
RAID0.5: Active Data Replication for Low Cost Disk Array Dat a Protection

John A. Chandy
Department of Electrical and Computer Engineering

University of Connecticut
Storrs, CT 06269-2157

john.chandy@uconn.edu

Abstract— RAID has long been established as an effective
way to provide highly reliable as well as high-performance disk
subsystems. However, reliability in RAID systems comes at the
cost of extra disks. In this paper, we describe a mechanism
that we have termed RAID0.5 that enables striped disks with
very high data reliability but low disk cost. We take advantage
of the fact that most disk systems use backup systems for
disaster recovery. With the use of these backup systems, the disk
system needs to only replicate data since the last backup, thus
drastically reducing the storage space requirement. Though
RAID0.5 has the same data loss characteristics of traditional
mirroring, the lower storage space comes at the cost of lower
availability. Thus, RAID0.5 is a tradeoff between lower disk
cost and lower availability while still preserving very high
data reliability. We present analytical reliability models and
experimental results that demonstrate the enhanced reliability
and performance of the proposed RAID0.5 system.

I. I NTRODUCTION

Disk arrays have long been used to improve the
performance of storage systems [1], [2]. The parallelism
inherent in multi-disk systems can significantly boost
both the throughput and response times as compared to a
single disk system. However, the increased performance
comes at the cost of lower reliability. As a result,
disk arrays need some form of redundancy to improve
reliability. The most common and cost effective solution
to improve the reliability of disk systems is the use of
Redundant Array of Inexpensive (or Independent) Disks
(RAID) [3]. The various levels of RAID specify different
methods of redundancy to provide reliability. The most
commonly used forms of RAID are RAID1 or mirroring,
which entails replication of the data on multiple disks,
and RAID5 or parity striping, which involves spreading
data along with parity across multiple disks. Choosing
which RAID level to use is typically determined by cost
and application requirements. At the disk array level,
the redundancy choice is usually RAID5 as it provides
excellent availability, moderate storage overhead, and
adequate performance.

All RAID levels require extra disks to provide redun-
dancy. In the case of RAID5, the redundancy overhead
is 1/D where D is the number of data disks in a
redundancy group. With RAID1, the overhead is 100%.

This overhead makes RAID cost prohibitive in many
environments, particularly single user desktop computers
and laptops. RAID5 requires the installation of either
SCSI controllers or multiple IDE controllers and enclo-
sures to contain the multiple disks. In a two-disk scenario
that is feasible for most single PCs, the 100% overhead
of RAID1 mirroring becomes costly.

It is in this light that we present RAID0.5, a midway
point between RAID0 and RAID1 in that it provides
equivalent data loss guarantees to RAID1 with just
slightly more overhead than RAID0. However, as we
will show, the tradeoff between RAID0.5 and RAID1
is the lower availability of a RAID0.5 system. The
remainder of the paper describes the overall architecture
and analysis of RAID0.5, experimental results future
directions, and related work.

II. RAID0.5

The goal of the RAID0.5 architecture is to provide a
disk subsystem that can achieve high reliability with low
cost. Our particular aim is to make the method feasible
for systems with relatively few disks. A typical RAID5
system will have 5-7 disks in the array, leading to a
redundancy overhead of 14-20%. As you use fewer disks
and approach RAID1 mirroring, the overhead quickly
approaches 100%. With a RAID0.5 system, we would
like to maintain a redundancy overhead of less than 20%
for even 2 disk systems. In a two-disk system, in order
to prevent data loss, it would seem that we would need
to replicate all the data on a disk thus leading to 100%
overhead. Compressing the replicated data may allow
for smaller overheads, but this is not guaranteed and the
compression process can be compute intensive.

The key to achieving low redundancy overheads is
to replicate only a portion of the data on a disk. If
we assume that the system is being periodically backed
up, then we need only to replicate data that has been
changed since the last backup. We define this data as
the active data. In such a scenario, if a disk fails, active
data can be recovered from the remaining disk(s) and
inactive data can be recovered from the backup media.

