User Space Storage System Stack Modules with File Level Control

Sumit Narayan
Dept. of E.C.E.
Univ. of Connecticut, USA

sumitn@engr.uconn.edu

Abstract

Filesystem in Userspace (FUSE) is a typical solution
to simplifying writing a new file system. It exports
all file system calls to the user-space, giving program-
mer the ability to implement actual file system code in
the user-space but with a small overhead due to con-
text switching and memory copies between the kernel
and the user-space. FUSE, however, only allows writ-
ing non-stackable file systems. The other alternative
to simplify writing file system code is to use File Sys-
tem Translator (FiST), a tool that can be used to de-
velop stackable file systems using template code. FiST
is limited to the kernel space and requires learning a
slightly simplified file system language that describes
the operation of the stackable file system. In this work,
we combine FUSE with FiST and present a stackable
FUSE module which will allow users to write stackable
file systems in the user-space. To limit the overhead
of context switching operations, we provide this mod-
ule in combination with our previously developed AT-
TEST framework that provides ways to filter files so that
only those with specific extended attributes are exported
to the user-space daemon. Further, these attributes can
also be exported to user-space where multiple functions
can behave as stackable modules with dynamic order-
ing. Another advantage of such a design is that it al-
lows non-admin users to have stackable file system im-
plemented and mounted, for example, on their respec-
tive home directories. In our experiments, we observe
that having stackable modules in user-space has an over-
head of around 26% for writes and around 39% for reads
when compared to the standard stackable file systems.

1 Introduction

The file system is often seen as one of the most critical
part of an operating system. It handles the task of storing

Rohit K. Mehta
E.C.S., School of Engineering
Univ. of Connecticut, USA

rohitm@engr.uconn.edu

John A. Chandy
Dept. of E.C.E.
Univ. of Connecticut, USA

chandy@engr.uconn.edu

and organizing user files and their data on the underly-
ing storage devices. It is comprised of very complex C
kernel code which takes several months to develop and
stabilize and is usually written for a particular operat-
ing system platform. The file system code must interact
with the operating system’s virtual file system manager
to receive system calls from the user-space, with virtual
memory manager for page allocation and memory man-
agement within the kernel and with the virtual device
layer to communicate with the storage devices and store
data. This makes the file system code remarkably com-
plex to understand and very hard to develop. An aver-
age modern file system is comprised of around 50,000—
60,000 lines of code and supports a variety of features,
such as B-tree based search, flexible data extents, access
control lists, extended attributes, etc. [28]. This low-
level kernel code is very difficult to program and is often
the origin of bugs in a storage system [9, 17]. To add
any new feature in a file system, a programmer needs
to have a thorough understanding and working of the
file system. Apart from programming, providing sup-
port and maintenance for such large and complex file
systems with several features and diverse mount options
is also very hard. Thus, file system development and
maintenance is always considered to be the work of the
select few who have a very deep knowledge of the file
system and also the operating system.

Several techniques have been suggested to simplify the
process of file system development. To address the need
to quickly develop and incorporate new features in an
existing file system, the Linux kernel has provisions for
implementing stackable file systems. Stackable file sys-
tems [21, 10] give developers a quicker way to add new
features to a file system through an extensible file sys-
tem interface. It reduces the complexity of developing a
newer file system, in that it allows features to be added
incrementally in steps instead of creating a new file sys-
tem from scratch, or modifying an existing one. How-
ever, to obtain the best performance, these file systems

are tightly integrated into the Linux kernel or are de-
signed and developed to run as a kernel module, thus
requiring the uphill task of understanding the kernel be-
fore starting to develop a file system. File System Trans-
lator (FiST) [27] is a file system generation tool that
simplifies the task of creating stackable file systems by
generating most of the code from a standard file system
template. The programmer is required to provide code
only for the main functionality of the file system, which
is then called from another code written in FiST lan-
guage and fed to the FiST file system generation tool.
The resulting code can then be inserted into a live sys-
tem as a loadable kernel module. However, the sim-
plified coding now requires learning a new file system
template language.

