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Abstract

In this paper, we introduce a novel architecture for a
hardware based network intrusion detection system (NIDS).
NIDSs are becoming critical components of the network in-
frastructure as they serve as a key line of defense in net-
work protection. However, current methods are much too
compute intensive and can not begin to meet the bandwidth
requirements of a moderate sized corporate network. Thus,
hardware techniques are desired to speed up network pro-
cessing. This paper introduces a FPGA based signature
match processor that can serve as the core of a hardware
based NIDS. The signature match processor’s key feature
is a CAM-based cellular processor architecture that can
match strings in an area efficient manner. Using a unique
binary tree structure, we are also able to generate prior-
ity encoded addresses corresponding to multiple signature
matches.

1. Introduction

With the rapid increase in malicious attacks on corpo-
rate and government networks, there has been an increased
awareness amongst network administrators to deploy tools
that protect them from external attacks. Network intrusion
detection systems (NIDS) are one of the primary tools avail-
able to help in creating a secure network infrastructure. Net-
work intrusion detection is the process of identifying and
analyzing packets that may signify an impending threat to
organization’s network. NIDS can be deployed in a variety
of configurations including passive and host-based systems.
Passive NIDS entail using a secondary network node to an-
alyze all packets on the network. A host-based NIDS mon-
itors a single machine and is useful in gateways, switches,
or routers as a means to block all suspicious traffic.

Inspecting incoming packets for tell-tale signatures can
be time consuming especially if the number of possible sig-
natures is large. The Snort open-source intrusion detection
software suite has well over a thousand rules [18]. Current

high-performance systems can barely process that many
rules on a 100 Mbps moderately loaded network [19]. To
handle fully loaded gigabit networks, a NIDS must either
drop some of the rules or drop some of the packets it ana-
lyzes. Neither solution is desirable since they both compro-
mise security. The alternative is to deploy multiple NIDS
on the network to inspect packets in parallel. Doing so in-
creases the complexity of the system as traffic splitting tech-
niques are needed to direct packets to the appropriate node
in order to retain TCP state.

String matching is the most computational intensive part
of the intrusion detection process as each analyzed packet
must be inspected against several signatures. More than
30% of the computation time can be spent in string match-
ing [8]. For the most part, previous work in this area has
focused on improving software algorithms for string pat-
tern matching [7, 1, 8]. Others have recognized the poten-
tial of hardware implementations and used reconfigurable
hardware to attack the problem.

Previous approaches to string matching in FPGAs have
included finite automata methods that translate regexp sig-
natures into hardware implementations [20, 10, 14, 6].
These methods require representing the regular expres-
sion as a finite automata graph and then translating that
directly to FPGA circuitry. The complexity of this transla-
tion can lead to large amounts of logic circuitry and thus
more area on an FPGA.

Another approach to FPGA-based NIDS is the use of
content addressable memories (CAMs) or discrete com-
parators [9, 5, 21] Content addressable memories have
long been used for fast string matching against multiple
keywords [17, 15, 13]. Common uses include caches and
lookup tables, and in the networking area, the use of CAMs
as an IP address lookup table in routers is well known [12].
Both caches and IP address lookup tables are ideal candi-
dates for CAMs since the keys are of a fixed-length - ad-
dress tag for caches or IP address for lookup tables.

For the purposes of string matching in a NIDS, one could
conceive of an architecture where the CAM may contain
a set of signatures with a fixed key size ofk bits [9, 11].