The backup window determines how much data needs to
be replicated. For example, a weekly backup will create a
larger active data set size than a daily backup. HP’s study
of working set sizes showed that, on average, only 2% of
the storage space is written to over a 24 hour period [4].
The largest observed 24-hour write set size was just over
10%. Thus, assuming daily backups, we need to only
replicate 10% of the data in the array. Assuming similar
access patterns over a week, the weekly working set size
should not change much, so a 15% replication overhead
may be sufficient for weekly backups.

The data distribution of a RAID0.5 system is shown
for a 4 disk system in Figure 1. Each row in the disk
represents one ofn stripes as in a RAID0 disk array,
and each cell represents a data block or chunk of a
stripe on a disk. On each disk, we dedicate a region
for replication, the size of which is determined by the
desired redundancy overhead which is determined by the
backup frequency as described above. In Figure 1a, the
data distribution is shown for a system where the active
data set is empty, i.e. immediately after a backup. After
writes to D10, D21, andD03, we can see in Figure 1b
that the writes have been replicated to replication regions
on adjacent disks. By replicating on the next disk (mod
number of disks), we can ensure that the active data is
preserved on at least one disk in the event of a single
disk failure. If a disk replication region fills up, we can
replicate the data to another disk or grow the replication
region. If this is not possible, the file system or disk
driver will respond as if the disk is full.

III. R ELIABILITY ANALYSIS

When a disk fails, any requests to active data can be
delivered from the replication region. However, requests
to inactive data can not be serviced because the data is
not available online and must be retrieved from backup
media. Thus, in a RAID0.5 system, as soon as failure
is detected, the system must block all future accesses
to disk until the failed disk can be reconstructed from
backup. To prevent the chance of a second failure, the
system should power down all disks in the system. Note
that this implies that a RAID0.5 system is not available
under failure even though there has been no data loss.
This behavior is different from a RAID1 or RAID5 sys-
tem where data is still available even under a single disk
failure. Thus, for a RAID0.5 system there is a distinction
between availability and data loss protection, whereas no
such distinction exists for other RAID levels. A RAID0.5
system trades off system availability for low redundancy
costs. Therefore, using RAID0.5 is not appropriate for
mission critical applications that require 24/7 operation,
but it is appropriate for desktop applications that may

D00

D10

...

D01

D11

...

D02

D12

...

D03

D13

...

Dn0 Dn1 Dn2 Dn3

}
}

Data

Region

a) Initial Data Distribution

Replication

Region

b) Data Distribution after writes to D10, D21, and D03

D00

D10'

D01

D11

D02

D12

D03'

D13 }
}

Data

Region

Replication

Region
D03' D21'D10'

Disk 0 Disk 1 Disk 2 Disk 3

Disk 0 Disk 1 Disk 2 Disk 3

...

Dn0 Dn1 Dn2 Dn3

Fig. 1. RAID0.5 data distribution.

not require nonstop operation but do require absolute
data protection. Because of this high-reliability low-
availability characteristic, we placed RAID0.5 between
the low-reliability, low-availability RAID0 and high-
reliability, high-availability RAID1.

In light of this distinction between system availability
and data loss protection, when doing reliability analysis
we are more interested in the mean time to data loss
(MTTDL) rather than the more conventional mean time
to failure (MTTF). The analysis is similar but MTTDL
implies nothing about system availability as MTTF does.

A. RAID0.5 with replication region

We can develop a model for the MTTDL and availabil-
ity of a RAID0.5 system using a analysis methodology
similar to that outlined in [3]. Each disk is assumed
to have independent and exponential failure rates. We
assumed disks in the array and a replication ratio ofr,
i.e. the ratio of the replication region size to data size.
Each disk is assumed to have a mean time to failure of
MTTFDisk. The mean time to failure of one disk in the
array is MTTFDisk

d and data loss occurs when a second
disk fails while the first failed disk is being repaired.

