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ABSTRACT 
 
        In this paper, we present a study of low-level disk 
access patterns for three workloads for a variety of file 
systems. While there has been a great deal of work on disk 
architectures, there has been very little work measuring 
actual low-level disk access. We have extended previous 
work to also consider different file systems to examine their 
effect on the workload. The analysis is done based on 
traces of disk access that have been captured at the driver 
level just before the data is transferred to disk. The 
workloads we examined were an email server, file server 
emulation and a database server and each workload was 
regenerated for different file systems. We found that 
depending on the workload, the access patterns could be 
read dominated or write dominated. The frequency of 
access in some cases was very high – with inter-arrival 
times well under 5ms. We also examined the burstiness 
behavior and read/write distribution. We found that the 
choice of file system was for the most part insignificant but 
in some cases can greatly influence the access 
characteristics. We believe the resulting traces and 
summary analysis can be used by storage system designers 
in their analysis of file system and disk organization 
designs. The consideration of file system also allows 
storage system designers to consider the style of file system 
when making design choices. 
 
INTRODUCTION 
 
        As processor speed increases at Moore’s law rates and 
disk access time barely change, the gap between processor 
speed and disk access time becomes more and more 
critical. Rapid increase in the speed of microprocessors and 
the relative slowness of disk access times have caused file 
servers to fail to deliver the speed they are designed for. 
These access times could be reduced by a variety of 
techniques including using larger caches, better file system 
utilization, and varying disk organization techniques. 
However, without an understanding of the actual disk usage 
patterns, it is somewhat difficult to make these decisions. 
Traces of the disk subsystem can provide the maximum 
information on how the data is treated by a particular file 
system. To improve the disk access times, one should be 
familiar with how the data is delivered to the storage 
system by the file system. There traces are important for 
many purposes other than the algorithms. These traces are 
difficult to obtain, and not much work has been published 

in this area. Much of the related work has collected traces 
at the operating system level, which does not clearly 
indicate when the actual disk was accessed for a particular 
request, since file system behaviors can mask much of the 
activity at disk. In other words, these traces do not provide 
the level of disk access detail needed to adequately 
understand the disk access behavior. These operating 
system traces are not useful when trying to improve disk 
storage system systems design for file system performance 
related to disk. 
        Our work intends to provide an updated analysis of 
I/O system behavior based on a variety of workloads, both 
real and simulated. We also examine whether the choice of 
file system has an effect on low-level I/O access. We have 
introduced a small thread in the driver code of the Linux 
kernel in order to capture the atomic details viz. the time of 
access, request size, block access number etc. 
        This paper is organized as follows; Section 2 discusses 
work done previously by other researchers. Section 3 
defines our experiment, and the methods used, while 
Section 4 details out the system configuration used as 
clients and servers. Section 5 discusses the results, with 
analysis presented for all the workloads, and for different 
file systems. Section 6 concludes the paper with our 
observations and inferences. 
 
RELATED WORK 
 
        There has been significant work done on the analysis 
of I/O system performance using traces collected from file 
systems [4,6,7,8,9,11]. One of the earliest studies was the 
BSD study and its follow up Sprite study [8,4]. The BSD 
paper provided much of the foundation for latter file system 
research. Roselli et al reexamined the conclusions from the 
BSD study with a set of traces collected from several 
HP/UX servers and a collection of Windows NT clients [9]. 
There have also been several studies of distributed file 
system access traces [5,13]. The procedure used in these 
and similar studies was to capture the trace at a high level – 
either at the file system level or at the network level. These 
traces do not illustrate when the access was actually made 
to the disk, if at all. The UNIX buffer system stores the data 
temporarily in cache. The data hence could have been hived 
away in cache, and later deleted from cache memory itself 
– thus a request for that particular file need not have been 
made to the disk. 
        The most relevant work at the disk level was that 
done by Ruemmler and Wilkes from HP Laboratories in 
1993 [1,2]. Their work generated traces from the disk level 
access collected on HP-UX system with the BSD Fast File 



System mounted. Their results indicated that a small non-
volatile cache at each disk allowed writes to be serviced 
much faster that any regular disk. Similar work was done 
by researchers at IBM where low-level traces were 
collected on a wide variety of systems including Windows 
NT PCs and IBM AIX and HP-UX servers [10]. As in the 
HP study, they found a high degree of burstiness in the 
access pattern, as well as a write-dominated workload. 
Idleness in the storage system also suggested opportunities 
for background optimizations. While the IBM study did 
examine different file systems, it was difficult to determine 
the effect of the file system on I/O accesses since the 
workloads were changed as well. In our work, we intend to 
further examine the effect of the file system by tracing the 
same workload on different file systems. 
 