As packets arrive from the network, eachk bits could be
matched against the CAM to see if there was a match.1 If a
match is found, we know that the signature is present in the
packet and we can flag the packet for further analysis. Since
the signature set is stored in a writable CAM, CAM-based
NIDs systems do not need to reprogram the FPGA every
time there is a change in the rule set. However, unlike finite
automata, CAM-based designs can not easily handle regu-
lar expressions, though the use of TCAMs (ternary CAMs),
does allow limited wildcard matching

The primary problem with such an architecture is that
NIDS signatures are not of a fixed size. For example, the
Snort ruleset has rules that match on content strings that
can be anywhere from 1 to 100 characters long. One solu-
tion could be to select the value ofk to accommodate the
largest possible signature, though that will lead to unused
space within the CAM. The Granidt system uses such an
approach with a 160-bit wide CAM, thereby limiting signa-
tures to 20 characters length. Using a fixed value ofk can
also cause misses in the incoming stream because of over-
laps. For example, consider the case where the CAM con-
tains two signaturesFOO andBAR, and the input stream
is AFOOBARCD. The CAM will be presented withk = 3
characters at once -AFO, OBA, andRCD. Because of over-
lap, none of these will cause a match, even though the input
stream obviously contains the two signatures.

Recent CAM-based designs have recognized this prob-
lem and taken a sliding window approach that use sin-
gle character comparators with shift registers to propagate
matches across clock cycles [21, 5]. Optimizations to these
approaches include processing characters in parallel, prefix
sharing, and pattern partitioning.

In this paper, we present a novel CAM-based signature
matching processor that uses an array of cellular automata
to process character matches. The cellular automata struc-
ture is compatible with the addition of the above mentioned
optimizations including parallelism . The compactness of
each cellular automata element leads to a highly efficient
design in terms of both area and speed.

The paper is organized as follows. We start with a de-
scription of the signature matching processor which does
string matching and then follow with an overview of how
this design would fit in an overall NIDS architecture. We
then describe FPGA implementation details and then finally
conclude with a note on future directions and applications.

2. Signature Match Processor

An architectural overview of the SMP is shown in Fig-
ure 1. The SMP consists of a control unit, a CAM charac-

1 In such an application, there would be no “value” field in theCAM
since presence in the CAM is all that we are concerned with.

Data In 

PE Reset 

SM Reset 

Finish 

CPU control

Match
Signals 

Matched word
Address output

Data in  from
Network

 

Signature Match Buf-
fer

Match Address Output Logic

Signature Match Array

Character Match Array

Control
circuit

Figure 1. Signature Match Processor Archi-
tecture.

ter match array, a signature match array, and address out-
put logic. The SMP receives packets from the network in
a stream and outputs the address of any signature that is
found in the packet. A managing network processor or CPU
can use this information to raise a network alert or attempt
to terminate the offending connection.

2.1. Character Match Array

The core of the SMP is in the character match array and
signature match array. In an earlier version of the architec-
ture, the character match array was implemented as an ar-
ray of CAM cells into which the desired signatures were
loaded [4]. The advantage of the structure was that it was
easy to update signatures simply by writing into the CAM.
The disadvantage, however, was that the CAM array was
very large in area. Moreover, the use of a CAM array pro-
hibited the use of optimizations such as parallelism and
prefix sharing. Because of these limitations, we decided to
abandon the use of the CAM array and instead employ dis-
crete comparators as was used in [21, 5]. Sacrificing the
ability to update the signatures without reconfiguring the
FPGA is not a serious loss since signatures in a NIDS con-
text change relatively infrequently.

The character match array is comprised of a series of
comparators, each of which matches on one of the possi-
ble incoming bytes. This, of course, implies that there are
256 comparators to match all possible 8-bit characters. In
order to improve performance, it is desirable to be able to
match several characters within one clock cycle. Therefore,
we usep rows of comparators, wherep denotes the degree
of parallelism. As shown in Figure 2, there arep match sig-
nals per comparator column. Also, for every clock cycle, ex-
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actlyp of the256p match signals from the character match
array will be asserted.

The signature match array is the distinguishing feature
of the design. The signature match array is similar in con-
cept to systolic processing arrays that have been proposed
for approximate word search matching in CAM-based dic-
tionaries [15, 16]. The array is comprised of ann x 1 ar-
ray of processing elements (PE) wheren is the number of
characters in the signature set to be matched against. Thus,
each PE represents one of the characters in the signature set,
and likewise, the PE is connected to the character match ar-
ray column that corresponds to its character. The diagram

in Figure 3 shows how the array would be connected for the
stringABB.

