
Data Integrity in a Distributed Storage System

Jonathan D. Bright
Sigma Storage Corporation

Emeryville, CA U.S.A.

John A. Chandy
Department of Electrical and Computer Engineering

University of Connecticut
Storrs, CT, U.S.A.

Abstract Distributed storage systems must provide
highly available access to data while maintaining high
performance and maximum scalability. In addition,
reliability in a storage system is of the utmost impor-
tance and the correctness and availability of data must
be guaranteed. We have designed the Sigma cluster
file system to address these goals by distributing data
across multiple nodes and keeping parity across these
nodes. With data spread across multiple nodes, how-
ever, ensuring the consistency of the data requires spe-
cial techniques. In this paper, we describe fault toler-
ant algorithms to maintain the consistency and relia-
bility of the file system - both data and metadata. We
show how these techniques guarantee data integrity
and availability even under failure mode scenarios.
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1 Introduction

The traditional storage solution has typically been
direct attached storage (DAS) where the actual
disk hardware is directly connected to the appli-
cation server through high-speed channels such
as SCSI or IDE. With the proliferation of lo-
cal area networks, the use of network file servers
has increased, leading to the development of sev-
eral distributed file systems that make the local
server DAS file system visible to other machines
on the network. These include AFS/Coda [1],
NFS [2], Sprite [3], CIFS [4], amongst others.
However, with a single file server for a large num-
ber of clients, the scalability is limited. In an ef-
fort to remove the bottleneck of the single server
model, there has lately been significant work in
the area of clustered or distributed storage systems.
These include distributing data amongst dedicated

shared storage nodes [5] and network-attached se-
cure disks (NASD) [6], or distributing the data
amongst the clients themselves in so-called server-
less storage systems [7]. The migration to these
systems has been driven by the need to increase
concurrent access to shared data.

Concurrent access to shared data requires uni-
fied file systems or storage managers associated
with these distributed storage systems [8, 9, 10].
In order to improve data bandwidth, these file sys-
tems or storage managers typically stripe the data
across the nodes in the storage system. The dis-
tribution of shared data, however, introduces diffi-
culties in managing concurrent access to this data.
Algorithms to ensure consistency in shared data
access have been proposed in previous reported
work [11, 12, 5]. In addition to maintaining data
consistency, a key requirement of these file systems
must be the ability to deal with potential system
failures. With multiple nodes in a cluster, the like-
lihood of failure of a single node increases. This
means that any data consistency algorithms must
also be fault-tolerant. In addition, the data must
not only be correct but also be available in the face
of failures in the system. These failures may be
at any level from network interface, to processor,
to disk. A simple technique to increase data avail-
ability is to stripe data using RAID [13] techniques
such as parity protection or mirroring. However,
applying RAID techniques to a clustered storage
system introduces new challenges.

In this paper, we present algorithms for manag-
ing consistent access to both the metadata and data
in a file system for distributed storage, in particu-
lar for the Sigma cluster file system [14]. We de-
scribe techniques used to ensure a functioning sys-
tem in the face of failures. The paper is organized
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Figure 1: Clustered Storage.

as follows: we first provide a brief background of
the Sigma cluster file system and storage architec-
ture. Then in subsequent sections we describe our
algorithms to preserve consistency and data avail-
ability. In addition to just a theoretical description
of the algorithms and techniques, we also discuss
some of the issues and challenges of software fault
tolerance with an implementation of the file sys-
tem.

2 Sigma Cluster File System

The Sigma Cluster File System (SCFS) is based
on a clustered storage architecture. The physical
layout is shown in Figure 1. Clients can connect
to the Sigma cluster using a distributed file system
protocol such as NFS or CIFS. However, unlike a
traditional single-server model, the client can con-
nect to any of the nodes in the cluster and still see
the same unified file system. The multiple nodes in
the cluster allow the Sigma system to eliminate the
single-server bottleneck of a traditional file server
system. In this model, applications do not run on
the cluster nodes but run on client nodes and com-
municate with the cluster storage through NFS or
CIFS protocols.