TRACE COLLECTION 
 
        We sought to extend previous work by examining the 
effect of the file system on I/O access patterns. Since our 
system under study was a Linux server, we traced three 
popular file systems, namely EXT2, EXT3 and JFS. EXT2 
is the most commonly used file system in client Linux 
systems [14]. EXT3 and JFS are both journaling file 
systems in that fast restart is enabled through file system 
metadata logging techniques [15,16]. We examined these 
file systems under three different workloads – an actual 
NFS email server, a synthetic CIFS file server workload 
and a database workload. 
        To capture the disk I/Os at the lowest level, we 
introduced a thread into the IDE driver of Linux kernel 
2.6.0 (kernel 2.4.20 for NFS email server tests). The code 
was designed in such a way, that only one particular disk 
could be tested. The differentiation was done based on the 
drive numbers of the disk. The thread was transparent to 
user, and did not add much burden to the system’s 
performance. This thread would record all the requests sent 
to the disk, along with many other details. Each record 
collected the following details: 

1. Action (Read/Write) 
2. Time of Request 
3. Sector Number to which the request was made 
4. Request Size 

        The collected trace was written at regular intervals to a 
completely different disk, to avoid this write as being 
recorded as another request on the test disk. The average 
size of each of such write was approximately 300KB. 
        To trace the NFS email server, we used the CAMPUS 
trace from the Harvard study [5]. Using this trace, we 
reconstructed the file tree which would have existed on the 
CAMPUS server at Harvard University at the time they 
collected the trace. Similar file tree reconstruction 
techniques are described in [3,5]. While this tree is not an 
exact duplicate of the CAMPUS server, it replicated 
enough information so that we can replay the trace and 
collect meaningful data. This tree was then replicated on 
three different servers each built with one of the targeted 
file systems. Upon generation of the file system tree, an 
NFS client was programmed to generate requests to the 
target as read from the CAMPUS trace file. This NFS client 
made requests to the server as if a real request for I/O was 
made to the server. For the purposes of this work, we 

replayed a week’s worth of Harvard’s trace. To make our 
framework more precise, we sent the request to the server 
with the same time interval, as the trace file stated. On the 
server side, the thread was initiated. The CAMPUS trace 
also included userid, groupid and IP address information – 
these were ignored, since they were not relevant to our 
experiment. 
        The second workload was the synthetic Netbench [17] 
benchmark which exercises CIFS file servers. We used the 
Disk Mix Test suite to generate the synthesized emulation 
of network file server access from Windows clients in an 
office environment. While Netbench may not be an ideal 
real-world trace, it is based on real office patterns. More 
importantly, it does exhibit more write oriented behavior as 
opposed to the CAMPUS NFS Server. The Netbench Disk 
Mix Test Suite was run to test the behavior of file systems. 
        The final workload was the ODSL’s Database Test 
Suite (ODSL-DBT-2) [20], inspired from the TPC-C 
benchmark [21]. It is an online transactional processing 
test, which simulates an inventory control database with 
several workers accessing the database for purposes such as 
viewing, update etc. The test was conducted for 50 
warehouses under single connection for 18,000 seconds. 
The database we used for data management in this test was 
PostgreSQL 7.4. 
 
TRACED SYSTEM 
 
        The systems which acted as NFS clients were Pentium 
4, 2.4 GHz computers with 512MB of RAM each, while 
the server configurations were Pentium III, 800 MHz 
computers with 512MB RAM. Each file system was 
mounted on one individual server and a unique client was 
connected to it to perform the experiment. 
        For the Netbench [17] workload we used Client and 
Controller Windows machines to run the Netbench 
software. Using Samba, these Windows systems were 
connected to the test Linux server and separate servers 
were again used with different file systems mounted and 
traces were collected. 
        For the OSDL-DBT2 workload, we used the same 
Pentium 4 configuration as servers for testing with a fresh 
mount of the file system. With each run, a fresh installation 
of PostgreSQL was done, a new disk was mounted and a 
new database was created. 
 
