Parity Redundancy Strategiesin a Large Scale Distributed Storage
System

John A. Chandy
Dept. of Electrical and Computer Engineering
University of Connecticut
Storrs, CT 06269-1157
jchandy@uconn.edu
tel +1-860-486-5047

Abstract

With the deployment of larger and larger distributed steragstems, data reli-
ability becomes more and more of a concern. In particulatlumdancy techniques
that may have been appropriate in small-scale storagensysied disk arrays may
not be sufficient when applied to larger scale systems. Wegsea new mechanism
called delayed parity generation with active data reghca(DPGADR) to maintain
high reliability in a large scale distributed storage systeithout sacrificing fault-free
performance.

1 Introduction

Data creation and consumption has increased significantgcent years and studies have
suggested that the amount of information stored digitailjoentinue to double every year
for the foreseeable future. This increasing need for indrom storage leads to a corre-
sponding need for high-performance and reliable storagesys. Single storage nodes
can not provide the required storage capacity or scalgbilihus, in an effort to satisfy
this need, there has been significant work in the area ofiloliséd storage systems where
storage nodes are aggregated together into a larger celstgnage system. These include
distributing data amongst shared disks [1, 6, 12], dedicaterage nodes [8], clustered
servers [4], or the clients themselves [2, 7]. It is not uscgeble to expect systems with
petabytes of data distributed across thousands of nodesse tlistributed storage systems.
However, as we increase the number of nodes, the reliabfiitie entire system de-
creases correspondingly unless steps are taken to ingaaunae form of redundancy into
the system. In this paper, we discuss redundancy mechatasprevide high reliability
without sacrificing fault free performance. For the purmosetthis paper, we refer to in-
dividual storage devices in the distributed storage systemodes - whether they be disks
in a shared disk SAN, servers in a clustered server, or OBSRxietwork attached disk
system. The techniques and strategies apply with slighati@ns to all implementations.
Data redundancy in most disk array subsystems is typicatlyiged by using RAID.
These same techniques used at the disk level can also betukedade level. Mirroring,

101

or RAID1, entails replication of the data on multiple noddZarity striping, or RAID5,
involves spreading data along with parity across multimldes. Choosing which RAID
level to use is typically determined by cost and applicateguirements. At the disk array
level, the redundancy choice is usually RAID5 as it providesellent availability, little
storage overhead, and adequate performance.

However, with a large scale distributed system, the ch@a®ot so clear. RAID5 no
longer provides sufficient reliability since a thousand eegstem could exhibit MTTFs
of a few years. A mirrored distributed storage system, h@nyevan have an MTTF of
several decades. In addition, RAID5 suffers from the waliwkn write penalty whereby
parity updates require two extra reads to generate theypadgthniques to overcome this
problem in a disk subsystem such as the use of non-volatileesacan not be used in a
distributed system. Moreover, the cost of the write penialtyiore significant because of
the high latency costs inherent in network communications.

Because of the limitations of parity striping, in many distited storage systems, repli-
cation or mirroring is the preferred strategy for redungd¢ 15]. In addition, replication
allows widely distributed clients and nodes to take advgetaf locality and retrieve data
from the closest storage node. However, the cost of mirgasithe 100% storage overhead.

In this paper, we present methods to achieve the low storegrdead of parity striping
but retaining the performance and reliability charactmssof mirroring. In particular, we
discuss the use of delayed parity generation to improvéypstriping performance.

2 Delayed Parity Generation with Active Data Replication

The concept of delayed parity generation with active dgtédcation (DPGADR) is based
on reducing the number of accesses required to generatg jpaa RAID5 system. In a
standard RAID5 disk array, the array controller must reativalues from both the data
and parity disks and then write the new data back to the dataatid the XOR’ed parity
result back to the parity disk. This results in a total of «discesses (potentially 2 if the
parity and data reads had been cached). In a DPGADR systedelagethe generation of
the parity, and thus do not require the reading of old datgoamitly or the writing the parity
result. However, without parity generation, the systemateptially compromised in the
event of failure. To address this, we replicate the new dagaréplication node that is not
part of the RAIDed redundancy group. We have reduced the ruwitaccesses to just 2
writes - both of which can be proceed in parallel. Figure ghthe data distribution in a
DPGADR system. In order to distribute the load, the repitcahode can be rotated across
the redundancy group.