In general, each PE has2p inputs andp + 1 outputs.p
of the inputs, represented byMX [1 : p], correspond to the
p match signals from the character match array.X refers to
the character for which the PE is responsible. The remain-
ing p inputs are carry signals that forward match informa-
tion from the previous PE, and likewise,p of the outputs are
carry signals to a subsequent character in a signature. The
final output is a signal that indicates a signature match was
found. The signature output match signal is only valid on
PEs that signify the end of a signature. In addition to know-
ing whether the PE is at the end of a signature, the PE also
knows if it is at the beginning of a signature.

A summary of the algorithm executed by each PE is
shown below forp = 4 in pseudo-VHDL.

cout1 <= MX1 and (cin4 or sig_beg);
cout2 <= MX2 and (cin1 or sig_beg);
cout3 <= MX3 and (cin2 or sig_beg);
cout4_temp <= MX4 and (cin3 or sig_beg);

sig_match <= sig_end and
(cout1 or cout2 or
cout3 or cout4_temp);

if ( clk’event and clk=’1’) then
cout4 = cout4_temp;

end if

The first part of the pseudo-VHDL generates the carry
signals to propagate to the next PE. A carry signal indicates



that there is a signature match up to that character. The ba-
sic idea is to check each of theMX signals for a match and
then see if the previous PE also found a signature match up
to the previous byte. You must also check if the PE is at
the beginning of a signature, i.e.sig beg is ’1’. If the pre-
vious PE has forwarded a signature match or we are at the
beginning of a signature, the PE can forward the signature
match to the next PE. For example, ifcin1 is ’1’, it indi-
cates that the previous PE has determined that the signature
has matched up to itself, and the last matched character of
the signature is in byte 1. Therefore, if the current PE sees a
match on byte 2, i.e.MX2 is ’1’, then you propagate a sig-
nature match oncout2. If the PE is at the end of a signa-
ture,sig end is ’1’ and we are going to forward a character
match, then we know that we have matched on an entire sig-
nature. This will allow us to flag thesig match signal.

From the pseudo-VHDL it can be seen that thepth carry
out is registered in each PE. This is because the only way a
match can occur on MX1 is if it is at the beginning of the
signature or the last character on the previous clock cycle
matched also. The last character on the previous clock cy-
cle corresponds to a registered version of thepth carry out.
The implications of this are that only one register is required
per character in the signature set and moreover, the number
of registers do not increase as we increase parallelism.. This
is a significant savings compared to other comparator based
techniques which areO(L2) relative to the length of the sig-
nature [21].

As an example of the PE algorithm, consider the follow-
ing rule from Snort.

alert udp $EXTERNAL_NET
any -> $HOME_NET 31335
(msg:"DDOS Trin00 Daemon to Master

message detected"; content:"l44";
reference:arachnids,186;
classtype:attempted-dos;
sid:231; rev:3;)

The signature match arrays are shown in Figure 4 and the
PEs are configured to detect the signaturesl44 andadsl.
The input stringfl44 is presented to the SMP in two clock
cycles. In the first clock cycle, thel matches in the sec-
ond row and that sets the register in the first PE correspond-
ing to l. On the second clock cycle, the4 matches in both
rows. The first ’4’ PE will havecin2 set from the ’l’ PE.
That allows it to forward a match to the second ’4’ PE on
cout1. The second ’4’ PE will seecin1 set as well asMX2
and it can then determine a signature match because it has
sig end set as well.