ANALYSIS 
 
        In this section we analyze the traces collected in our 
experiments. Our analysis is based on the following 
categories: 

1. Read/Write Frequency 
2. Inter-arrival Time Distribution 
3. Request Size Distribution 
4. Burstiness 

 
Read/Write Frequency 
        Read/Write frequency is the percentage of read and 
write requests which were made on the disk. We use this 
parameter to define the kind of workload we are using. We 
obtained this ration for each file system under each 



workload. The exact figures for the read/write frequency 
can be seen in Table 1. 
        Since the CAMPUS server is predominantly an email 
server, it is natural to expect it to be read-dominated. The 
Harvard data indicated the same, as they found three times 
as many reads as writes. At the disk level, however the 
ratio of reads and writes are significantly more due to the 
extra metadata activity that is not present in the NFS trace. 
Our observation showed that the CAMPUS email server [5] 
was read-dominated, Netbench [17] write dominated, and 
OSDL Database workload had equal read/write ratio. All 
three file system followed the same pattern. It is interesting 
to see that the type of workload can have such a dramatic 
effect on the read/write frequency. Particularly, the fact that 
the email server is heavily read-oriented should lead 
storage system designers to optimize reads even at the 
expense of writes. However, the Netbench numbers, though 
it may indicate that file servers should be write optimized, 
should be taken with a grain of salt. The Netbench data set 
is only 22MB in size, which can easily fit in cache, thus 
explaining why there are so few reads. In the context of the 
traces we are collecting, however, the Netbench data is 
useful since it serves as an example of a write-dominated 
workload. Finally, the database workload is a good 
example of a workload that is evenly divided between reads 
and writes. 
        In terms of raw numbers, there are some points that 
stand out. With the heavily write-oriented Netbench 
workload, we see that that two journaling file systems, 
EXT3 and JFS, have nearly three times as many writes than 
EXT2. These extra writes are due to the writes to the 
journal. However, one may notice that the database 
workload does not show a similar increase in writes. The 
reason is that the database workload does only writes 
without any file system/metadata operations such as 
deleting a file, renaming a file, moving a file etc. while on 
the other hand, the Netbench workload does a lot of these 
operations. File writes are nor journaled, but file system 
modifications are journaled, thus the differences in 
behavior. 
 
Inter-arrival Time 
        Inter-arrival time is defined as the time between 
successive disk accesses request. It is a useful measure to 
help identify the load on the disk system. In particular, the 
average inter-arrival time determines the required service 
from the disk. The inter-arrival time can also be used to 
develop workload models that can drive queuing studies. 
Inter-arrival Time Distribution for the same test for 
different file systems showed different patterns. Figures 
below show the comparison of the different file systems 
(EXT2, EXT3 and JFS) under various workloads with 
respect to the inter-arrival time in each case. 
 
     Email Server (read dominated) 
         It is clear from the distribution graph shown in Figure 
1 that most of the requests are on average less than a 
second apart, with the majority of them less than about 
400ms apart for EXT2. 
        A steep rise was observed in the count of inter-arrival 
requests between 0.2 and 0.4 seconds for EXT3, while 
EXT2 and JFS showed spikes near 0.6 seconds and 1 

second. Figure 2 shows the distribution graph plotted for 
the read requests alone, which showed similar 
characteristics to that of the overall inter-arrival cumulative 
distribution graph. 
        Since nearly half of the inter-arrival times are very 
short, we magnified the graph for the region between 0 and 
0.5 seconds (Figure 3). As can be seen, nearly half of the 
inter-arrival times are at 0.01 seconds. The short intervals 
are due to back to back NFS requests caused by a large 
NFS read broken into smaller NFS protocol limitations. To 
know the inter-arrival distribution of write requests, we 
plotted the graph for write requests also (Figure 4). All 
three file systems indicated almost the same behavior with 
EXT3 showing slightly more frequent accesses. 
 