MTTDLRAID0.5 =

MTTFDisk

d
∗

1

Pr[data loss failure during repair]
(1)

If we define the mean time to repair the disk as

MTTRDisk, then assuming exponential failure rates, the
probability of a failure during the repair time is:

1 − (e−MTTRDisk/MTTFDisk)(d−1) (2)

SinceMTTRDisk is almost always much less than
MTTFDisk, the above expression can be approximated
as:

MTTRDisk(d − 1)

MTTFDisk
(3)

Substituting into Equation 1, we get

MTTDLRAID0.5 =
(MTTFDisk)2

d(d − 1)MTTRDisk
(4)

The MTTDL equation for a RAID0.5 system is equiv-
alent to the MTTDL for a RAID5 system except for the
derivation of the disk MTTR. In a RAID1 or RAID5
system, the MTTR is comprised of the time to replace
the failed disk as well as the time to reconstruct the
data onto the new disk. In systems with hot spares the
time to replace the failed disk can be zero, but for the
small scale systems that we are considering, hot sparing
is not likely to be present. In a RAID0.5 system, since
the system is powered off after a failure, there is almost
no chance of a second failure during the time it takes to
replace the failed disk1. Therefore, when determining the
MTTR of the disk, we need to only include the time to
reconstruct the data to the failed disk. The reconstruction
time of a RAID0.5 system is determined primarily by
the speed of the backup media - tape can be slow but
a D2D (disk to disk) backup system can be relatively
fast. Assuming the backup media is fast enough to keep
up with the reconstruction, reconstruction on a RAID0.5
will be much faster than RAID5 reconstruction because
there is no need to read all disks in the parity group
to regenerate the lost data. RAID0.5 reconstruction will
be slightly slower than RAID1 reconstruction because of
the need to read the replication region and copy over the
active data changes since the last backup. Note that the
replication region on the new disk will be invalid, so the
data must be copied over from the original disk.

B. RAID0.5 with replication disk

Though the rationale for RAID0.5 was established for
disk arrays with few disks, RAID0.5 can be advanta-
geous in larger arrays and can actually show equivalent
MTTDLs to mirroring if we modify the data distribution

1The probability of failure while the disks are turned off is not
absolutely zero, but it is much lower than the chance of failure while
the disks are powered up, so for the most part we can ignore it.

D00

D10

...

D01

D11

...

D02

D12

...

D03

D13

...

Dn0 Dn1 Dn2 Dn3

a) Initial Data Distribution

b) Data Distribution after writes to D10, D21, and D03

D00

D10'

D01

D11

D02

D12

D03'

D13

Disk 0 Disk 1 Disk 2 Disk 3

Disk 0 Disk 1 Disk 2 Disk 3

...

Dn0 Dn1 Dn2 Dn3

D20 D21 D22 D23

D20 D21' D22 D23

Replication

Disk

Replication

Disk

D03'

D21'

D10'

Fig. 2. RAID0.5 disk-based replication.

D00

D10

D20

D01

D11'

D02

D12

D21

D03...

...

...

...

D13

D22

D30 D31 D32'

Replication

Disk

D11'

D32'

D23

D33

Disk 0 Disk 1 Disk 2 Disk 3

Fig. 3. RAID0.5 disk-based replication failure.

slightly. Instead of putting the replication region on
each disk, we dedicate a separate disk to serve as the
replication disk as shown in Figure 2. Withd = 5
and r = 0.2, the two data distributions from Figures 1
and 2 are equivalent in terms of overhead. We call
this modified data distribution RAID0.5 with disk-based
replication. Note that the advantage of this distribution is
that the array can tolerate more combinations of multiple
failures. Figure 3 illustrates how the system can tolerate
more than one failure and still recover the most recent
data. Even though two disks have failed, the active
data blocks,D11’ andD32’, are still available from the
replication disk. In fact if all the disks except for the
replication disk fail, disk-based replication allows for the
recovery of all active data.

With disk-based replication, the overall MTTDL is
as described in Equation 1, but the derivation of the
probability of data loss during failure is different. Data
loss during the repair time of the failed disk can happen
in two cases: 1) the first failed disk was the replication
disk and any other disk fails, and 2) the first failed disk
was not the replication disk and the replication disk fails.
Thus, the probability of data loss causing failure during
the repair time is as follows:

Pr[data loss failure during repair] =

Pr[first failed disk was the replication disk]pf+

(1−Pr[first failed disk was the replication disk])prf

(5)

where pf is the probability that any one of the
remainingd − 1 disks fails during the repair time and
prf is the probability that the replication disk fails during
the repair time. The derivation ofpf is the same as the
derivation of Equation 3. Thus,

pf =
MTTRDisk(d − 1)

