
Parity Redundancy Strategies in a Large Scale Distributed Storage
System

John A. Chandy
Dept. of Electrical and Computer Engineering

University of Connecticut
Storrs, CT 06269-1157
jchandy@uconn.edu
tel +1-860-486-5047

Abstract

With the deployment of larger and larger distributed storage systems, data reli-
ability becomes more and more of a concern. In particular, redundancy techniques
that may have been appropriate in small-scale storage systems and disk arrays may
not be sufficient when applied to larger scale systems. We propose a new mechanism
called delayed parity generation with active data replication (DPGADR) to maintain
high reliability in a large scale distributed storage system without sacrificing fault-free
performance.

1 Introduction

Data creation and consumption has increased significantly in recent years and studies have
suggested that the amount of information stored digitally will continue to double every year
for the foreseeable future. This increasing need for information storage leads to a corre-
sponding need for high-performance and reliable storage systems. Single storage nodes
can not provide the required storage capacity or scalability. Thus, in an effort to satisfy
this need, there has been significant work in the area of distributed storage systems where
storage nodes are aggregated together into a larger cohesive storage system. These include
distributing data amongst shared disks [1, 6, 12], dedicated storage nodes [8], clustered
servers [4], or the clients themselves [2, 7]. It is not unreasonable to expect systems with
petabytes of data distributed across thousands of nodes in these distributed storage systems.

However, as we increase the number of nodes, the reliabilityof the entire system de-
creases correspondingly unless steps are taken to introduce some form of redundancy into
the system. In this paper, we discuss redundancy mechanismsto provide high reliability
without sacrificing fault free performance. For the purposes of this paper, we refer to in-
dividual storage devices in the distributed storage systemas nodes - whether they be disks
in a shared disk SAN, servers in a clustered server, or OBSDs in a network attached disk
system. The techniques and strategies apply with slight variations to all implementations.

Data redundancy in most disk array subsystems is typically provided by using RAID.
These same techniques used at the disk level can also be used at the node level. Mirroring,

101

or RAID1, entails replication of the data on multiple nodes.Parity striping, or RAID5,
involves spreading data along with parity across multiple nodes. Choosing which RAID
level to use is typically determined by cost and applicationrequirements. At the disk array
level, the redundancy choice is usually RAID5 as it providesexcellent availability, little
storage overhead, and adequate performance.

However, with a large scale distributed system, the choice is not so clear. RAID5 no
longer provides sufficient reliability since a thousand node system could exhibit MTTFs
of a few years. A mirrored distributed storage system, however, can have an MTTF of
several decades. In addition, RAID5 suffers from the well-known write penalty whereby
parity updates require two extra reads to generate the parity. Techniques to overcome this
problem in a disk subsystem such as the use of non-volatile caches can not be used in a
distributed system. Moreover, the cost of the write penaltyis more significant because of
the high latency costs inherent in network communications.

Because of the limitations of parity striping, in many distributed storage systems, repli-
cation or mirroring is the preferred strategy for redundancy [3, 15]. In addition, replication
allows widely distributed clients and nodes to take advantage of locality and retrieve data
from the closest storage node. However, the cost of mirroring is the 100% storage overhead.

In this paper, we present methods to achieve the low storage overhead of parity striping
but retaining the performance and reliability characteristics of mirroring. In particular, we
discuss the use of delayed parity generation to improve parity striping performance.

2 Delayed Parity Generation with Active Data Replication

The concept of delayed parity generation with active data replication (DPGADR) is based
on reducing the number of accesses required to generate parity in a RAID5 system. In a
standard RAID5 disk array, the array controller must read old values from both the data
and parity disks and then write the new data back to the data disk and the XOR’ed parity
result back to the parity disk. This results in a total of 4 disk accesses (potentially 2 if the
parity and data reads had been cached). In a DPGADR system, wedelay the generation of
the parity, and thus do not require the reading of old data andparity or the writing the parity
result. However, without parity generation, the system is potentially compromised in the
event of failure. To address this, we replicate the new data to areplication node that is not
part of the RAIDed redundancy group. We have reduced the number of accesses to just 2
writes - both of which can be proceed in parallel. Figure 1 shows the data distribution in a
DPGADR system. In order to distribute the load, the replication node can be rotated across
the redundancy group.