    Netbench (write dominated) 
        On Netbench, EXT2 and EXT3 showed almost the 
same pattern, with EXT3 having slightly more frequent 
accesses. (Figures 5a & 5b). 
        Since Netbench is write dominated, the write access 
distribution is very similar to the overall inter-arrival time 
distribution (Figures 6a & 6b). Looking at Figure 5b, one 
can see that EXT2 and EXT3 have inter-arrival times that 
are much shorter than JFS. Nearly 90% of the intervals 
with EXT3 are less than 0.02 seconds. JFS tends to delay 
writes, and thus eliminate some writes through cache, thus 
accounting for the difference. It would seem that because of 
this behavior, JFS-based storage system would have longer 
periods of idle time. Idle time can be used by disk systems 
to run background disk optimization schemes, and this 
graph shows that atleast for write-dominated data, the 
choice of file system can influence the length of idle time 
available. Figure 7 and 8 shows the same type of behavior 
for reads but on a different scale. Note that since Netbench 
has so few reads, this data is not meaningful. 
 
    Database Workload (~equal read/write ratio) 
        Figure 9 and 10 shows the inter-arrival time 
distribution for the database workload. The most striking 
feature is that the inter-arrival times are much more 
frequent. Interestingly, for the database workload, the JFS 
file system shows much more frequent access than EXT3. 
This behavior is the complete opposite of what was 
observed for the read dominated and write dominated 
workloads. Nearly, 50% of the inter-arrivals are less than 
3ms for JFS, while for EXT3, the 50% mark is reached 
only at 20ms. 
        To evaluate this further, we looked at reads and writes 
separately as shown in Figures 11-14. It can be seen that 
there is very little difference between the file systems for 
reads. However for writes, there is a marked difference. For 
JFS, about 80% of the intervals are less than the 10ms, 
whereas for EXT3, the 80% mark is reached only at 100ms. 
It is clear that JFS does not do a good job of grouping 
writes, when reads are intermixed with the writes. 
 
Request Size Distribution 
        In this section we examine the request size 
distribution, a measure of the number of blocks in each 
request sent to the disk. We discuss the request size in each 
file system under the different workloads. 
 



Table 1: Read/Write Frequency for the three file systems under three different workloads.
 Email Server NetBench Database Workload 

 EXT2 EXT3 JFS EXT2 EXT3 JFS EXT2 EXT3 JFS 
Read 8,998,227 8,464,299 7,215,712 30 48 21 2,940,367 2,893,065 2,331,008 
Write 246,579 337,898 182,263 16,720 45,991 46,193 2,156,496 2,125,214 1,712,358 
Total 9,244,806 8,802,197 7,397,975 16,750 46,039 46,214 5,096,863 5,018,279 4,043,366 

% Read 97.33 96.16 97.54 0.18 0.10 0.05 57.68 57.65 57.65 
% Writes 2.67 3.84 2.46 99.82 99.90 99.95 42.32 42.35 42.35 
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Figure 1: Inter-arrival Time Distribution for Email Server 
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Figure 2: Inter-arrival Time Distribution for READ requests on 

Email Server 
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Figure 3: Inter-arrival Time Distribution for Read requests on 

Email Server 
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Figure 4: Inter-arrival Time Distribution for Write requests on 

Email Server 
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Interarrival Time Distribution - Write
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Figure 5a: Inter-arrival Time Distribution for Netbench Figure 6a: Inter-arrival Time Distribution for Write requests on 

Netbench 
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Interarrival Time Distribution - Write
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Figure 5b: Inter-arrival Time Distribution for Netbench Figure 6b: Inter-arrival Time Distribution for Write requests on 

Netbench 



    Email Server (read dominated) 
        Request size distributed for the email server is shown 
in Figures 15-17. The read dominated email server mostly 

had large reads. There was a peak seen at 64Kbytes. All 
three file systems followed the same pattern for block. 
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Figure 7: Inter-arrival Time Distribution for Read access on Netbench Figure 8: Inter-arrival Time Distribution for Read access on Netbench, 

magnified for 0-1 second zone. 
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Figure 9: Inter-arrival Time Distribution for Database workload Figure 10: Inter-arrival Time Distribution for Database workload 

magnified over 0-0.02 sec. 
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Figure 11: Inter-arrival Time Distribution for Read requests on 

Database workload 
Figure 12: Inter-arrival Time Distribution for Read requests on 

Database workload for period of 0-0.15 seconds 
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Interarrival Time Distribution - WRITE
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Figure 13: Inter-arrival Time Distribution for Write access on Database 

workload 
Figure 14: Inter-arrival Time Distribution for Write access on Database 

workload, magnified for the zone 0-0.01 seconds 
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Request Size Distribution - Read
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Figure 15: Request Size Distribution for Email Server Figure 16: Request Size Distribution for Read requests on Email 