NFS and CIFS data requests are translated
through a POSIX-like API called the clientlib. The
clientlib takes these requests and conveys them to
the SCFS, which is distributed across the nodes of
the cluster. The SCFS is responsible for the file
management as well as data distribution, i.e. strip-
ing data across nodes using varying redundancy
policies. The SCFS is implemented using a collec-
tion of process objects which provide various sys-

tem services. These processes run on the cluster
machines and communicate with each other using
remote procedure calls (RPC) to provide full file
system functionality. Each cluster node may run
multiple or no instances of particular services.

The SCFS distributes data blocks from a file in
a round-robin fashion across a subset of the nodes
in its cluster. In other words, even though clients
communicate with a single node in the cluster us-
ing a file access protocol, the cluster file system
will automatically convert that file access protocol
into multiple distributed block access requests to
other nodes in the cluster. In addition, to improve
data reliability, the files are distributed with either
parity or mirroring redundancy.

3 SCFS Consistency

In this section, we discuss methods to ensure file
data integrity in the SCFS. It is clear that distribut-
ing data across multiple nodes can cause concur-
rency problems. For example, if multiple clients
are writing to the same file, the data that is written
to the blocks may not be sequentially consistent,
unless there is proper access control. If the data is
distributed using parity, the problem could become
a latent error, as the data may be consistent, but the
parity is inconsistent, meaning that the error is not
apparent until a failure occurs and parity is actu-
ally accessed to reconstruct the data. Under failure
scenarios, even access control scenarios may not
be enough to prevent data corruption. We discuss
algorithms to address this problem in section 4.2.

3.1 Virtual Device Controller

We have introduced a concurrency control mecha-
nism similar to the device-served locking method
described in [11]. In order to ensure safe access to
the files, we introduce a file-based locking mech-
anism. Each file is mapped to a per-file abstract
object called a virtual device which is in turn man-
aged by exactly one of a set of virtual device con-
trollers (VDCs) distributed throughout the cluster.
A VDC is one of a set of processes instantiated on
each node and at any point in time, a VDC may
host zero, one, or more virtual devices. However, a



critical point is that a virtual device will be hosted
by only VDC at a time. This ensures that any
accesses to that virtual device will be serialized
through the hosting VDC, and thus guaranteeing
safe and consistent access. Moreover, this is not a
potential source of deadlocks, because the assign-
ment of a virtual device to a particular VDC does
not restrict access to the virtual device. Rather, all
access to the virtual device will now be serialized
through the VDC to which it is assigned. Deadlock
is not an issue because the locking/serialization is
at the file level rather than at the finer granularity
block level where multiple locks may need to be
acquired.

In order to guarantee exclusive ownership of a
virtual device, the SCFS provides a system service
known as the Global Controller (GC). The GC is
instantiated on a single machine and it grants ex-
clusive ownership of virtual devices to VDCs. The
GC is not a significant bottleneck, since its func-
tionality can easily be distributed amongst many
instances. For example, if there are two instances
of the GC, even-numbered virtual devices may be
assigned to one instance and odd-numbered virtual
devices would be assigned to the other instance.
We will go into more detail about the GC in the
following section.

To make the process more concrete, we offer
this example. Client 1 contacts server A to write
to file “foo”. Server A contacts the GC to deter-
mine who the owning VDC is. The GC responds
that the owning VDC is on server C. At the same
time, client 2 contacts server D to read from file
“foo”. It too is told by the GC that the VDC for
the file is on server C. The clientlibs on both server
A and server D will forward the client requests to
the appropriate VDC on server C. The VDC will
then process the requests from client 1/server A
and client 2/server D in sequential order. There is
no guarantee on ordering, but the VDC will guar-
antee that only one request proceeds at a time.

Serialization through a VDC allows us to avoid
the scalability limitations of centralized locking
mechanisms. The drawback is the overhead when
there is significant contention on a single file. In
typical file usage patterns, contention on a single
file is not an issue since it rarely happens.

3.2 Global Controller

We now describe in more detail the GC, and how
the GC interacts with the VDCs processes running
on every machine. This protocol had several prin-
cipal design goals. Two VDCs must never host the
same VD at the same time. It must handle machine,
network, and possibly software failures, without
generating inconsistent states and it must be effi-
cient.

