 2: Inter-arrival Time Distribution for READ requests on

Email Server

Interarrival Time Distribution - Read

0

20

40

60

80

100

120

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Interarrival Time in Seconds

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Figure 3: Inter-arrival Time Distribution for Read requests on

Email Server

Interarrival Time Distribution - Write

0

20

40

60

80

100

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Interarrival Time in Seconds

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Figure 4: Inter-arrival Time Distribution for Write requests on

Email Server

Interarrival Time Distribution

-20

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40

Interarrival Time in Seconds

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Interarrival Time Distribution - Write

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40

Interarrival Time in Seconds

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Figure 5a: Inter-arrival Time Distribution for Netbench Figure 6a: Inter-arrival Time Distribution for Write requests on

Netbench

Interarrival Time Distribution

0

20

40

60

80

100

120

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Interarrival Time in Seconds

P
er

ce
nt

ag
e EXT2

EXT3
JFS

Interarrival Time Distribution - Write

0

20

40

60

80

100

120

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Interarrival Time in Seconds

P
er

ce
nt

ag
e EXT2

EXT3
JFS

Figure 5b: Inter-arrival Time Distribution for Netbench Figure 6b: Inter-arrival Time Distribution for Write requests on

Netbench

 Email Server (read dominated)
 Request size distributed for the email server is shown
in Figures 15-17. The read dominated email server mostly

had large reads. There was a peak seen at 64Kbytes. All
three file systems followed the same pattern for block.

Interarrival Time Distribution - Read

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80

Interarrival Time in Seconds

P
er

ce
nt

ag
e EXT2

EXT3
JFS

Interarrival Time Distribution - Read

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Interarrival Time in Seconds

P
er

ce
nt

ag
e EXT2

EXT3
JFS

Figure 7: Inter-arrival Time Distribution for Read access on Netbench Figure 8: Inter-arrival Time Distribution for Read access on Netbench,

magnified for 0-1 second zone.
Interarrival Time Distribution

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Interarrival Time in Seconds

P
er

ce
nt

ag
e EXT2

EXT3
JFS

Interarrival Time Distribution

0

20

40

60

80

100

0 0.004 0.008 0.012 0.016 0.02

Interarrival Time in Seconds

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Figure 9: Inter-arrival Time Distribution for Database workload Figure 10: Inter-arrival Time Distribution for Database workload

magnified over 0-0.02 sec.

Interarrival Time Distribution - READ

0

20

40

60

80

100

120

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Interarrival Time in Seconds

P
er

ce
nt

ag
e EXT2

EXT3
JFS

Interarrival Time Distribution - READ

0

20

40

60

80

100

120

0 0.05 0.1 0.15

Interarrival Time in Seconds

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Figure 11: Inter-arrival Time Distribution for Read requests on

Database workload
Figure 12: Inter-arrival Time Distribution for Read requests on

Database workload for period of 0-0.15 seconds

Interarrival Time Distribution - WRITE

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Interarrival Time in Seconds

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Interarrival Time Distribution - WRITE

0

20

40

60

80

100

0 0.002 0.004 0.006 0.008 0.01

Interarrival Time in Seconds

P
er

ce
nt

ag
e EXT2

EXT3
JFS

Figure 13: Inter-arrival Time Distribution for Write access on Database

workload
Figure 14: Inter-arrival Time Distribution for Write access on Database

workload, magnified for the zone 0-0.01 seconds

Request Size Distribution

0

20

40

60

80

100

120

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

Request Size in kbytes

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Request Size Distribution - Read

0

20

40

60

80

100

120

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

Request Size in kbytes

P
er

ce
nt

ag
e EXT2

EXT3
JFS

Figure 15: Request Size Distribution for Email Server Figure 16: Request Size Distribution for Read requests on Email

Server

Request Size Distribution - Write

70

75

80

85

90

95

100

0 8 16 24 32 40 48 56 64 72

Request Size in kbytes

P
er

ce
nt

ag
e EXT2

EXT3
JFS

Request Size Distribution

50

60

70

80

90

100

110

0 16 32 48 64 80 96 112

Request Size in kbytes

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Figure 17: Request Size Distribution for Write requests on Email

Server
Figure 18: Request Size Distribution for Netbench

Request Size Distribution - Write

50

60

70

80

90

100

110

0 16 32 48 64 80 96 112

Request Size in kbytes

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Request Size Distribution

0

20

40

60

80

100

120

0 4 8 12 16 20 24 28 32

Request Size in kbytes

P
er

ce
nt

ag
e EXT2

EXT3
JFS

Figure 19: Request Size Distribution for Write requests on Netbench Figure 20: Request Size Distribution for Database workload

distribution. The read and write requests are separately
shown in Figure 16 and 17 respectively. While the read
behavior is the same for all file systems, for writes however
we notice a difference. Most write requests in EXT2 and
JFS are small in size when compared to EXT3 (Please note
the change in scale on y-axis). It can also be observed that
JFS did not show large writes at all. JFS for reliability
reasons do not coalesce writes, thus explaining the lack of
large writes.