Server 
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Figure 17: Request Size Distribution for Write requests on Email 

Server 
Figure 18: Request Size Distribution for Netbench 
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Figure 19: Request Size Distribution for Write requests on Netbench Figure 20: Request Size Distribution for Database workload 

 
distribution. The read and write requests are separately 
shown in Figure 16 and 17 respectively. While the read 
behavior is the same for all file systems, for writes however 
we notice a difference. Most write requests in EXT2 and 
JFS are small in size when compared to EXT3 (Please note 
the change in scale on y-axis). It can also be observed that 
JFS did not show large writes at all. JFS for reliability 
reasons do not coalesce writes, thus explaining the lack of 
large writes. 
 
    Netbench (write dominated) 
        Netbench being a write dominated workload, read 
accesses on disk did not play much role in its request size 
distribution graph (Figures 18 and 19). All the read requests 
on disk under the Netbench workload were 4kb in size the 
default block size. All three file systems showed a small 
spike around 64 Kbytes, as was also observed in the read 
dominated email server. 

    Database Workload (~equal read/write ratio) 
        Figures 20-22 show the request size distribution for 
the database workload. As can be seen, the database 
workload issues were very small requests. Almost all its 
requests were 8 Kbytes in size. This behavior did not show 
much variation over the different file systems. EXT3 
showed slightly fewer small read requests. The write 
pattern was dominated by small writes. Under this 
workload again, there was hardly any differentiation visible 
in the three different file systems distribution. 
 
Burstiness 
        We define burstiness as a series of requests made on 
the disk, which lie within the time interval of 10ms of the 
previous request sent to the disk. It is a measure of how 
many accesses are in groups and provides a rough measure 
of how much idle time was available. The graphs above  
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Figure 21: Request Size Distribution for Read requests under Database 

workload 
Figure 22: Request Size Distribution for Write requests under 

Database workload 
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Figure 23: Burstiness for Email Server Figure 24: Burstiness for Netbench Workload 
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Figure: 25: Burstiness for Database workload Figure 26: Burstiness for Database workload magnified for 0-20 

requests in burst 
 

show the cumulative distribution where the x-axis is the 
number of request in the burst. 
 
    Email Server (read dominated) 
        Under the read dominated workload, the three file 
systems did not show any variation from one another. No 
more than 3 requests occurred in any burst. 
 
    Netbench (write dominated) 
        Under the Netbench workload, the three file systems 
showed significant differences in the number of requests 
coming in burst (Figure 24). JFS had around 80% of its 
bursts in singletons, i.e. single-request bursts, whereas for 
EXT3, the bursts were typically much larger. Again, this 
behavior is because JFS is quite conservative in terms of 
coalescing writes to preserve reliability. 
 
    Database Workload (~equal read/write ratio) 
        Under the database workload, the three file systems 
showed similar patterns of very large amount of small 

bursts (Figure 25). The graph was hence magnified for 
better understanding (Figure 26). It can be seen that even in 
this workload, JFS seems to have shorter bursts than any 
other file systems. 
 
CONCLUSIONS 
 
        In this paper we have presented new studies of disk 
I/O traffic under different workloads and different file 
systems. These findings can provide insights to storage and 
file system designers and moreover highlight the 
importance of file system choice in designing a storage 
system. System administrators can also analyze their 
workload and file system and pick a storage system that 
may match their particular workload and file system needs. 
 
The key findings are: 

- Email servers are heavily read dominated (>95% reads). 
This may indicate that in email servers, large caches 
either in the server or at the disk are warranted. 



- File servers are very write dominated. Write dominated 
systems may be able to take advantage of log-structured 
file systems or disks [18.19] 

- The file system has a very minor effect on read-
dominated workloads. 

- For write-dominated workloads, journaling file systems 
can cause an increase in small writes. This may lead an 
administrator to add NOVRAM to coalesce writes or not 
use RAID5 to address the small write problem with 
journaling disks. 

- In an email server workload, there is not much 
burstiness, and what little there is consists mostly of 2-3 
bursts. However, for a write dominated file serving 
workload, EXT2 and EXT3 show as significant 
burstiness as JFS. The presence of burstiness may 
indicate more available idle time to do any background 
work on disk – for example disk defragmentation, log 
cleaning etc. 
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