The GC must be instantiated by the cluster
on one and only one machine. This instantia-
tion process is an example of the well known
leader election problem. There has been signifi-
cant work in this area and our algorithm is simi-
lar to previous work [15]. We elect the GC using
an asynchronous-iterative election protocol. By
asynchronous-iterative, we mean that every ma-
chine iterates independently of the other machines
in the cluster, and that each machine independently
comes to a final consensus about which machine in
the cluster is the GC. We don’t describe the algo-
rithm in further detail, since the problem is well
studied and our approach is not unique.

Recall, that every machine runs zero or more in-
stances of the VDC service. A separate process,
called the Local Controller (LC) manages all of
the VDC processes on a machine. When the LC
starts up, it spawns (using POSIX fork()) all of
the VDCs for the machine. This (in the POSIX
sense) parent/child relationship allows for signals
to be sent from the LC to the VDCs without the
worry of race conditions (i.e. if a VDC has ab-
normally terminated, but not been ”waited” for by
the LC, the process ID will not be reused by the
system, preventing the undesirable situation of an
unknown process receiving the signal). Also, when
the LC terminates, the VDCs will automatically be
sent a signal by the kernel, and will immediately
terminate themselves.

The interaction between the GC, the LC, and
all of the VDCs on a machine can be quite com-
plex. These services are normally invoked by an
RPC mechanism, though the critical point is that
only one protocol method is ever invoked at a time.
Deadlock could occur if two services ever try to
synchronously invoke each other’s methods at the
same time (or if a cycle existed amongst the ser-



vices.) But there are a few simple rules govern-
ing which services are allowed to invoke protocol
methods of which other services, and a quick anal-
ysis makes it clear that deadlock is always avoided.

The VDC makes synchronous RPC calls to both
the GC and to its controlling LC. The LC only ever
makes asynchronous calls, and these are initiated
only during LC startup and during error conditions.
The GC makes asynchronous calls to the LC dur-
ing error conditions, but also makes what might be
considered semi-synchronous calls to the LC dur-
ing startup, and we present more details in the fol-
lowing section. It should be clear that the described
sequence of calls between the VDC, LC, and GC
will never cause deadlock.

The GC also periodically checks to see if a ma-
chine has failed, using a service called the Cluster
Status Monitor. This service periodically queries
daemons on all the nodes to determine the status
of all nodes in the cluster. In the case when the
GC detects that a machine has failed, it revokes
all the assignments to that machine and queues up
an asynchronous call to LC shutdown() in case the
machine was only temporarily unavailable.

4 Failure Mode Availability

4.1 Failure Model

Before discussing our algorithms for maintaining
data availability, it is useful to explain the failure
model assumed. We define availability of the file
system as no loss of data under any single failure
condition and continued response to client nodes.
The potential failures in the system that we con-
sider are permanent and transient failures to a sin-
gle machine, cluster partitioning, and disk failures.
We define these faults as clean errors. Our al-
gorithms are completely clean-error-tolerant. Un-
clean errors are faults such as multiple machine
failures and incorrect data.

4.2 Writes Under Failure

In the context of a distributed system, writes are
more interesting than reads - particularly with par-
ity striped writes. Concurrent access to shared data
introduces difficulties in managing consistency of

data, and in the presence of failures, these diffi-
culties become even more challenging. Problems
can arise even with a single failures due to latent
parity errors. To solve this problem, we use a mod-
ified two-phase write-commit protocol. In the first
phase, the VDC will issue write commands to the
appropriate nodes that are storing the data for this
device. For the purpose of clarity in this example,
we will call these nodes the storage nodes, though
in reality they are equivalent to all other nodes in
the cluster. The parity is also calculated and sent
to the storage node hosting the parity for this de-
vice. However, the storage nodes do not actually
flush the data to stable storage at this time. They
hold on to the data waiting for a commit from the
VDC. After sending the data to the storage nodes,
the VDC will then notify a “shadow” VDC running
on another node that a write has been initiated to a
particular set of storage nodes. Then, the VDC will
issue commit commands to the respective nodes,
which will then complete the write.