Kernel-space file systems are not always the best way to
develop a file system and suffer from several drawbacks.
They cannot be ported across different platforms and
they also do not provide any options for non-privileged
users to mount a file system. File system in User Space
(FUSE) is another solution to simplify writing a file sys-
tem and can be ported across different operating system
platforms. It has been integrated into the Linux kernel
tree and has ports available for other major operating
systems. FUSE exports all file system calls within the
kernel to the user-space through a simple application
programming interface (API) by connecting to a dae-
mon that is running in the user-space. FUSE provides
a good way to write virtual file systems, in that the file
systems do not store any data themselves. Writing a file
system in user-space is several folds easier when com-
pared to writing a kernel-space file system. FUSE also
has provisions to permit non-privileged users to mount
FUSE-based file systems. These user-space file sys-
tems however come with a small overhead due to con-
text switches and memory copies made during the data
transfer operations [25, 26].

As discussed above, FiST and FUSE are two very com-
mon solutions to simplify the process of writing file
systems. But, as observed, performance, portability
and availability to non-privileged users, all cannot be
achieved together. In this work we propose a stackable
FUSE architecture that will allow developing stackable
file systems in user-space. And to limit the overhead
due to context switching between the kernel space and
user-space, we propose to combine this stackable FUSE
design with ATTEST, an attribute-based storage frame-
work that allows defining policies to filter files and thus

User Process User space

A

\4

Virtual File System Kernel space

A

\/

Stackable file
system

A

Y

File System (Ext2/Ext3/JFS/Reiserfs/XFS)

Figure 1: Stackable file systems.

file system operations on a per-file or per-directory ba-
sis [15].

The remainder of this paper is organized as follows.
Section 2 discusses the stackable file system model,
while Section 3 describes the FUSE architecture. Sec-
tion 4 describes the previously developed ATTEST
framework for an extendable storage system. In Sec-
tion 5, we provide details of our design for stackable
FUSE module, Section 6 gives a brief description of our
implementation approach and Section 7 shows the per-
formance results. Section 8 is an overview of the related
work. We end this paper with a section on our conclu-
sions and proposed future work.

2 Stackable File Systems

The idea of stackable or layered file systems was
adapted from the vnode interface first implemented on
SunOS in 1984 [12]. Stackable file systems [20, 21,
24, 22] are stand-alone file systems that can be mounted
on top of an existing file system mount point. Figure 1
shows the typical arrangement of a stackable file sys-
tem present between the Virtual File System (VFS) and
a lower-level file system, which may or may not be a
device-based file system. The advantage of developing
a stackable file systems is that they can be used to ex-
tend the functionality of an existing file system without
changing the code of the original file system. A stack-
able file system creates a vnode with its own operations
that is inserted on top of the vnode belonging to the un-
derlying file system. This allows a stackable file system
to perform operations in between the VFS and the lower
file system calls. For example, an encryption process

can take place before the data is written on the lower file
system, or, a decryption function can be run after the
data is read from the lower file system. Stackable file
systems can be used to add many functionalities such
as compression, encryption, caching, etc. to an exist-
ing file system. Other examples of stackable file sys-
tems include WrapFS [26], UnionFS [18], RAIF [11],
AVFES [14], etc.

fistgen is a set of File System Translator (FiST) language
and tool that allows a developer to create a stackable file
system by only describing the core functionalities of the
file system [27]. The file system generator tool, gener-
ates the code for a file system that can be directly loaded
as a kernel module into a live Linux system. To add
some of the functionalities in FiST, however, requires
learning a new language. Since loading a kernel mod-
ule in a system is restricted to privileged users only, file
systems generated using FiST can only be used if in-
serted into the system previously by an administrator or
a privileged user.