2.2. Address Output Logic

The signature match array outputs a word match signal
that indicates that a match was found. However, for the SMP
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Figure 4. SMP Example.

to be useful in the context of NIDS, we also need to know
which signature caused the match. It is the address out-
put logic that finds which signature or signatures caused a
match. In order to generate these addresses, we use the sig-
nature match signals generated by the signature match ar-
ray. As the input string propagates through the CAM array,
any time there is a signature match, there will be a signature
match signal at the end position of the signature. Since there
may be multiple signature matches in a single string and the
signature match signals can appear on different clock cy-
cles, it is necessary to latch each word match signal in the
word match buffer. The buffer maintains the position of the
signature match. When the last character of the input string
has passed through, the word match buffer will then have
values set at each location corresponding to the end of a
matched signature.

When the last character has been reached, the match ad-
dress output logic can begin processing the word match
buffer entries. Thus, we need to get the beginning of the sig-
nature address from end of the signature address returned by
the word match buffer. In previous methods [4] we used a
start address RAM that stores the beginning address of each
signature. The address output logic simply reads the RAM
entries starting from end to beginning. For each start ad-
dressA read from RAM addressi, the positionA− 1 of the
word match buffer is verified. A positive match indicates a
signature match corresponding to the start address located
at thei−1th position of the RAM. This method takesS cy-
cles to perform the logic, whereS is the number of signa-
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tures. Larger values ofS would result in a longer time delay
in performing the logic.

In this paper, we present a new match address output
logic(MAO logic) which has the structure of a binary tree.
From the word match buffer we need the start position of
signature. This is accomplished by propagating the word
match signal at the end position of the signature to the start
position of the signature. This gives the matched position
location of the signature (MP) in the CAM. Whenever the
CAM character match array is updated these connections
must be updated as well. The MP is given as input to MAO
(matched address output) logic block which has the struc-
ture of a binary tree.

Figure 5 shows the binary tree and the logic for each of
the block in the tree. MAO logic separates multiple matches
for signature and decodes the start address of each matched
signature. This logic generates a MAA (matched address
available) signal which tells the control circuitry that there
are matches. Then a LP (Leftmost Pointer) signal propa-
gates back up the tree which is the leftmost MP signal. At
each level of the tree, a bit of the address is generated from
the LP signal at that level. When the LP signal reaches the
top of the tree, it is used to reset the register of the MP
signal that was just encoded. On the next clock cycle, the
MAO can then encode the next left-most MP entry. ForM
matches found for a particular input string, the MAO logic
takesM cycles to perform the logic. This is better than the
S cycles taken by the previous RAM-based implementation
of the MAO logic. We also pipelined the MAO logic to in-
crease the clock frequency, and found that the optimal num-
ber of stages was two. Further pipelining did not improve
clock frequency since the PE processing then becomes the
limiting factor.

2.3. Control Circuit

The control circuit manages the data flow through the
SMP and also manages flow control of the incoming packet.
When an incoming packet is ready to be delivered, the con-

trol circuit first resets the signature match array and also re-
sets the word match buffer. The control circuit then takes
each byte in the incoming packet and presents it to the char-
acter match array on every clock cycle. When the last char-
acter in the packet has arrived, the address output logic is
enabled. Because the address output logic process is inde-
pendent of the signature matching process, the control cir-
cuit can start processing the next packet immediately.

2.4. Performance Analysis

Overall, the time to process ab byte packet isb/p+M+1
cycles whereM is the number of matches found in the
packet.b/p corresponds to the time for the packet to stream
through the SMP signature matches andM + 1 is the time
to do the matched address output. Since the matched ad-
dress output phase could be completed in parallel with the
signature match, we are left with a per-packet cycle time
of max(b/p, M + 1). If b/p > M + 1, which is the gen-
eral case, the per-packet cycle time isb/p, and the per-byte
run-time is1/p cycles.