Each replication node keeps a map relating the actual btmzkibn to the active data
locations kept on the node. Thus, the client is not resptasis identifying the block
location for the replicated data on the replication nodee Tlent can use a simple hash
algorithm to map from block ID to replication node, and itlen the replication node’s
responsibility to allocate storage space locally.

On the surface, this DPGADR scheme appears to be simplymimgrof data. However,
we do not maintain the mirrored data on the replication nageerpetuity. In order to avoid
replicating all data writes, the replication node will metically generate the parity for any

102

Replication
Node

DOO DO1 D02 PO

D10 D11 P1 D12
D20 p2 D21 D22
P3 D30 D31 D32

a) Initial data distribution

Replication
Node
DOO DO1 D02 PO D11’
D10 D11’ P1 D12 D32'
D20 p2 D21 D22
P3 D30 D31 D32’

b) Data distribution after writes to D11 and D32

Figure 1: DPGADR data distribution.

blocks that it contains and then flush these blocks from ita deore. Because of this
periodic data flushing, the replication node is in effect eéheeof actively used data blocks.

Parity generation from the replication node is not a triyiedblem as the replication
node may not have the required data to generate the parisucima case, the node must
retrieve the stripe data from the relevant nodes beforergéng the parity. However, in
general, it is likely that the active data set on the replicahode will contain all or most
of the data blocks in a particular stripe because of locality small working set sizes [11].
We would like to keep the stripe length small so as to make thakthe entire stripe is
in the active data set on the replication node. This is alsiral@e for reliability reasons
since it reduces the size of the redundancy group. A reasosé#ipe length is 5 nodes,
thus requiring 200 stripes to span a 1000 node system.

3 Rdiability

As mentioned above, as we increase the number of nodes igeadaale storage system,
RAIDS parity striping no longer provides sufficient redundg to give adequate system
reliability. The use of DPGADR can improve system reliaiisignificantly. Since re-
cently used data is copied to a replication node, the sysxéimbies mean time to data loss
(MTTDL) characteristics near to that of a mirrored systenguFe 2 illustrates how the
system can tolerate more than one failure in a redundancgnskestill recover the most
recent data. Even though two nodes have failed, the acttegbliacks D11’ andD32’, are
still available from the replication node. In fact if all tm@des except for the replication
node fail, the DPGADR method allows for the recovery of athaecdata. While the repli-
cation node can prevent loss of active data in the presenueltiple failures, inactive data
can still be lost if there is more than one fault. To prevertadass in such a scenario, we
require that the system have judicious backup procedurdesall inactive data is present
on backup media. The replication node must be large enoughadmmmodate all active

103

Replication
Node

DOO DO1 D02 PO D11’

D10 \1/ P1 \1/ D32'
D20 /2\ D21 }&\7‘

P3 D30 D31 D32

Figure 2: DPGADR failure scenatrio.

data between backups. This need not be that large as thengaskt size of a storage
system over a 24 hour period is typically around 5% of thererstiorage space [11]. Thus,
it is sufficient to have one replication node for every 20 detdes and using daily backups
to prevent data loss of inactive data in the presence of dwitisf We also suspend access
to the DPGADR group once a second fault has been recorded.pfévents invalid data
being read from inactive data blocks. Thus, the DPGADR nekfr@vents data loss in
most dual fault cases but system availability is the sameR&IB system because of the
access blocking due to a second fault.

We can develop a model for the MTTDL and availability of a DFIFA system using
a similar analysis methodology to that outlined in [10]. Trredes are assumed to have
independent and exponential failure rates. We assunoeles per parity group, one redun-
dancy node pen parity groups, and the mean time to failure of each node 18" Fy .
The MTTDL for a DPGADR group is:

MTTFNode

MTTDL - noldr i o !
PPGADE ™ Py [data loss failure during repair time W

Data loss during the repair time of the failed node can happéehree cases: 1) the
first failed node was the replication node and any other nailg) the first failed node
was not the replication node and the replication node faiigl, 3) the failed node was not
the replication node and two non-replication nodes in timeesparity group fail. Thus, the
probability of data loss causing failure during the repianetis as follows:

Prldata loss failure during repair time-
Prfirst failed node was a replication ndgde
+ (1 — Pr{first failed node was a replication ndfle, s + p2f) (2)

wherep; is the probability that any one of the remaining(d + 1) nodes fails during
the repair timep, ; is the probability that the replication node fails during tiepair time,
andps is the probability that 2 non-replication nodes from the saparity group fail
during the repair time. The derivation pf is straightforward. If we define the mean time
to repair the node a&lT'T R .4, then assuming exponential failure rates,

MTTRNode

ng(d+1)
~ _ne@tl) 3
P N Ty (3)

104

Configuration MTTDL (years) | Redundancy overhead
RAIDS (d=5) 7.9 200 nodes

Mirror 23.8 1000 nodes

DPGADR (d=5pn,=4) | 39.6 250 nodes

Table 1: MTTDL and Overhead for a 1000 data node systé#il" (" F'y .. = 100000 hours
andMTTRyqq = 24 hours

when MTT Fyoge > MTT Ryoge. Similarly, p, s is equal to%ﬁ?}jf. pas Can be
expressed as follows:

d(d—1) , MTT Fyoge 2
d\ f MTTRNode MTTRNode \d— ~ ode
b2y = (2)(MTTF1]\\;O§E)2(1 - MTTFIJ\\;OZS)d b 5 (MTTRyog 4)

Substituting into Egs. 1 and 2, we arrive at:

MTTDLppcapr =
MTTFNode
na(d+1)+1
1 [MTTRNode] nG(d+l) [MTTRNode d(d_l)(MTTRNode)2]
ng(d+1)+1 Lng(d+1)MTT Fyoge ng(d+1)+1 L MTT Fyoge 2 MTTFNode
N MTTF3,,. (5)
~ ne(d +1)MTTRyode
In a large system witlhg DPGADR groups, the\ITT DL is MTTER gy, If

. . 7:LSnG(d'i_l)]\4-’TT‘RNode ' .
we defineD as the total number of data nodes in the systemnige.;d, we can rewrite

MTTDL as D(lﬁT)Lﬁng —. The redundancy overhead to support parity and replica-
d ode
tion is % + %. By comparison, a mirrored system with data nodes has a MTTDL

% with an overhead of) nodes, and a RAID5 system has an MTTDL of

MTTFY o and an overhead o? nodes. The DPGADR system actually has better

D(d+1) MTTRNode

MQI'T L times than a mirrored system with significantly lesswadancy overhead. Ta-
ble 1 shows MTTDL and overhead numbers for a 1000 data nodersy$ote that while
the MTTDL of a DPGADR system is better than a mirrored systtma,availability, i.e.
the probability that the system is available for use, is nikieea RAID5 system. This is

because after a second failure, the system is suspendéthentpair is complete.

of

4 Reated Work

Xin et al [15], have proposed three different large storagtesn redundancy architectures
with two fast recovery mechanisms: fast mirroring copy (PM#Rd lazy parity backup
(LPB). The LPB method is similar to the DPGADR scheme in thattp calculation is
delayed. However, it relies on a RAID5 redundancy set to baptetely mirrored at a

105

greater than 100% storage overhead. The DPGADR schemeeasaignificantly less
overhead since only actively used data is replicated.

Other related work is in the area of RAID5 disk arrays and afipalar interest are
parity logging [13], data logging [5], and hot mirroring [94].

The parity logging technique eliminates the need for palik accesses by caching the
partial parity formed from the old and new data in non-védathemory at the controller.
The partial parity can then be periodically flushed to a l@kgdhich can then be cleaned
out at a later time to generate the actual parity disk datés fitocess reduces the number
of disk accesses from 4 to 2 and clearly, this reduction ires®es will greatly speed up
the performance of writes in a RAID system. Parity loggingwhbver, is not practical
in a distributed system because of the need to cache datani#valatile memory. It is
not reasonable to expect distributed system clients to hamevolatile memory available.
Moreover, the management of the cache across multipletslean be problematic. The
DPGADR system does not require non-volatility at the cliginte all data is pushed out
to the replication node immediately. Data logging is simtta DPGADR except that it
performs an old data read and stores that to the data log &s Web requires an extra
disk access and the maintenance of log maps requires natilwohemory at the clients as
well.