3 File system in User space (FUSE)

Filesystem in Userspace (FUSE) is a combination of a
user-space library and a kernel module for Unix-like op-
erating systems that allows non-privileged users to cre-
ate their own file systems without editing the kernel
code [2]. This is achieved by running the file system
code in user-space, while the FUSE module only pro-
vides a bridge to the actual kernel interfaces through a
set of APIs. FUSE’s kernel module simply redirects the
Virtual File System (VFS) calls to the user-space dae-
mon. Figure 2 shows the internal architecture of FUSE.
Several FUSE-based file systems are already in com-
mon use. FUSE can be particularly useful in providing
a POSIX interface for files which are accessible over the
network through different network protocols. Some of
the file systems based on such a design are sshfs [6],
httpfs [31, CurlFtpFs [1], etc. FUSE file systems are
easier to maintain since they run in user-space. They are
also easier to code and debug compared to the kernel
file systems. Running file system in user-space also im-
plies access to more libraries. Thus, FUSE file systems
can be written in any language that has a binding to the
FUSE libraries, including Ruby and Python.

However, file systems created using FUSE are always
the lowest file system in the storage stack. This means
that all FUSE requests must return from the FUSE

' |
| User-space file i
1 system code !
! |
poTTTmmmmmeees v § |
1 1 1
\ Is -I /mnt/fuse ! E libfuse i
1 Il | 1
1 Il | 1
1 1
! § P i !
! |
i glibc b glibc !
)]
— N —
User-space 4 4
Kernel-space
\4 \4
< > FUSE
Virtual
File
System EXT3
(VFS)
NFS

Figure 2: FUSE architecture showing kernel module and
user-space library.

layer to the user-space applications without going to the
lower-level file system within the kernel, similar to a
stackable file system. Thus, FUSE, in its current form is
not a solution for developing a stackable user-space file
system.

4 ATTribute-based Extendable STorage (AT-
TEST)

ATTEST is an attribute-based extendable storage frame-
work that allows policy decisions to be made at file-level
granularity and at all levels of the storage stack through
the use of file’s, or directory’s extended attributes [15].
These attributes can be used to enable or disable stack-
able file systems thus behaving like plugins and also al-
low the user to define rules to identify redundancy or
throughput requirements on per-file basis to select the
device for storing data. ATTEST allows user to set de-
fine file-based rules or directory-based policies that will
selectively enable or disable options at each layer within
the storage system stack. The rules set on a file are
stored in the file’s extended attributes and move with the
file while directory-based policies are set on all files cre-
ated under it. By allowing per-file attribute-based poli-
cies, it becomes possible to implement storage policies
on a much smaller granularity. The ATTEST framework
also pushes these attributes to the operating systems’
storage device layer called the logical volume manager

User Process User space
Y
4

Virtual File System

Kernel space

The plugins are enabled
and disabled depending
on attributes set by the user.

A user can by-pass any
of these plugins on a
per-file basis by setting

extended attributes on
the file.
'

| File System (Ext2/Ext3/JFS/Reiserfs/XFS) |

Device Mapper (LVM)

3 3 3
RAID RAID Regular SSD
5 0 Disk

Figure 3: ATTEST architecture with cache, encryp-
tion, compression, backup plugins and RAID-5, RAID-
0, regular disk, SSD and tapes.

(LVM). This allows the user to also pass a file’s proper-
ties and its data redundancy or throughput requirements.
ATTEST framework will then select the device based
on those attributes to store data blocks belonging to that
file.

The ATTEST framework was designed with the objec-
tive to include computationally expensive, but necessary
functionalities at the file system layer, or in the device
manager layer under a single file system mount-point
but with user-controlled rules or policies to determine
which files or directories will really be applying them.
Such a scheme would allow including functionalities
in file systems which are otherwise typically ignored
simply to avoid distributing their computation overhead
across all files present on the file system. Typical ex-
amples of such functionalities include encryption, com-
pression, redundancy, etc.