If there is a single failure of any of the involved
storage nodes before the commit has been issued,
the primary VDC will still issue the commit. How-
ever, since one of the storage nodes has failed, its
data and thus a region of the virtual device is no
longer consistent. Since the VDC will not have
received a confirmation response back from the
failed storage node, it will know that it has failed. It
will use that information to mark the inconsistent
region of the virtual device as dirty. This infor-
mation is kept local to the VDC. Therefore, dur-
ing a subsequent read to that inconsistent region,
the VDC will notice that it has marked that region
as dirty and thus reconstruct the data using parity
rather than reading from the failed storage node.
The VDC will do so even if the failed storage node
has in the mean time recovered from what was a
transient error. This is key because if the VDC was
to read directly from the previously failed storage
node, it would get inconsistent data. The use of
dirty region marking prevents this from occurring.

If the node hosting the primary VDC itself fails
before the commit phase, the data will never get
written to stable storage. The higher level clientlib
call will eventually timeout leading to a timeout to
the client application. The client can then reissue
the request to write to the file - this process is auto-



matic when using NFS. The clientlib upon receiv-
ing the new request will find that the VDC origi-
nally responsible for the file is no longer available.
It will contact the GC which will grant ownership
of the file to a different VDC on a working node.
The write request can then be forwarded to the new
VDC, and since we assume only a single failure,
this time the write will succeed.

If the primary VDC fails after the commit phase
has started but before it completes, the shadow
VDC will notice this and will finish issuing the
commits. If at any point during the commit phase,
any of the involved storage nodes fail, the primary
VDC will notice this and mark that particular re-
gion dirty in its local memory. As with the above
scenario, the use of marked dirty regions prevents
the use of inconsistent data.

4.3 Distributed Dirty Regions

Marked dirty regions are a key component to fail-
ure tolerance and recovery. However, since they
are kept in memory local to a VDC, the infor-
mation could be lost on a subsequent failure to
the node hosting the VDC. To guard against this,
the SCFS includes a service called the fact server.
Whenever a VDC updates the dirty regions for a
particular virtual device, it also conveys that in-
formation to the fact server. The fact server ser-
vice acts like a distributed fault tolerant datastore,
using a data replication scheme based loosely on
quorum-based methods [16].

The fact server is implemented as a collection
of processes - one instantiated on each node. A
client of the fact server, such as the VDC, will send
its fact, to the local instance of the fact server. In
the case of the VDC, the fact is the dirty region.
When the local instance receives the fact, it will
send copies of that fact appended with a timestamp
to two other fact server instances on other nodes in
the cluster. In this manner, the fact is guaranteed
to be existing on some node in the cluster in case
of any failure. Moreover, the fact server will pe-
riodically flush its data to stable storage to guard
against total system failures.

To illustrate the fact server behavior, let us re-
turn to the use of the fact server with dirty re-
gions. When the VDC for a particular virtual de-

vice fails, the virtual device will get rehosted on an-
other VDC. When control of the virtual device has
passed to the new VDC, the new VDC can fetch
the dirty region from the fact server and thus keep
its internal copies of the dirty regions up to date.

4.4 Recovery and Reconstruction

After a machine fails, a human administrator can
declare to the cluster that the machine has perma-
nently failed, and initiate a reconstruction. While
the software can automatically detect failures, hu-
man administrators can provide more meaningful
information such as the cluster node being down
simply for maintenance. In the normal case, a
new machine will be added to the cluster before
reconstruction is started, though this is not strictly
required provided the remaining cluster machines
have enough physical storage space to perform the
reconstruction. Reconstruction proceeds in several
phases. In the first phase, exactly which virtual de-
vices that have been damaged is determined. In the
second phase, the virtual devices are repaired.

Phase One As there is no centralized database
which stores the stripe patterns of all of the virtual
devices, this phase must necessarily be distributed.
Every machine scans its local storage pool to de-
termine all of the virtual devices which had a data
stripe stored on the failed machine. Based upon a
simple hash function of the virtual device number,
this information is distributed to the cluster ma-
chines for analysis. For example, if there are four
machines in the cluster, machine 0 would receive
stripe information for the virtual devices numbers
(0, 4, 8, etc). After all of this information has
been distributed, each machine analyzes the stripe
information for the subset of virtual devices that
it is responsible for, and then determines which
virtual devices have a missing data stripe. This
phase runs relatively quickly, as it involves only
a small amount of disk activity, and the mount of
data transmitted over the network is small.