3. NIDS with SMP architecture

The previous section described the architecture of a
CAM-based signature match processor. In this section, we
describe how a SMP can be used in the design of a hard-
ware based NIDS. The overall architecture is shown in Fig-
ure 6. On initialization, the SMP is loaded with signatures
from an IDS ruleset. Typically, a controlling CPU or net-
work processor would be responsible for this initialization.
Packets from the network can flow into the SMP from a va-
riety of possible sources including a MAC/PHY interface
(as shown in the figure), from memory, over a GMII or SPI
interface or from a TCP/IP offload engine (TOE). The lat-
ter would allow for stateful intrusion detection processing.
If there are any signature matches, the SMP will interrupt
the CPU in order to facilitate an alert or intrusion preven-
tion mechanism. It is anticipated that the packets will be
buffered in memory, so that the CPU can do further pro-
cessing on the packet if necessary.

4. FPGA implementation

We have designed this NIDS architecture using VHDL
and our initial implementation has targeted the Xil-
inx Virtex-II Pro FPGAs, specifically the and XC2VP230
part with -7 speed grade. The eventual goal is that we could
use the embedded PowerPC in the Virtex-II Pro to per-
form the software components of the NIDS, such as SMP
management, alerts, logging, etc. The Virtex-II Pro also
has Rocket I/O transceivers that could be used to imple-
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ment a gigabit MAC. Using these features, the device could
be a complete NIDS solution from.

Xilinx’s ISE design environment was used for all parts of
the design flow including synthesis, mapping, and place and
route. We have implemented from the Snort rule database
signature sets ranging from 94 rules comprising 1024 char-
acters to 1237 rules comprising 16347 characters. The entire
Snort rule database contains 2758 rules comprising 37680
rules. Unfortunately, Xilinx’s ISE synthesis tool was not
able to process that large a design. Table 1 shows the re-
source utilization for different levels of parallelism. Aspar-
allelism increases, the throughput increases as expected.
However, the efficiency in terms of operating frequency de-
creases mainly because the PE becomes more complex asp
increases. It is also interesting to note that as the signature
set size increases the number of logic cells per character de-
creases and the operating frequency decreases as well. This
is because as the signature set size increases, each CAM
character cell is connected to more PEs and thus creating
increased fanout on each cell.

The design using binary tree structured MAO logic uses
roughly 1.5 registers and 1.5 LUTs per CAM character
compared to 2 flip-flop and 3 LUTs per CAM character of
SMP using a start address RAM to implement the MAO
logic. The register is used to implement the PE register and
the word match buffer. The LUTs correspond roughly to the
CAM, the PE logic, and the matched address output logic.
The flip-flops and LUTs can be mapped to almost 1 slice
per character.

Table 2 shows a comparison of our work with other
recent related work in FPGA implementations of signa-
ture matching. The performance metric is the ratio between
throughput and logic cells/char and is similar to that intro-
duced in [3, 6] to evaluate the trade offs between area and
performance. Our design is comparable in performance to
other work in the area, particularly other comparator based

designs [21, 6, 5]. What is particularly notable is that the
number of logic cells/character is significantly smaller than
any other comparator based design. With increased paral-
lelism, the throughput should increase significantly.

5. Conclusions and Future Directions

In this paper, we have introduced a novel architecture
for a hardware based network intrusion detection system
(NIDS) using an innovative CAM-based signature match
processor. Based on the current implementation of the SMP,
we can process incoming streams at rates of over 5 Gbps.
This is more than sufficient to handle intrusion detection on
current gigabit networks. We have also presented a unique
design of a priority address encoder that will generate ad-
dresses even in cases when there are multiple matches
within a packet.

The SMP design also opens opportunities in other ap-
plications besides NIDS. Any lookup that is based on non-
fixed-size keys seems to be an ideal candidate to take ad-
vantage of these SMPs. Some examples include directory
lookup in network storage applications, DNS lookup, and
LDAP processing. These are all applications that require
large amounts of computational power to perform string
matching lookup based operations. We are investigating the
use of SMPs in these applications as well as developing
extensions of the SMPs to support wildcards and approxi-
mate word matching capabilities as well. Other research di-
rections include improving the power characteristics of the
SMPs.
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