5 Stackable FUSE

As already mentioned, FiST and FUSE are techniques
to design new file systems with lower learning curve as

sfuse file system

A
A4

User Process sfuse library

A A User-space
v Kernel space

VFS

sfuse

A

A4

Lower File System
(EXT3/JFS/ XFS)

A
\4

Figure 4: Operation flow in sfuse with a user-space sfuse
file system.

compared to writing a standard kernel-level file system
from scratch. FiST helps by extending functionalities
of an existing file system while FUSE allows easy pro-
gramming and maintenance of file system in the user-
space. FUSE also provides the ability for non-privileged
users to mount file systems and use it.

In this work, we propose a new stackable file system
module called sfuse that will provide users with a FUSE-
like interface in user-space to write their own file sys-
tem in the user-space. The added advantage of sfuse and
the difference compared to FUSE is that it will provide
stackability similar to that available using FiST. Thus,
data in all I/O operations will be sent to the user-space,
copied or modified, and returned to kernel-space to be
pushed to the lower-level file system. Since a FUSE-
based file system have a cost due to context switching
and memory copies, we plan to extend the idea of AT-
TEST and limit the overhead only to files that require
the user-space functionality implemented in the file sys-
tem.

There are several advantages of porting file system
stackability to the user-space. One of the main advan-
tages is that such a scheme would allow any user on the
machine to mount a stackable file system without the
need of administrator privileges. Along with stackabil-
ity, per-file control on the files will allow the user more

control on how the files are treated. sfuse also avoids
the need for the user to understand the FiST language in
developing a stackable file system. Figure 4 shows the
operation flow with a sfuse-based file system present in
the user-space. In case of READ, the data would flow
away from the lower file system, while during WRITE
operation, the data would flow towards the lower-level
file system. Section 6 provides more detail on the inter-
nals of the sfuse file system module.

6 Implementation

We implemented our stackable FUSE-like file system
sfuse on Linux kernel version 2.6.24. We started by first
creating a stackable base file system basefs using FiST.
We used a patched source of FiST version 0.2.1 to create
the stackable file systems which was compatible with
the Linux kernel version present on our machine. sfuse
is designed to export all file system operations to the
user-space daemon, similar to the default FUSE mod-
ule. To export I/O functions to the user-space daemon,
we modified the user-space FUSE library to receive re-
quests from the kernel even without any previous file
OPEN operation. All I/O requests are forwarded to the
user-space file system, irrespective of whether an OPEN
operation was performed on that file. This is in con-
trast to FUSE, where an 1/O operation can be performed
only after an OPEN call is made. This step is required
in FUSE to open the actual file on the ported file sys-
tem and obtain a file handle in the user-space. The file
handle information is later used in identifying the file
on which I/O needs to be performed. In sfuse, the file
is actually opened within the sfuse’s Linux kernel mod-
ule and multiple operations on the same file are handled
within the kernel module.

A user may however also opt to also use the exported
OPEN function in the user space, depending on the re-
quirement of the stacked file system. As an example,
for a simple encryption file system, encode and decode
functions can be run without having any knowledge of
the file handle. In another case, if the stackable file
system is designed to count number of times a file is
opened, OPEN functions will have to be implemented
in the user-space.

To implement stackability in FUSE, we also require the
user-space FUSE library to return the request data buffer
back to the kernel after performing the stack function.
This is done in the same way as any write operation

would be performed in FUSE module. File systems de-
veloped based on sfuse are mounted in the same way as a
FUSE-based file system. The mount binary file requires
two parameters — the mount point directory and the di-
rectory which needs to have the stacked functionality on
top of it. In the kernel, data structures for storing the
file system’s private information must include informa-
tion regarding the lower-level file system along with the
connection pointers of the user-space FUSE daemon.