 Netbench (write dominated)
 Netbench being a write dominated workload, read
accesses on disk did not play much role in its request size
distribution graph (Figures 18 and 19). All the read requests
on disk under the Netbench workload were 4kb in size the
default block size. All three file systems showed a small
spike around 64 Kbytes, as was also observed in the read
dominated email server.

 Database Workload (~equal read/write ratio)
 Figures 20-22 show the request size distribution for
the database workload. As can be seen, the database
workload issues were very small requests. Almost all its
requests were 8 Kbytes in size. This behavior did not show
much variation over the different file systems. EXT3
showed slightly fewer small read requests. The write
pattern was dominated by small writes. Under this
workload again, there was hardly any differentiation visible
in the three different file systems distribution.

Burstiness
 We define burstiness as a series of requests made on
the disk, which lie within the time interval of 10ms of the
previous request sent to the disk. It is a measure of how
many accesses are in groups and provides a rough measure
of how much idle time was available. The graphs above

Request Size Distribution - Read

72

82

92

102

0 4 8 12 16 20 24 28 32

Request Size in kbytes

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Request Size Distribution - Write

0

20

40

60

80

100

120

0 4 8 12 16 20 24 28 32

Request Size in kbytes

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Figure 21: Request Size Distribution for Read requests under Database

workload
Figure 22: Request Size Distribution for Write requests under

Database workload

Burstiness

0

20

40

60

80

100

120

0 1 2 3 4

Number of Requests in Burst

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Burstiness

0

20

40

60

80

100

120

0 20 40 60 80

Number of Requests in Burst
Pe

rc
en

ta
ge EXT2
EXT3
JFS

Figure 23: Burstiness for Email Server Figure 24: Burstiness for Netbench Workload

Burstiness

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

Number of Requests in Burst

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Burstiness

0

20

40

60

80

100

120

0 5 10 15 20

Number of Requests in Burst

Pe
rc

en
ta

ge EXT2
EXT3
JFS

Figure: 25: Burstiness for Database workload Figure 26: Burstiness for Database workload magnified for 0-20

requests in burst

show the cumulative distribution where the x-axis is the
number of request in the burst.

 Email Server (read dominated)
 Under the read dominated workload, the three file
systems did not show any variation from one another. No
more than 3 requests occurred in any burst.

 Netbench (write dominated)
 Under the Netbench workload, the three file systems
showed significant differences in the number of requests
coming in burst (Figure 24). JFS had around 80% of its
bursts in singletons, i.e. single-request bursts, whereas for
EXT3, the bursts were typically much larger. Again, this
behavior is because JFS is quite conservative in terms of
coalescing writes to preserve reliability.

 Database Workload (~equal read/write ratio)
 Under the database workload, the three file systems
showed similar patterns of very large amount of small

bursts (Figure 25). The graph was hence magnified for
better understanding (Figure 26). It can be seen that even in
this workload, JFS seems to have shorter bursts than any
other file systems.

CONCLUSIONS

 In this paper we have presented new studies of disk
I/O traffic under different workloads and different file
systems. These findings can provide insights to storage and
file system designers and moreover highlight the
importance of file system choice in designing a storage
system. System administrators can also analyze their
workload and file system and pick a storage system that
may match their particular workload and file system needs.

The key findings are:

- Email servers are heavily read dominated (>95% reads).
This may indicate that in email servers, large caches
either in the server or at the disk are warranted.

- File servers are very write dominated. Write dominated
systems may be able to take advantage of log-structured
file systems or disks [18.19]

- The file system has a very minor effect on read-
dominated workloads.

- For write-dominated workloads, journaling file systems
can cause an increase in small writes. This may lead an
administrator to add NOVRAM to coalesce writes or not
use RAID5 to address the small write problem with
journaling disks.

- In an email server workload, there is not much
burstiness, and what little there is consists mostly of 2-3
bursts. However, for a write dominated file serving
workload, EXT2 and EXT3 show as significant
burstiness as JFS. The presence of burstiness may
indicate more available idle time to do any background
work on disk – for example disk defragmentation, log
cleaning etc.