MTTFDisk
(6)

Similarly, prf is equal to MTTRDisk

MTTFDisk

. Substituting into
Equation 5, we arrive at:

Pr[data loss failure during repair]

=
1

d

MTTRDisk(d − 1)

MTTFDisk
+ (1 −

1

d
)
MTTRDisk

MTTFDisk

=
(2

d

)MTTRDisk(d − 1)

MTTFDisk

(7)

Substituting into Equation 1, we arrive at:

MTTDLRAID0.5 =
(MTTFDisk)2

2(d − 1)MTTRDisk
(8)

If we define D as the total number of data disks
in the system, i.e.d − 1, we can rewriteMTTDL

as (MTTFDisk)2

2D MTTRDisk

. The redundancy overhead to support
replication is one disk. By comparison, a mirrored
system with D data disks has a similar MTTDL of

MTTF 2

Disk

2D MTTRDisk

but with an overhead ofD disks, and a

RAID5 system has an MTTDL of MTTF 2

Disk

D(D+1)MTTRDisk

and
an overhead of 1 disk. The RAID0.5 system actually
has similar MTTDL times to a mirrored system with
significantly less redundancy overhead.

The drawback to disk based replication region is that
the disk with the replication region can become a hot

spot. Rotating the replication region as is done with
rotated parity in RAID5 reduces the system in reliability
terms to the replication region method described earlier.
Thus, the choice of disk-based replication should only
used in environments where there is not very high loads
such that a single disk could become a bottleneck.

C. Availability analysis

We have presented RAID0.5 as a compromise choos-
ing high reliability at the cost of lower availability. In
this section, we will present a model for comparing the
availability of the various systems. Availability is defined
as the percentage of time that the system is not available.
In reliability analysis terms, this is simply the ratio of
the MTTF of the system to the sum of the MTTF and
MTTR of the system. For a RAID or mirrored system
the MTTF of the system is equivalent to the MTTDL
that was calculated in the previous section. The MTTR
of the system is equivalent to the MTTR of a disk since
the system will be repaired when the disk is repaired.
In practice, though, this is not true since when there is
a system failure, the time to recover will probably be
longer because of the time required to reinstall software,
recover data from backups, etc. For the purposes of this
discussion, however, we will assume, in the absence of
hot spares, that the majority of the repair time is the time
to install the new disk. The availability of the RAID5 and
mirrored systems can be expressed as follows:

ARAID5 =
MTTDLRAID5

MTTDLRAID5 + MTTRDisk

=
MTTF 2

Disk

MTTF 2
Disk + D(D + 1)MTTR2

Disk

(9)

AMirror =
MTTDLMirror

MTTDLMirror + MTTRDisk

=
MTTF 2

Disk

MTTF 2
Disk + 2D MTTR2

Disk

(10)

For a RAID0.5 system, the system is unavailable
whenever a disk goes down even though data may not
have been lost. Thus, we can derive the availability of a
RAID0.5 system as follows:

ARAID0.5 =

MTTFDisk

MTTFDisk + Time to replace and restore disk
(11)

Comparing Eqs. 9 and 10 with Eq. 11, we see that
the availability of a RAID0.5 system is reduced by a
factor equal toMTTFDisk. In fact, RAID0.5 availability

Configuration MTTDL (years) Availability Accessible storage
A Nines (−log10(1 − A))

RAID0 1.9 0.9989212 2.97 6 disks
RAID5 1584 0.9999983 5.76 5 disks
Mirror 7922 0.9999996 6.46 3 disks
RAID0.5 (r = 0.2) 3169 0.9989212 2.97 4.8 disks
RAID0.5 (disk-based replication) 9506 0.9989212 2.97 5 disks

TABLE I

MTTDL AND OVERHEAD FOR A 6 DISK ARRAY. (MTTFDisk = 100000HOURS ANDMTTRDisk = 24 HOURS)

Configuration MTTDL (years) Availability in nines Accessible storage
RAID0 5.7 3.32 2 disks
RAID5 23766 6.94 1 disk
Mirror 23766 6.94 1 disk
RAID0.5 (r = 0.2) 47532 3.32 1.6 disks
RAID0.5 (disk-based replication) 47532 3.32 1 disk