The user can control the files which must be exported
to the user-space by using ATTEST. The user can lay
rules or set policies for each file by directly setting the
file’s extended attributes, or by including the rules in
the ATTEST config file. More details on how to set the
rules and policy in an ATTEST framework is explained
in [15]. Stackable FUSE also allows attributes set by the
ATTEST framework to be passed from the kernel-space
to the user-space as tags along with any I/O request.
This will allow the user to perform dynamic ordering
of multiple stacked functions in the user-space without
going back into the kernel-space.

Our current implementation only supports synchronous
operations. This means that all operations can return
to the kernel space only after the user-space functions
have returned. As part of our future work, we plan to
support asynchronous operations in sfuse library, which
will allow the requests to be appended to a queue in the
user-space file system. This queue will be cleaned by a
thread running continuously on the system. One place
where such a mechanism can be very useful is in per-
forming lazy data backup and deduplication on a per-file
or a per-directory basis. With the assistance of ATTEST
rules, the user can also define policies, such as, if the
files need to backed up after compression, or encryp-
tion, or neither.

7 Results

We evaluated the performance of sfuse by running 10-
Zone [4], a popular benchmarking tool that performs
synthetic read/write tests to determine the throughput of
the system over a variety of file system configurations.
We conducted our experiments on a 1.8 GHz dual-core
dual processor AMD Opteron machine with 2 GB RAM
and two 40GB hard disk drives running Linux kernel
2.6.24. The experiment was run for a file size of 2 GB
with record size set to 128 KB. Figure 5 shows the re-
sults with overhead of using sfuse compared to other file
system configurations.

30000

WRITE
READ

25000

20000

15000

Throughput (KBps)

10000

5000

Local File basefs
System (FiST) (sfuse) (kernel)

I ¥ 4
fusexmp basefs Encrypt Encrypt

(user-space)

Figure 5: Throughput comparison for different setup of
file system using I0Zone benchmarking tool on a 2 GB
file and record size of 128 KB.

We first ran I0Zone on a default EXT3 formatted non-
root partition to obtain the base performance of the sys-
tem without any stacks. Next, we ran IOZone on basefs,
a stackable file system generated by FiST. basefs is an
empty file system in that it simply forwards all calls
to the lower-level file system. By running I0Zone on
basefs, we evaluate the overhead of including a stack-
able file system between VFS and disk-based file system
such as EXT3. basefs is available along with the source
code of fistgen. From Figure 5, we can see that includ-
ing an empty stackable file system has a very negligible
overhead.

Our third experiment was run on a fusexmp file system
mount. fusexmp is a FUSE-based file system that simply
mirrors the root directory of the system on the mounted
directory. It is available freely along with the FUSE
source code [2]. Our experiments confirm the overhead
that is expected to be present on any FUSE-based file
system due to memory copies between user-space and
the kernel-space. We observed almost 10% overhead
for writes and slightly less than 15% for reads in this
test. Our fourth setup was an empty file system similar
to basefs, but set up in sfuse. This file system simply
returned the request back to the kernel space without
doing anything to the transferred data. We conducted
this experiment to observe the real overhead of context
switching and memory copy operations. In our experi-
ments, we observed an overhead of around 8% for writes
and around 5% for reads when compared to the local file
system.

Our fifth experiment was done on a slightly modified

version of cryptfs stackable file system available with
the fistgen source code. We disabled the encryption of
file names in cryptfs and only allowed data block en-
cryption. We implemented the same encryption algo-
rithm in user-space and implemented a sfuse file sys-
tem for it. We observed almost 26% overhead for writes
and around 39% overhead for reads by porting the code
to the user-space. The overhead in this case is primar-
ily because of context switching between the user-space
and kernel space. The data buffer memory is copied
two times in each I/O operation for each direction of the
data flow, i.e., once from the kernel to the user-space,
and then, from the user-space back to the kernel space.
This overhead also comes from several other aspects
within the operating system like processor registers that
need to be saved and restored, cache entries that need
to be evicted and reloaded for the incoming processes,
etc. [13, 19].