Each replication node keeps a map relating the actual block location to the active data
locations kept on the node. Thus, the client is not responsible for identifying the block
location for the replicated data on the replication node. The client can use a simple hash
algorithm to map from block ID to replication node, and it is then the replication node’s
responsibility to allocate storage space locally.

On the surface, this DPGADR scheme appears to be simply mirroring of data. However,
we do not maintain the mirrored data on the replication node in perpetuity. In order to avoid
replicating all data writes, the replication node will periodically generate the parity for any

102

D00

D10

D20

D01

D11

P2

D02

P1

D21

P0

D12

D22

P3 D30 D31 D32

a) Initial data distribution

D00

D10

D20

D01

D11'

P2

D02

P1

D21

P0

D12

D22

P3 D30 D31 D32'

b) Data distribution after writes to D11 and D32

D11'

D32'

Replication

Node

Replication

Node

Figure 1: DPGADR data distribution.

blocks that it contains and then flush these blocks from its data store. Because of this
periodic data flushing, the replication node is in effect a cache of actively used data blocks.

Parity generation from the replication node is not a trivialproblem as the replication
node may not have the required data to generate the parity. Insuch a case, the node must
retrieve the stripe data from the relevant nodes before generating the parity. However, in
general, it is likely that the active data set on the replication node will contain all or most
of the data blocks in a particular stripe because of localityand small working set sizes [11].
We would like to keep the stripe length small so as to make surethat the entire stripe is
in the active data set on the replication node. This is also desirable for reliability reasons
since it reduces the size of the redundancy group. A reasonable stripe length is 5 nodes,
thus requiring 200 stripes to span a 1000 node system.

3 Reliability

As mentioned above, as we increase the number of nodes in a large scale storage system,
RAID5 parity striping no longer provides sufficient redundancy to give adequate system
reliability. The use of DPGADR can improve system reliability significantly. Since re-
cently used data is copied to a replication node, the system exhibits mean time to data loss
(MTTDL) characteristics near to that of a mirrored system. Figure 2 illustrates how the
system can tolerate more than one failure in a redundancy setand still recover the most
recent data. Even though two nodes have failed, the active data blocks,D11’ andD32’, are
still available from the replication node. In fact if all thenodes except for the replication
node fail, the DPGADR method allows for the recovery of all active data. While the repli-
cation node can prevent loss of active data in the presence ofmultiple failures, inactive data
can still be lost if there is more than one fault. To prevent data loss in such a scenario, we
require that the system have judicious backup procedures sothat all inactive data is present
on backup media. The replication node must be large enough toaccommodate all active

103

D00

D10

D20

D01

D11'

P2

D02

P1

D21

P0

D12

D22

P3 D30 D31 D32'

Replication

Node

D11'

D32'

Figure 2: DPGADR failure scenario.

data between backups. This need not be that large as the working set size of a storage
system over a 24 hour period is typically around 5% of the entire storage space [11]. Thus,
it is sufficient to have one replication node for every 20 datanodes and using daily backups
to prevent data loss of inactive data in the presence of dual faults. We also suspend access
to the DPGADR group once a second fault has been recorded. This prevents invalid data
being read from inactive data blocks. Thus, the DPGADR method prevents data loss in
most dual fault cases but system availability is the same as aRAID system because of the
access blocking due to a second fault.

We can develop a model for the MTTDL and availability of a DPGADR system using
a similar analysis methodology to that outlined in [10]. Thenodes are assumed to have
independent and exponential failure rates. We assumed nodes per parity group, one redun-
dancy node pernG parity groups, and the mean time to failure of each node isMTTFNode

The MTTDL for a DPGADR group is:

MTTDLDPGADR =

MTTFNode

nG(d+1)+1

Pr[data loss failure during repair time]
(1)

Data loss during the repair time of the failed node can happenin three cases: 1) the
first failed node was the replication node and any other node fails, 2) the first failed node
was not the replication node and the replication node fails,and 3) the failed node was not
the replication node and two non-replication nodes in the same parity group fail. Thus, the
probability of data loss causing failure during the repair time is as follows:

Pr[data loss failure during repair time] =

Pr[first failed node was a replication node]pf

+ (1 − Pr[first failed node was a replication node])(prf + p2f) (2)

wherepf is the probability that any one of the remainingnG(d + 1) nodes fails during
the repair time,prf is the probability that the replication node fails during the repair time,
and p2f is the probability that 2 non-replication nodes from the same parity group fail
during the repair time. The derivation ofpf is straightforward. If we define the mean time
to repair the node asMTTRNode, then assuming exponential failure rates,

pf ≈

MTTRNode

nG(d+1)

MTTFNode

(3)

104

Configuration MTTDL (years) Redundancy overhead
RAID5 (d=5) 7.9 200 nodes
Mirror 23.8 1000 nodes
DPGADR (d=5,nG=4) 39.6 250 nodes

Table 1: MTTDL and Overhead for a 1000 data node system. (MTTFNode = 100000 hours
andMTTRNode = 24 hours

whenMTTFNode � MTTRNode. Similarly, prf is equal toMTTRNode

MTTFNode

. p2f can be
expressed as follows:

p2f =
(

d

2

)

(MTTRNode

MTTFNode

)2(1 −
MTTRNode

MTTFNode

)d−1
≈

d(d − 1)

2

(MTTFNode

MTTRNode

)2
(4)

Substituting into Eqs. 1 and 2, we arrive at:

MTTDLDPGADR =
MTTFNode

nG(d+1)+1

1
nG(d+1)+1

[MTTRNode

nG(d+1)MTTFNode

] + nG(d+1)
nG(d+1)+1

[MTTRNode

MTTFNode

+ d(d−1)
2

(MTTRNode

MTTFNode

)2]

≈
MTTF 2

Node

nG(d + 1)MTTRNode

(5)

In a large system withnS DPGADR groups, theMTTDL is MTTF 2

Node

nSnG(d+1)MTTRNode

. If
we defineD as the total number of data nodes in the system, i.e.nSnGd, we can rewrite

MTTDL as MTTF 2

Node

D(1+ 1

d
)MTTRNode

. The redundancy overhead to support parity and replica-

tion is D
d

+ D
nG d

. By comparison, a mirrored system withD data nodes has a MTTDL

of MTTF 2

Node

2D MTTRNode

with an overhead ofD nodes, and a RAID5 system has an MTTDL of
MTTF 2

Node

D(d+1) MTTRNode

and an overhead ofD
d

nodes. The DPGADR system actually has better
MTTDL times than a mirrored system with significantly less redundancy overhead. Ta-
ble 1 shows MTTDL and overhead numbers for a 1000 data node system. Note that while
the MTTDL of a DPGADR system is better than a mirrored system,the availability, i.e.
the probability that the system is available for use, is morelike a RAID5 system. This is
because after a second failure, the system is suspended until the repair is complete.

4 Related Work

Xin et al [15], have proposed three different large storage system redundancy architectures
with two fast recovery mechanisms: fast mirroring copy (FMC) and lazy parity backup
(LPB). The LPB method is similar to the DPGADR scheme in that parity calculation is
delayed. However, it relies on a RAID5 redundancy set to be completely mirrored at a

105

greater than 100% storage overhead. The DPGADR scheme requires significantly less
overhead since only actively used data is replicated.

Other related work is in the area of RAID5 disk arrays and of particular interest are
parity logging [13], data logging [5], and hot mirroring [9,14].

The parity logging technique eliminates the need for paritydisk accesses by caching the
partial parity formed from the old and new data in non-volatile memory at the controller.
The partial parity can then be periodically flushed to a log disk, which can then be cleaned
out at a later time to generate the actual parity disk data. This process reduces the number
of disk accesses from 4 to 2 and clearly, this reduction in accesses will greatly speed up
the performance of writes in a RAID system. Parity logging, however, is not practical
in a distributed system because of the need to cache data in non-volatile memory. It is
not reasonable to expect distributed system clients to havenon-volatile memory available.
Moreover, the management of the cache across multiple clients can be problematic. The
DPGADR system does not require non-volatility at the clientsince all data is pushed out
to the replication node immediately. Data logging is similar to DPGADR except that it
performs an old data read and stores that to the data log as well. This requires an extra
disk access and the maintenance of log maps requires non-volatile memory at the clients as
well.