TABLE II

MTTDL AND OVERHEAD FOR A 2 DISK ARRAY. (MTTFDisk = 100000HOURS ANDMTTRDisk = 24 HOURS)

is no better than a non-redundant disk system. This
is borne out in Tables I and II which show MTTDL,
availability, and accessible storage for six and two disk
arrays. We assume that the time to reconstruct the
disk is 6 hours for mirrored and RAID5 systems. For
RAID0.5, the reconstruction time is assumed to 12 hours
because of slow backup tape and the need to reinitialize
the replication region on the new disk. Since we are
assuming non mission-critical small scale systems, we
do not presume any hot sparing is present, and thus the
time to replace the disk is assumed to be 18 hours. This
gives a MTTRDisk of 24 hours for the RAID5 and
mirrored systems, and 12 hours for RAID0.5.

The tables show that RAID0.5 can offer equivalent or
better MTTDL to RAID1 with significantly less storage
overhead. For large arrays, the disk-based replication
approach is best and for small arrays, the replication
region approach is best. The cost, however, is the avail-
ability of the RAID0.5 system. While the availability of
RAID0.5 is good (99.9%), this is due entirely to the
reliability of the disk and not due to the structure of
the array. Enterprise systems typically demand six nines
of reliability which can be delivered with the RAID5
and mirrored systems, but is not possible with RAID0.5.
Thus, the use of RAID0.5 becomes a choice between
high availability with low storage overhead and high
availability with high storage overhead. As mentioned
before, the ideal environment for such a system is for
desktop or single-user systems that contain high value
data but do not require 24/7 availability.

IV. EXPERIMENTAL RESULTS

We implemented the RAID0.5 as part of the md (mul-
tidisk) subsystem in Linux (2.6.11). The test platform
is a 500MHz Pentium III with 2 IDE disks as masters
on separate IDE channels. Each disk is managed with
the LVM2 logical volume manager and the RAID arrays
are formed from two 160MB logical volumes - one
each from disk. The array was reformatted with the
ext3 filesystem after each run. We used the IOZone [5]
filesystem benchmark to measure I/O performance. With
the-a option, IOZone uses a broad mix of access patterns
to read/write a test file. As the results in Figures 4 and 5
show, RAID0.5 performs favorably to RAID1, as would
be expected because for each write they each require two
writes to separate disks. RAID0.5 does exhibit slightly
slightly better performance on writes in part due to the
write logging that eliminates the access time for writes
because the head does not have to move.

V. FUTURE EXTENSIONS

A. Snapshots

Because RAID0.5 replicates active data, it makes it
easy to provide storage snapshotting features. If we were
to maintain the replication log as a strict log rather than
update blocks in place, we would have a log of all
updates since the last backup. Adding a timestamp to the
BDS allows us to retrieve a block from any period any in
time. In essence, rolling back the log to any point in time
means that we can provide a continuous snapshotting
capability. This does not require any separate copy-on-
write capabilities as is common with snapshot systems,
since we always maintain the older versions of blocks.

0

100000

200000

300000

400000

500000

600000

700000

4 8 16 32 64

Record Size

K
B
/
s
e
c
o
n
d RAID1 (W rites)

RAID0.5 (W rites)

RAID1 (Reads)

RAID0.5 (Reads)

Fig. 4. RAID1 and RAID0.5 results for 64K file reads and writes.

0

50000

100000

150000

200000

250000

300000

350000

400000

64 128 256 512 1024 2048 4096

Record Size

K
B
/
s
e
c
o
n
d RAID1 (W rites)

RAID0.5 (W rites)

RAID1 (Reads)

RAID0.5 (Reads)

Fig. 5. RAID1 and RAID0.5 results for 32M file reads and writes.