While the overhead in our experiments are certainly
non-negligible and casts doubt over the need to port
file systems into the user-space, we remind the reader
the benefits such as the ability for non-administrator ac-
counts to control their data, simpler programming and
debugging in user-space with FUSE bindings available
in many programming languages other than C and per-
file granularity control sufficient to make this a useful
solution. Further, our sfuse code has not been highly
optimized and could be improved significantly to lower
this overhead.

8 Related Work

Significant effort has been put into providing users with
control of their data in terms of where their data is
placed in the storage system. Redundant Array of In-
dependent Filesystems (RAIF) [11], for example, is a
stackable file system that allows user to define rules to
determine data placement policy. RAIF allows users
to distribute data across different file systems and de-
fine redundancy across it. UmbrellaFS [8] is another
solution that allows the users to define distribution pol-
icy, but across different devices with each device having
their own redundancy and throughput limitation. AT-
TEST differs from these existing solutions, in that AT-
TEST allows rules that enable or disable stackable plug-
ins mounted in the system by the administrator and also
allows the user to define rules on data placement by se-
lecting underlying storage devices, each with their own
redundancy or throughput characteristics.

Apart from FUSE, there also exist other solutions to
writing file systems in user-space. UserFS [7] was an
idea proposed in 1993 which exported file system re-
quests to the user-space through a file descriptor. puffs
is an export of FUSE-like library on the NetBSD oper-
ating system [5].

However, all these solutions limit themselves by either
allowing the user only to decide where the data is stored
or not providing stackability in the file system. To the
best of our knowledge, we know of no solution that pro-
vides the users a mount point interface that will allow
the user to modify or copy the data in a stackable fash-
ion without the need for having any root-privileges.

9 Conclusions and Future Work

In this paper, we have presented a stackable user-based
file system model which can be controlled based on
user defined rules. Most of the existing file systems
make compromise on adding costly functionalities be-
cause there is no way to make policy decisions at a finer
granularity. In this work, we reinforce our commitment
to providing users more control over policy decisions
on the files by using ATTEST. Stackable file systems in
user-space opens up a variety of opportunities to design
file systems. However, the stackability of these file sys-
tems are expensive due to context switching. By using
the ATTEST framework, we can select files and enable
stackability and absorb the overheads only for files that
require the stackable functions enabled.

In the future, we plan to implement a stackable module
in the LVM layer that will send data blocks present at the
disk level to the user-space daemon in a similar fashion.
This can be used to write user-spaced disk block ma-
nipulation functions such as data deduplication or snap-
shotting. Such a design will also allow users to write
their own disk layout algorithms [23, 16] from the user
space.

References

[1] CurlFtpFS - a FTP filesystem based on cURL and
FUSE.
http://curlftpfs.sourceforge.net/.

[2] FUSE: Filesystem in user space.
http://fuse.sourceforge.net.

[3] HTTP filesystem.
http://httpfs.sourceforge.net/.

[4] I0Zone. http://www.iozone.org.

[S] puffs - pass-to-userspace framework file system.
http://www.netbsd.org/docs/puffs/.

[6] SSH filesystem. http:
//fuse.sourceforge.net/sshfs.html.

[7] Jeremy Fitzhardinge. Userfs. http:
//www.goop.org/~jeremy/userfs/.

[8] John A. Garrison and A. L. Narasimha Reddy.
Umbrella file system: Storage management across
heterogeneous devices. In ACM Transactions on
Storage, volume 5, New York, USA, March 2009.

[9] Jim Gray. A census of tandem system availability
between 1985 and 1990. IEEE Transactions on
Reliability, 39(4):409-418, October 1990.

[10] John S. Heidemann and Gerald J. Popek. File
system development with stackable layers. In
ACM Transactions on Computer Systems,
volume 12, pages 58-89, February 1994.