ACKNOWLEDGEMENTS

 Special thanks are due to Daniel Ellard for providing the
NFS traces in the Harvard study.

REFERENCES

[1] C. Ruemmler and J. Wilkes, “UNIX Disk Access

Patterns,” Proceedings of Winter USENIX, Jan.
1993

[2] C. Ruemmler and J. Wilkes, “A Trace-Driven
Analysis of Disk Working Set Sizes,” Technical
Report No. HPL-OSR-93-23, Hewlett Packard, Palo
Alto, CA, Apr. 1993

[3] M.A. Blaze, “NFS Tracing by Passive Network
Monitoring”, Proceedings of Winter USENIX,
pages 333-343, Jan. 1992

[4] M.G. Baker, J.H. Hartman, M.D. Kupfer, K.W.
Shirriff, and J.K. Ousterhout, "Measurements of a
Distributed File System," Proceedings of the ACM
Symposium on Operating System Principles, pages
198-212, Oct. 1991.

[5] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer,
"Passive NFS Tracing of Email and Research
Workloads," Proceedings of the USENIX
Conference on File and Storage Technologies,
March 2003.

[6] K. Ramakrishnan, P. Biswas, and R. Karelda,
"Analysis of File I/O Traces in Commercial
Computing Environments," Proceedings of the
ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems,
pp. 78-90, 1992.

[7] W. Vogels, "File System Usage in Windows NT
4.0," Proceedings of the ACM Symposium on
Operating Systems Principles, pp. 93-109, Dec.
1999.

[8] J.K. Ousterhout and H. Da Costa, D. Harrison, J.A.
Kunze, M.D. Kupfer and J.G. Thompson, "A trace-
driven analysis of the UNIX 4.2 BSD File System,"
Proceedings of the ACM Symposium on Operating
System Principles, pp. 15-24, Dec. 1985.

[9] D. Roselli, J. Lorch, and T. Anderson, "A

Comparison of File System Workloads,"
Proceedings of USENIX Technical Conference, pp.
41-54, 2000.

[10] W.W. Hsu and A.J. Smith, "Characteristics of I/O
traffic in personal computer and server workloads,"
IBM Systems Journal, vol. 42, no. 2, 2003, pp. 347-
372.

[11] E.L. Miller and R.H. Katz, “Analyzing the I/O
Behavior of Supercomputers Applications,” Digest
of Papers, 11th IEEE Symposium on Mass Storage
Systems, Monterey, CA, pp. 51-55, Oct. 1991

[12] M. Satyanarayanan, “A Study of file sizes and
functional lifetimes,” Proceedings of 8th ACM
Symposium on Operating Systems Principles, pp.
96-108, Dec. 1981

[13] G.A. Gibson, D.F. Nagle, K. Amiri, F.W. Chang,
E.M. Feinberg, H. Gobioff, C. Lee, B. Ozceri, E.
Riedel, D. Rochberg, and J. Zelenka, “File Server
Scaling with Network-Attached Secure Disks,”
Proceedings of the ACM SIGMETRICS
International Conference on Measurement and
Modeling of Computer Systems, Seattle, WA, June
1997.

[14] R. Card, T. Ts’o, and S. Tweedie, “Design and
Implementation of the Second Extended
Filesystem,” Proceedings of the Dutch
International Symposium on Linux, 1994.

[15] T. Ts’o and S. Tweedie, “Future Directions for the
Ext2/3 Filesystem,” Proceedings of the USENIX
Annual Technical Conference (FREENIX Track),
Monterey, CA, June 2002.

[16] S. Best, “JFS overview: How the Journaled File
System cuts system restart time to the quick,” IBM
Whitepaper, http://www.ibm-
.com/developerworks/library/l-jfs.html, Jan. 2000

[17] VeriTest, Inc., “NetBench 7.0.2,”
http://www.netbench.com, 2001.

[18] J. Ousterhout and F. Douglis, “A Case for Log-
Structured File Systems,” Operating Systems
Review, vol. 23, no. 1, pp 11-28, January 1989.

[19] R.Y. Wang, T.E. Anderson, D.A. Patterson,
“Virtual Log Based File Systems for a
Programmable Disk,” in Proceedings of Symposium
on Operating System Principles, pp. 29-43, Feb.
1999.

[20] Open Source Development Labs (OSDL) “OSDL-
DBT2”, http://www.osdl.org, 2003

[21] Transaction Processing Performance Council
(TPC), http://www.tpc.org