Hot mirroring [9] and AutoRAID [14] are similar techniques that attempt to move ac-
tively used data to mirrored regions of the array and less frequently used data to parity
logged regions (hot mirroring) or parity striped regions (AutoRAID). These system require
a background process that evaluates the “hotness” of data and then moves them to or from
mirrored regions as required. If a data block is in the paritystriped region, it will remain
there until a background process has tagged it as hot even if it is experiencing high activity.
DPGADR systems, however, dynamically adjust to the activity of the data since the latest
data is always pushed to the mirrored region, i.e. the replication node.

5 Conclusions

In this paper, we have described a delayed parity construction mechanism called DPGADR
that allows parity striping to be used on large scale distributed storage systems without suf-
fering from the small write performance penalty. Compared to mirroring it can reduce the
storage overhead from 100% to less than 20% and compared to parity striping it can reduce
small write accesses to just two parallel accesses. Becauseof redundancy in the active data
replication node, the overall system reliability is betterthan mirroring for significantly less
overhead.

References

[1] D. Anderson and J. Chase. Failure-atomic file access in the Slice interposed network
storage system.Cluster Computing, 5(4):411–419, Oct. 2002.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang. Server-
less network file systems. InProceedings of the Symposium on Operating System
Principles, pages 109–126, Dec. 1995.

106

[3] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless dis-
tributed file system deployed on an existing set of desktop PCs. In Proceedings of
the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Sys-
tems, pages 34–43, June 2000.

[4] J. D. Bright and J. A. Chandy. A scalable architecture forclustered network attached
storage. InProceedings of the IEEE/NASA Goddard Symposium on Mass Storage
Systems and Technologies, pages 196–206, Apr. 2003.

[5] E. Gabber and H. F. Korth. Data logging: A method for efficient data updates in
constantly active RAIDs. InProceedings of the International Conference on Data
Engineering, pages 144–153, 1998.

[6] G. A. Gibson and R. Van Meter. Network attached storage architecture. Commun.
ACM, 43(11):37–45, Nov. 2000.

[7] J. H. Hartman and J. K. Ousterhout. Zebra: A striped network file system. InPro-
ceedings of the USENIX 1992 Workshop on File Systems, May 1992.

[8] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. InProceedings of the
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 84–92, Oct. 1996.

[9] K. Mogi and M. Kitsuregawa. Hot mirroring: A method of hiding parity update
penalty and degradation during rebuilds for RAID5. InProceedings of the ACM
SIGMOD International Conference on Management of Data, pages 183–194, June
1996.

[10] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for redundant arrays of inex-
pensive disks (RAID). InProceedings of the ACM SIGMOD International Conference
on Management of Data, pages 109–116, June 1988.

[11] C. Ruemmler and J. Wilkes. A trace-driven analysis of working set sizes. Technical
Report HPL-OSR-93-23, Hewlett-Packard, Palo Alto, CA, Apr. 1993.

[12] F. Schmuck and R. Haskin. GPFS: A shared-disk file systemfor large computing
clusters. InProceedings of USENIX Conference on File and Storage Technologies,
pages 231–244, Jan. 2002.

[13] D. Stodolsky, G. Gibson, and M. Holland. Parity logging: Overcoming the small write
problem in redundant disk arrays. InProceedings of the International Symposium on
Computer Architecture, 1993.

[14] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID hierarchical
storage system.ACM Transactions on Computer Systems, 14(1):108–136, Feb. 1996.

[15] Q. Xin, E. L. Miller, T. Schwarz, D. D. E. Long, S. A. Brandt, and W. Litwin. Relia-
bility mechanisms for very large storage systems. InProceedings of the IEEE/NASA
Goddard Symposium on Mass Storage Systems and Technologies, pages 146–156,
Apr. 2003.

107