B. Backups

RAID0.5 is inherently dependent on a judicious
backup procedure at somewhat frequent intervals. How-
ever, in desktop environments where the cost of backup
can dwarf the cost of a RAID system, backups may be
difficult. In an office environment, though, automated
backup systems can run in the background and perform
backup to an offline system. Since the restore process
is block based, the backup process must also be block
based which may not be compatible with existing backup
mechanisms. With the use of a snapshotting feature as
described above, however, it is not necessary to quiesce
the system since arbitrary checkpoints can easily be
chosen within the snapshot. Moreover, the process of
determining what blocks need to be backed up in an
incremental backup is trivial since the replication region
contains all data since the last backup.

C. File System Implementation

The RAID0.5 system that we have described is block
based since it is at the device driver level. However,
it is possible to do the same at the file system level.
The replication copy information can be placed in the

inode, and recovery procedures need not depend on
a replication log and can instead use the filesystem’s
standard fsck procedure. However, to ensure reliability,
the file system needs to be aware of physical disks in
order to place replication blocks on a different physical
disk than the actual data block. In today’s layered I/O
systems, physical disk information is often not visible to
the file system which tends to see the block device as
simply a continuous segment of blocks. This disconnect
is further amplified when using volume managers that
completely obscure the physical layout of the storage.

Another approach to a file system implementation of
RAID0.5 is to do replication on a file by file basis. In
such a system, we can replicate file writes to a separate
replication volume by intercepting filewrite() calls.
The advantage of such an approach is that replication
decisions can be made on a file-by-file basis rather
than for an entire volume. This allows the user to
limit the space required for replication by selecting only
important files for replication. Thus, files that are easily
replaced from installation CDs such as applications and
operating system files can be marked as not needing
replication. File based RAID0.5 is also more compatible
with existing backup systems.

D. RAID5.5

A variation of RAID0.5 is shown in Figure 2 where we
use a replication disk as as a cache for writes in a RAID5
system. In such a scenario, instead of writing to the data
disk and the parity disk as in a normal RAID5 system,
we write to the data disk and the replication disk. This
allows writes to be quickly mirrored and thus avoid the
parity generation problem in RAID5. The parity can be
generated later when the system is at low load. Using
this replication disk can improve RAID5 reliability as
well as improve RAID5 performance.

VI. RELATED WORK

The RAID0.5 system is probably most closely related
to the various works in disk logging. Of particular
interest are virtual logs [6], parity logging [7], data
logging [8], and hot mirroring [9], [10].

In general, logging optimizes writes by writing data to
empty locations near the current disk head location. The
assumption is that if the disk is doing only writes, the
disk head needs to seek only slightly, if at all, to write
the new data, thus eliminating the seek time. The idea of
write logging is not new and previous work has shown
the effectiveness of the method in certain scenarios [6],
[11], [12], [13], [14], [15]. RAID0.5 borrows from the
logging idea in creating a replication log. However, since
there is normal disk activity to the data region of the disk,

we can not depend on the disk head remaining in the
log, so no advantages in terms of disk access are seen.
However, the use of a log does simplify block allocation
as described earlier.

The parity logging technique eliminates the need for
parity disk accesses by caching the partial parity formed
from the old and new data in non-volatile memory at
the controller. The partial parity can then be periodically
flushed to a log disk, which can then be cleaned out
at a later time to generate the actual parity disk data.
This process reduces the number of disk accesses from
4 to 2 and clearly, this reduction in accesses will greatly
speed up the performance of writes in a RAID system.
The process is similar to the RAID5.5 optimization
discussed in Section V-D except that RAID5.5 uses a
disk as a cache instead of non-volatile memory. Similar
approaches to RAID5 caching have also been presented
in [13], [14], [16], [17]. Data logging is similar to
RAID5.5 except that it performs an old data read and
stores that to the data log as well. This requires an extra
disk access and the maintenance of log maps requires
non-volatile memory at the clients as well.

Hot mirroring [9] and AutoRAID [10] are similar
techniques that attempt to move actively used data to
mirrored regions of the array and less frequently used
data to parity logged regions (hot mirroring) or parity
striped regions (AutoRAID). These systems require a
background process that evaluates the “hotness” of data
and then moves them to or from mirrored regions as
required. If a data block is in the parity striped region,
it will remain there until a background process has
tagged it as hot even if it is experiencing high activity.
The process is similar to RAID0.5 in that active data
is mirrored. RAID0.5 systems, however, dynamically
adjust to the activity of the data since the latest updated
data is always pushed to the replication region or disk.