Hot mirroring [9] and AutoRAID [14] are similar techniqudsat attempt to move ac-
tively used data to mirrored regions of the array and lesguiatly used data to parity
logged regions (hot mirroring) or parity striped regionsi{dRAID). These system require
a background process that evaluates the “hotness” of ddtthan moves them to or from
mirrored regions as required. If a data block is in the pasitiped region, it will remain
there until a background process has tagged it as hot eviaa éiperiencing high activity.
DPGADR systems, however, dynamically adjust to the agtivitthe data since the latest
data is always pushed to the mirrored region, i.e. the rafitio node.

5 Conclusions

In this paper, we have described a delayed parity construatechanism called DPGADR
that allows parity striping to be used on large scale digtad storage systems without suf-
fering from the small write performance penalty. Comparethirroring it can reduce the
storage overhead from 100% to less than 20% and comparedtypgigping it can reduce
small write accesses to just two parallel accesses. Becduséundancy in the active data
replication node, the overall system reliability is bettean mirroring for significantly less
overhead.

References

[1] D. Anderson and J. Chase. Failure-atomic file accessarstite interposed network
storage systentCluster Computing, 5(4):411-419, Oct. 2002.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Rosahd R. Wang. Server-
less network file systems. IRroceedings of the Symposium on Operating System
Principles, pages 109-126, Dec. 1995.

106

[3] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feastygilof a serverless dis-
tributed file system deployed on an existing set of desktop. PI@ Proceedings of
the ACM SSIGMETRICS Conference on Measurement and Modeling of Computer Sys-
tems, pages 34—43, June 2000.

[4] J. D. Bright and J. A. Chandy. A scalable architecturedoistered network attached
storage. InProceedings of the IEEE/NASA Goddard Symposium on Mass Sorage
Systems and Technologies, pages 196—-206, Apr. 2003.

[5] E. Gabber and H. F. Korth. Data logging: A method for e#fiti data updates in
constantly active RAIDs. IriProceedings of the International Conference on Data
Engineering, pages 144-153, 1998.

[6] G. A. Gibson and R. Van Meter. Network attached storaghigecture. Commun.
ACM, 43(11):37—45, Nov. 2000.

[7] J. H. Hartman and J. K. Ousterhout. Zebra: A striped nétvite system. InPro-
ceedings of the USENIX 1992 Workshop on File Systems, May 1992.

[8] E. K. Lee and C. A. Thekkath. Petal: Distributed virtualds. InProceedings of the
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 84-92, Oct. 1996.

[9] K. Mogi and M. Kitsuregawa. Hot mirroring: A method of hidy parity update
penalty and degradation during rebuilds for RAID5. Proceedings of the ACM
S GMOD International Conference on Management of Data, pages 183-194, June
1996.

[10] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case faurgdant arrays of inex-
pensive disks (RAID). IfProceedings of the ACM SIGMOD International Conference
on Management of Data, pages 109-116, June 1988.

[11] C. Ruemmler and J. Wilkes. A trace-driven analysis ofkirtg set sizes. Technical
Report HPL-OSR-93-23, Hewlett-Packard, Palo Alto, CA, A®93.

[12] F. Schmuck and R. Haskin. GPFS: A shared-disk file sydtantarge computing
clusters. InProceedings of USENIX Conference on File and Storage Technol ogies,
pages 231-244, Jan. 2002.

[13] D. Stodolsky, G. Gibson, and M. Holland. Parity loggift@vercoming the small write
problem in redundant disk arrays. Rnoceedings of the International Symposiumon
Computer Architecture, 1993.

[14] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. Th® AutoRAID hierarchical
storage systemACM Transactions on Computer Systems, 14(1):108-136, Feb. 1996.

[15] Q. Xin, E. L. Miller, T. Schwarz, D. D. E. Long, S. A. Brahdcand W. Litwin. Relia-
bility mechanisms for very large storage systemsPioceedings of the IEEE/NASA
Goddard Symposium on Mass Storage Systems and Technologies, pages 146—-156,
Apr. 2003.

107