Phase Two In this phase, the damaged vir-
tual devices are reconstructed. Based on a tun-
able parameter, one, two, or more virtual devices
can be reconstructed in parallel by each machine.



This parameter affects the percentage of cluster re-
sources devoted to reconstruction, and hence the
more virtual devices reconstructed in parallel, the
higher the response time for NFS/CIFS requests
during reconstruction. When machine

�
recon-

structs device � , it uses the standard cluster pro-
tocols for modifying virtual devices. Specifically,
the GC/VDCs protocol is used to assign virtual
devices to VDCs, and the fact server is updated
as the reconstruction takes place. Because of
this, NFS/CIFS clients can access and modify data
while the reconstruction is taking place. Also, re-
construction can be safely and efficiently stopped
and restarted.

Although most of the reconstruction algorithm
is straight-forward, some care needed to be exer-
cised in places. For example, before a new stripe
column for a damaged virtual device is created on
a new machine, the fact server needs to be notified
that the data in the new stripe column is incorrect.
Then the data is reconstructed and written to the
stripe column, and finally the fact-server is notified
that the stripe-column is now correct. By following
this order, we guarantee correctness even if recon-
struction is halted partially through.

5 File System Integrity

Most of the discussion so far has been concerned
with ensuring the consistency and fault tolerance
of reads and writes to data files. This section dis-
cusses the File System Integrity Layer (FSI), which
ensures consistency and fault tolerance at the file
system level, e.g. operations such as “create file”,
“rename file”, etc. The FSI performs two main
functions. First, it prevents two clientlibs from
performing conflicting File System Modification
(FSM) operations, for example, both clientlibs re-
naming the same file at the same time. Before
the clientlib performs an FSM, it attempts to lock
the necessary entries with the FSI. After the nec-
essary File System Objects have been modified,
the clientlib unlocks the entries. Second, it acts
as a journaling layer, by replaying operations from
clientlibs that are on machines that fail. In the cur-
rent implementation, the FSI cannot run on any
machine that also has a clientlib running, other-

wise, the replay will not occur on failure. Sec-
ondly, there is one FSI for the entire cluster. This is
clearly a scalability issue as cluster sizes get large.
We anticipate that we will have to support multiple
FSIs by partitioning the file system.

When the FSI shuts down cleanly, for exam-
ple, due to impending power outage, it flushes the
state of all pending FSM operations. When the FSI
restarts after a clean shutdown, it reads its prior
state and resumes operation. When the FSI restarts
after an unclean shutdown, before allowing new
FSMs to proceed, it waits approximately 30 sec-
onds to allow all existing clientlibs to re-register
the FSMs that they were working on. A clientlib
trying to register a new FSM during this time will
block.

The FSI is implemented using a special virtual
device for persistence, accessed through the VDC
interface discussed earlier. This way, reliable per-
sistence is achieved, and we are able to reuse the
existing infrastructure to insure that at most one
machine runs the FSI service at a time.

The FSI also allows the clientlib to lease an en-
tire directory, and in this mode, the FSI maintains
the contents of the entire directory, as opposed to
only the outstanding FSM operations on that di-
rectory. (An implementation based on maintaining
”diffs” would be more efficient for extremely large
directories.) In this mode, the clientlib does not
need to perform the usual ”lock/unlock” protocol
methods, and instead, just informs the FSI of the
change to the directory. In addition, the update of
the actual directory object can be delayed until the
directory lease is released. These are useful perfor-
mance enhancements when dealing with the rapid
creation and deletion of temporary files.

6 Conclusions

In this paper, we have presented a series of algo-
rithms for a fault-tolerant distributed storage sys-
tem. The algorithms preserve data and file system
integrity and consistency in the presence of concur-
rent reads and writes. We have shown how these
protocols are designed to be tolerant of single-fault
failures both transient and permanent. The proto-
cols are designed with fault-tolerance as a principal



design commitment rather than as an afterthought.
We have also described practical implications of
fault tolerant algorithms and their relationship to
software in a real system.
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