VII. C ONCLUSIONS

In this paper, we have described a variation of disk
array striping called RAID0.5. The proposed architec-
ture has very high data loss protection characteristics
compared to RAID0 with very little overhead. By taking
advantage of the fact that offline backup will protect
most data, RAID0.5 saves replication space by only
duplicating data that has changed since the last backup.
Therefore, RAID0.5 allows smaller disk arrays to have
data protection without resorting to mirroring. The major
drawback to RAID0.5 is that the storage system is not
available after a failure and thus is not suitable in high
availability 24/7 environments. However, RAID0.5 does
provide a way to achieve low cost data protection in

small desktop disk arrays. RAID0.5 can also be extended
to provide snapshotting and RAID5 parity caching.

REFERENCES

[1] M. Y. Kim, “Synchronized disk interleaving,”IEEE Trans. Com-
puters, vol. C-35, pp. 978–988, Nov. 1986.

[2] K. Salem and H. Garcia-Molina, “Disk striping,” inInternational
Conference on Data Engineering, pp. 336–342, 1986.

[3] D. A. Patterson, G. A. Gibson, and R. H. Katz, “A case for
redundant arrays of inexpensive disks (RAID),” inProceedings
of the ACM SIGMOD International Conference on Management
of Data, pp. 109–116, June 1988.

[4] C. Ruemmler and J. Wilkes, “A trace-driven analysis of working
set sizes,” Technical Report HPL-OSR-93-23, Hewlett-Packard,
Palo Alto, CA, Apr. 1993.

[5] IOZone. http://www.iozone.org, Feb. 2005. v. 3.242.
[6] R. Y. Wang, T. E. Anderson, and D. A. Patterson, “Virtual log

based file systems for a programmable disk,” inProceedings of
Symposium on Operating Systems Design and Implementation,
pp. 29–43, Feb. 1999.

[7] D. Stodolsky, G. Gibson, and M. Holland, “Parity logging:
Overcoming the small write problem in redundant disk arrays,”
in Proceedings of the International Symposium on Computer
Architecture, 1993.

[8] E. Gabber and H. F. Korth, “Data logging: A method for efficient
data updates in constantly active RAIDs,” inProceedings of the
International Conference on Data Engineering, pp. 144–153,
1998.

[9] K. Mogi and M. Kitsuregawa, “Hot mirroring: A method of
hiding parity update penalty and degradation during rebuilds
for RAID5,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 183–194, June 1996.

[10] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “TheHP
AutoRAID hierarchical storage system,”ACM Transactions on
Computer Systems, vol. 14, pp. 108–136, Feb. 1996.

[11] R. M. English and A. A. Stepanov, “Loge: A self-organizing stor-
age device,” inProceedings of the Winter USENIX Symposium,
pp. 237–252, Jan. 1992.

[12] C. Chao, R. English, D. Jacobson, A. Stepanov, and J. Wilkes,
“Mime: A high performance parallel storage device with strong
recovery guarantees,” Technical Report HPL-CSP-92-9 rev 1,
Hewlett-Packard, Palo Alto, CA, Mar. 1992.

[13] T.-C. Chiueh, “Trail: A track-based logging disk architecture for
zero-overhead writes,” inProceedings of International Confer-
ence on Computer Design, pp. 339–343, Oct. 1993.

[14] T.-C. Chiueh and L. Huang, “Track-based disk logging,”in
Proceedings of International Conference on Dependable Systems
and Networks, pp. 429–438, June 2002.

[15] J. Menon, J. Roche, and J. Kasson, “Floating parity and data disk
arrays,”Journal for Parallel and Distributed Computing, vol. 17,
pp. 129–139, Jan. 1993.

[16] M. Zhang, X. He, and Q. Yang, “Implementation and perfor-
mance evaluation of RAPID-Cache under Linux,” inProceedings
of the International Conference on Parallel and Distributed
Processing Techniques and Applications, June 2002.

[17] Y. Hu and Q. Yang, “DCD - Disk caching disk: A new approach
for boosting I/O performance,” inProceedings of the Interna-
tional Symposium on Computer Architecture, 1995.