[11] Nikolai Joukov, Arun M. Krishnakumar,
Chaitanya Patti, Abhishek Rai, Sunil Satnur,
Avishay Traeger, and Erez Zadok. RAIF:
Redundant array of independent filesystems. In
IEEE Conference on Mass Storage Systems and
Technologies, pages 199-214, San Diego, CA,
September 2007.

[12] S.R. Kleiman. Vnodes: An architecture for
multiple file system types in Sun UNIX. In
Proceedings of the Summer USENIX Technical
Conference, pages 238-247, Atlanta, GA, 1986.

[13] Chuanpeng Li, Chen Ding, and Kai Shen.
Quantifying the cost of context switch. In

Workshop on Experimental Computer Science,
San Diego, CA, 2007.

[14] Yevgeniy Miretskiy, Abhijith Das, Charles P.
Wright, and Erez Zadok. Avfs: An on-access
anti-virus file system. In /3th USENIX Security
Symposium, San Diego, CA, August 2004.

[15] Sumit Narayan and John A. Chandy. ATTEST:
ATTributes-based Extendable STorage. Journal of
Systems and Software, 83(4):548-556, April
2010.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

James A. Nugent, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Controlling your
PLACE in the file system with gray-box
techniques. In Proceedings of the Annual
USENIX Technical Conference, pages 311-323,
San Antonio, TX, June 2003.

Vijayan Prabhakaran, Lakshmi N.
Bairavasundaram, Nitin Agrawal, Haryadi S.
Gunawi, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. IRON file systems. In
Proceedings of the 20th ACM Symposium on
Operating Systems Principles, pages 206-220,
Brighton, UK, October 2005.

David Quigley, Josef Sipek, Charles P. Wright,
and Erez Zadok. UnionFS: User- and community-
oriented development of a unification file system.
In Proceedings of 2006 Ottawa Linux Symposium,
pages 349-362, Ottawa, Canada, June 2006.

Aditya Rajgarhia and Ashish Gehani.
Performance and extension of user space file
systems. In Proceedings of the 25th ACM
Symposium on Applied Computing, Sierre,
Switzerland, March 2010.

David S. H. Rosenthal. Evolving the vnode
interface. In Proceedings of the USENIX
Technical Conference, pages 107-118, Anaheim,
CA, Summer 1990.

David S. H. Rosenthal. Requirements for a
"stacking" vnode/VFS interface. Technical Report
SD-01-02-NO14, UNIX International, 1992.

Josef Sipek, Yiannis Pericleous, and Erez Zadok.
Kernel support for stackable file systems. In
Proceedings of 2007 Ottawa Linux Symposium,
Ottawa, Canada, June 2007.

Jun Wang and Yiming Hu. PROFS:
Performance-oriented data reorganization for
log-structured file system on multi-zone disks. In
Proceedings of IEEE/ACM 9th International
Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems
(MASCOTS), pages 285-293, Cincinnati, OH,
August 2001.

Erez Zadok and Ion Badulescu. A stackable file
system interface for Linux. In LinuxExpo 99,
pages 141-151, May 1999.

[25]

[26]

[27]

(28]

Erez Zadok, Ion Badulescu, and Alex Shender.
Cryptfs: A stackable vnode level encryption file
system. Technical Report CUCS-021-98,
Computer Science Department, Columbia
University, June 1998.

Erez Zadok, lon Badulescu, and Alex Shender.
Extending file systems using stackable templates.
In Proceedings of the Annual USENIX Technical
Conference, pages 57-70, Monterey, CA, June
1999.

Erez Zadok and Jason Nieh. FiST: A language for
stackable file systems. In Proceedings of 2000
USENIX Annual Technical Conference, pages
55-70, San Diego, CA, June 2000.

Erez Zadok, Vasily Tarasov, and Priya Sehgal.
The case for specialized file systems, or, fighting
file system obesity. ;login: The USENIX
Magazine, 35(1):38-40, February 2010.

